

PARALAIYAR SUB BASIN

INDEX

SI.No.	Description	Page No
Ι	Overview	5 - 13
II	Scope of the Project	14 - 16
	Project Proposals	17
1	Water Resources Department	18
1.1	Introduction	19 - 40
1.2	Hydrology	41 - 53
1.3	Hydraulics of the Component	54 - 68
1.4	Participatory Irrigation Management (PIM)	69 - 100
1.5	Irrigation Infrastructure	101 - 113
1.6	Rehabilitation Irrigation Infrastructures	114 - 149
1.7	Environmental Cell	150 - 162
1.8	Ground Water	163
	Flow Diagram	164
2	Department of Agriculture	
3	Department of Horticulture and Plantation Crops	
4	Agricultural Engineering Department	
5	Tamil Nadu Agricultural University	
6	Department of Agricultural Marketing & Agribusiness	
7	Department of Animal Husbandry and Veterinary Services	
8	Fisheries Department	
IV	Thematic Maps	166
1	Index	
2	Drainage	
3	Cluster	
4	Package	
5	WUA	
6	Administrative	
7	Village	
8	Categorization	
9	Land use	
10	Soil Map	
11	Geology	
12	Geomorphology	

Paralaiyar Sub basin – An Overview

1. Introduction

The Gundar river takes rise from the eastern slope of Varusanadu Hills at an altitude of 1273m near Kottaimalai of Saptur reserve forest on the eastern slopes of Western Ghats in Maduraii District and runs southeast for a distance of 150 km and finally empties into Gulf of Mannar at about 6 km of south east of Sayalkudi of Ramanathapuram District. The Gundar river basin is located between latitude $9^0 05'$ N to $10^0 03'$ N and longitude $77^0 35'$ E to $78^0 35'$ E having an area of 569023 Sq.Km and is surrounded by Vaigai Basin on the South, Vaigai Basin on the West and North and Gulf of Mannar / Bay of Bengal on the east.

The Gundar Basin has been divided into 9 sub basins and Paralaiyar is one of the sub basins. A river Paralaiyar originates from Melapasalai village in Manamadurai Taluk and it is named as Somathur odai and fed by surplus of many Vaigai fed tanks in Manamadurai taluk. The diverted water from river vaigai through Parthibanoor regulator also joins the odai and becomes Paralaiyar. The river runs into two arms upto Mosukudi where it joins together and runs through Manamadurai, Paramakudi, Mudhukulathur and kamuthi taluks. The major tributaries Gridhumal and Paralaiyar after crossing the Raghunatha cauvery channel through surplus weirs runs independently for about 2 km and joins as a single river. Then the combined tributary falls into the Malattar (Gundar) river in Keelavalasai village. The length of the tributary is about 40km, There is only one anicut namely Paralai anicut across Paralaiyar feeding 34 tanks through Keelathoval channel and Keeranur channel.

The Paralaiyar Sub basin is located between latitude 9⁰15'00" to 9⁰46'50" N and longitude 78⁰18'50" E to 78⁰26'00" E and is surrounded by Vaigai river on the North and Lower Gundar Sub basin on South. Paralaiyar Sub basin area is 398.283 Sq.Km with a plain area. The taluks covered in the sub basin are Manamadurai, Thiruchuli, Paramakudi, Kamuthi and Mudhukulathur taluks of Sivagangai Virudhunagar, and Ramanathapuram District respectively. It receives an annual average rainfall of 759mm, with its major share during North-East Monsoon.

Observation Well

There are five observation wells existing in this sub basin. The winter water level varies from 7.25 to 7.50m and the summer water level varies from 7.75 – 7.50m .In Kattikulam, Parthibanur, and Appanur village, the quality of groundwater is good with TDS value permissible limit. In the concentration of all ions lies below desirable limit.

Moderate quality of groundwater is available in Manamadurai and Parthibanur villages. The TDS values observed are within the permissible limit. The geochemical type is calcium chloride for all wells in this sub basin.

While considering the ground water quality data for 1983, 1993 and 2003 premonsoon period, the quality is observed was found to be good in Manamadurai and suitability for both drinking and irrigation proposes.

2. Details of Ayacut

There is no direct ayacut from anicuts and reservoir in Paralaiyar Sub basin. The system and Non system tanks in Paralaiyar sub basin are given below.

SI.	District	Sy	stem	Non-sy	/stem
No.	District	Nos	Ayacut	Nos	Ayacut
1.	Sivagangai	12	3070.02	22	1978.24
3.	Virudhunagar			13	730.60
3	Ramnad	6	1685.40	36	3419.88
	Total	18	4755.42	71	6128.72

The total ayacut area under the sub-basin: 10884.14 Ha

Though the total registered ayacut under PWD control is 10884.14Ha, average cultivation is only in **4820.80 Ha** leaving a gap of **2310.11Ha** which is approximately 20.61% of designed irrigation extent.

3. Soil Type and Crops Grown

The soil types found in this Sub Basin are combination of Inceptisol, Alfisol,Entisol and Vertisol

Crops grown in this sub basin area are Paddy,Chillies,Cotton, Vegetables, Pulses, Fodder Cholam, Ragi, Maize are grown during first season and Second Season crop

4. Water Potential

Surface water potential	49.86	Mcum
Ground water potential	80.61	Mcum
Flood Water from Vaigai River	12.23	Mcum
Total	142.70	Mcum

4.1. Present Water Demand

Domestic	19.62	Mcum
Live stock	3.68	Mcum
Industrial	5.16	Mcum
Irrigation	107.06	Mcum
Total	135.52	Mcum

This system is a very old system having 89Nos of PWD tanks for more than 100 Years; it therefore requires wide spread rehabilitation.

- (i) The tanks and its supply channel are heavily silted up with thick vegetation growth obstructing free flow of water bunds are eroded at many places which needs improvements.
- (ii) Fixing of Boundary Stones is necessary to prevent encroachment.
- (iii) The Sluices and weirs of tanks need repairs.
- (iv) Micro irrigation needs to be propagated in the application of water to the fields.
- Most of the lands are in fragmented condition, consequently there is a lot of water loss in field to field irrigation.
- (vi) Farmers are not aware of modern techniques of irrigation and hybrid varieties of crops.
- (vii) Lack of efficient farm management.

5. Water Users Association (WUA)

There are 10 Nos of WUA already formed under WRCP in Saruganiyar Basin Division Sivagangai (SIvaganga District) and 3 Nos of WUA formed WRCP in Lower Vaigai Basin Division, Paramakudi (Ramanathapuram District) in Paralaiyar sub basin. Further It is proposed to form 7Nos of WUA in Sivaganga district, 25 Nos of WUA in Ramanathapuram District and 8 Nos of WUA in Virudhunagar District..

5.1. Stake holders Consultations

In order to improve the system efficiency and productivity of irrigated agriculture, a multi disciplinary approach involving the following departments is envisaged.

- i. Water Resources Department(WRD)
- ii. Agriculture
- iii. Agriculture Engineering (AED)
- iv. Horticulture Dept.
- v. Agricultural Marketing and Agribusiness
- vi. Tamil Nadu Agricultural University (TNAU)
- vii. Fisheries
- viii. Animal Husbandry and Veterinary Services.

WRD officials with the officials of the above line departments have conducted meetings with the stakeholders in the sub basin and also had "**Joint Walkthrough Surveys**" with concerned farmers / WUAs and the following table shows the constraints and countermeasures which emerged during these consultations.

Components	Constraints	Counter Measures
WRD	The Tank feeder canals are silted up and required Desilt. The tank bunds need raising and strengthening to the designed sections and distribution system has to be appropriately rehabilitated	 (i)A holistic approach to be adopted to include all the PWD Tanks in the sub basin and improve their bund sections to the optimum extent required to harvest rainwater. (ii) WUAs are to be formed and further maintenance would be with their involvement. iii)Surplus weirs, tank sluice, are to be improved etc. (iv) The rehabilitation of distribution system network is also proposed.
	Post irrigation management, over drawal by upper reaches, no water to lower reaches.	Proposed WUA shall take care of this with members from lower reaches in the WUA and regulatory systems shall be developed as bye laws of the WUA.
		(i)Productivity linked

5.2. Overview

Agriculture	Traditional old practice being	Demonstration by TNAU and
Agriculture	adopted.	by Agriculture Department is
		proposed.
		(ii) Capacity Building of
		farmers and officials is
		proposed.
		(iii) Extension of new
		Agricultural technology on
		application of optimum
		fertilizers, IPM measures are
		proposed through Agriculture,
		Horticulture Departments and
		TNAU Departments.
		(iv)Supply of quality seeds to
		be ensured.
		(i)Agri. Marketing Department and TNAU to assess the
		and TNAU to assess the market trend and advise the
		WUA through Agribusiness Cell, Kiosks & Discussion
		meetings.
		(ii)For value addition to
		products, grading
		arrangements, threshing floor,
	(i)Farmers failed to adopt new	cold storages etc are
	technologies, and diversification	proposed.
	mainly due to absence of correct	(iii)The possibility of making
Agriculture	market information.	WUA as entrepreneurs of
Agriculture	(ii)For diversification of crops no	Agri-processing units are
Marketing,	proper extension advice is available.	explored and suggestions are
Horticulture,	(iii) Modern technologies like micro	made.
Agricultural	irrigation, to save water, are costly	iv) Depending on the
Engineering	and require lot of frequent training	marketability and Agro-climatic
	etc.	suitability, appropriate
	(iv)The value addition technologies	Horticulture crops are
	observed are absent.	proposed and the extent of
		development is also proposed
		in consultation with the WUA.
		(v) Depending on the
		Horticulture crops proposed,
		AED proposes to link
		installation of micro irrigation
		system network and wherever
		required pilot cases for buried
		pipe conveyance is also
		proposed.
		(i) A.I centres with improved
		infrastructure in existing
		veterinary sub centres have
		been proposed.
		(ii) Sufficient fodder area is
Animal	(i)Livestock population need health	proposed to be cultivated with
Husbandry	improvement schemes	good quality fodder seeds

and Fisheries	ii) Quality Fodder is needed. iii) Infrastructure development in	supply.
	existing veterinary sub centres is	(iii) Adequate trainings are
	needed.	proposed.
	iv) In service training to	(iv) Fisheries Department in
	veterinarians are needed.	consultation with the AED, and
		WUA propose inland fishing
	v) Good fish fingerlings are required	with the farm ponds etc with
	to promote inland fishery through	provision for Kiosks for
	farm ponds in the farmers' lands.	improved marketability.

6.1. Water Resources Department (WRD)

Approach: To rehabilitate the irrigation system and service delivery:

- a. Thematic Maps on land use, soils, crops, water bodies, and other agricultural and demographic attributes are prepared by IWS.
- b. The crop water requirements for the crops during without and with Project situation are prepared by IWS. The crops proposed by Agriculture and Horticulture Departments will be tailored in consultation with Agricultural Marketing Department and the Water Users Association.
- c. The adequacy & status of the canal system, feeder channels to tanks, distribution system etc, have been assessed by the WRO (both regional and Plan Formulation wing) as follows:
 - Strengthening of tank bund by earthfill placement duly compacted..
 - Desilt the supply channels by earthwork excavation.
 - Providing retaining walls at vulnerable points in the supply channels and also providing model sections/ bed bars at 200 m intervals.
 - Providing Model sections to maintain the TBL in the tanks.
 - Reconstruction of Collapsed weirs
 - Repairs to the damaged weirs
 - Reconstruction of Collapsed Sluices
 - Repairs to the damaged Sluices

- Providing S.G. Shutter / Plug arrangements to Sluices, Head sluices, Scour vents etc.,
- Removing, Repairing and refixing in position the existing S.G. shuttering arrangements and providing locking arrangements etc.,
- Fixed boundary stones in the tanks to prevent encroachment.
- Providing Turfing on the rear side of the tank bund for a length of 100m near every sluice to prevent the soil erosion.
- Cement Concrete lined Channel: Provision of Cement concrete lined channel for a length of 35.00 m immediately at the down stream side of all irrigation sluices with M10 Grade concrete is given. The balance length of the distribution channels of every sluice is periodically maintained by the ayacutdhars during the cultivation period.

Accordingly the following packages are proposed,

PARALAIYAR SUB BASIN PACKAGE DETAILS

SI. No	PACKAGE NOS.	NAME OF THE PACKAGE	PACKAGE AMOUNT IN LAKHS
1.	01/IAMWARM/WRD/P RL/ Works/IV/ 2010 – 2011	Rehabilation of System and Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Manamadurai Taluk of Sivaganga District (Part I).	672.49
2.	02/IAMWARM/WRD/P RL/ Works/IV/ 2010 – 2011	Rehabilation of System and Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Manamadurai Taluk of Sivaganga District (Part II).	754.65
3.	03/IAMWARM/WRD/ PRL/ Works/IV/ 2010 – 2011	Rehabilation of Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Thiruchuli Taluk of Virudhunagar District.	247.76
4.	04/IAMWARM/WRD/P RL/ Works/IV/ 2010 – 2011	Rehabilation of System and Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Paramakudi and Mudukulathur Taluk of Ramanathapuram District.	710.80
5.	05/IAMWARM/WRD/ PRL/ Works/IV/ 2010 – 2011	Rehabilation of Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Kamuthi Taluk of Ramanathapuram District.	258.95
6.	06/IAMWARM/WRD/P RL/ Works/IV/ 2010 – 2011	Rehabilation of Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Mudhukulathur and Kadaladi Taluk of Ramanathapuram District.	521.95
		SUB TOTAL	3166.60
	Environmental Cell		20.00
	Ground Water		NIL
		TOTAL	3186.60

Outcome Indicators

The indicators for evaluating the performance of WRO are as follows:

- The conveyance efficiency is expected to be improved from the present 53% to 60%
 - The present gap area of 2310.11 Ha will be bridged totally in the project
- > Rehabilitation/ Reconstruction of Irrigation Infrastructure

Besides this, the WRO is actively engaged in formation of WUA's as per TNFMIS Act 2000 and Rules by preparing the relevant documents such as maps showing the hydraulic boundary of WUA, land owners voters list etc. To help in the above collection of data involving social and field activities, it is proposed to enlist the services of NGOs, Agricultural Extension Officers, SHGs etc. It is estimated that about 40 WUA shall have to be formed in this sub basin.

Tank components

The practice of tank irrigation has been prevalent from time immemorial. Tanks help to store water for lean season and have played a significant role in the irrigation sector. They not only provide a source for irrigation but also help in recharging ground water under suitable conditions. There are **18 system tanks** with an ayacut of **4755.42Ha** and **71 Non-system tanks** with an ayacut of **6128.72Ha**. These tanks are quite old and are in urgent need of repairs & rehabilitation. The irrigation potential of these tanks has declined with siltation, poor maintenance of sluices, bund erosion and failure of the distribution system.

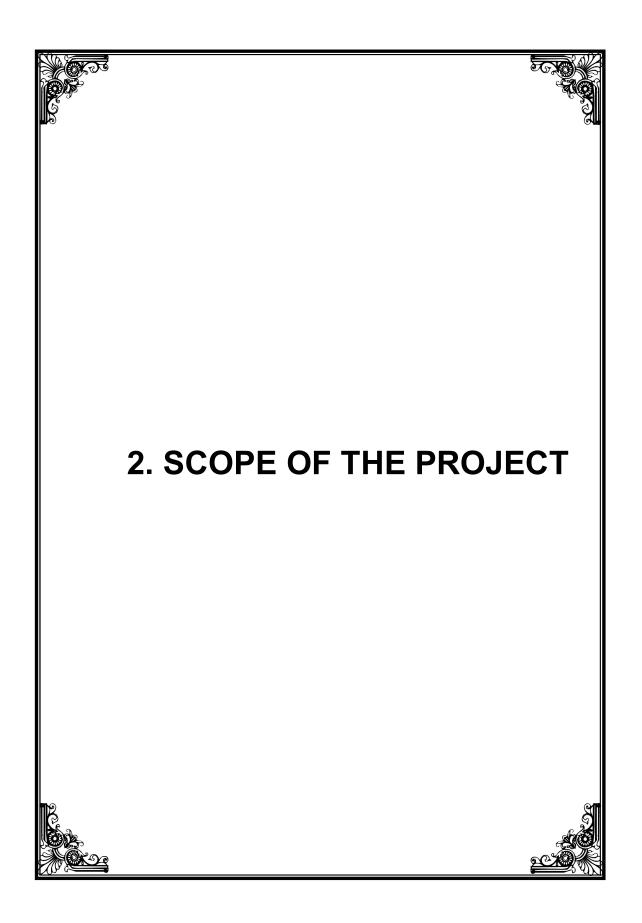
Under the IAMWARM project, the following investments are proposed to rehabilitate the PWD tanks.

For improving the supply channels, Desilt to restore capacityof feed channel, improvements to bund, repair to weirs, weir reconstruction, sluice reconstruction and repairs to sluices in **89 PWD tanks**, a sum of **Rs.31.87 Crores** has been proposed.

Non Tank Components

The rivers run from hilly terrain to plain area with their old direction. To cultivate more area in the flow direction new technique was introduced as construction of anicuts and exavation of supply channel. By this method the run of water during rainy season, the water diverted to tanks for irrigation purpose as required. The practice of irrigation has been prevalent for time immemorial.

The anicuts are very useful to divert water and store in tanks. They not only provide a source for irrigation but also help in recharging ground water under suitable conditions. There is **1 anicut and its supply channel for a length 21.00 KM** with an ayacut of **825.16 Ha**.


BRIEF NARRATION:

7.1 WATER RESOURCES ORGANISATION

- Restoring the capacity of the Irrigation Storage Structures like tanks by means of strengthening the tank bund.
- Restoring the original carrying capacity of supply channels from River,
 Rain fed odai and from its own catchments odai to feed the non system tanks.
- Reconstruction and Repairs of weirs and sluices of tanks.

Operational arrangements by means of providing and replacing screw gearing arrangements.

- Rehablitation of old anicut and Desilt of its supply channel.
- Fixing boundary stones in the tanks to prevent encroachment of tanks
- Forming New Water Users Associations for Participatory Irrigation Management (PIM)
- Rehabilitation works of all Irrigation structures to improve the conveyance efficiency.

PRESENT STATUS OF THE SYSTEM

2.1 GENERAL

The deficiencies in the structure and functions of Irrigation network causes the inefficient functioning of the Paralaiyar Sub-basin and creates hardship to the farming community.

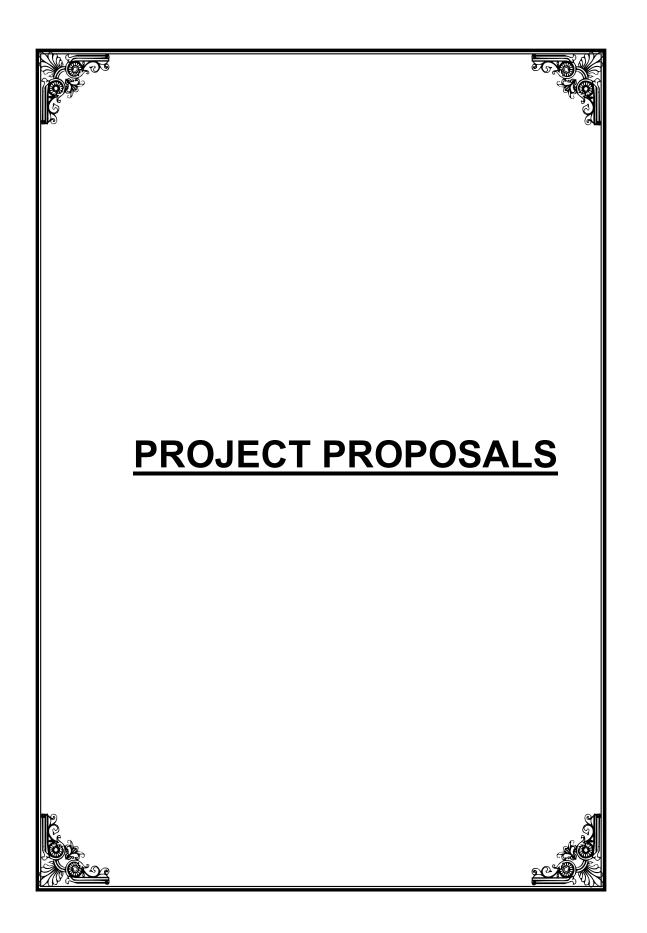
2.2 SYSTEM DEFICIENCY

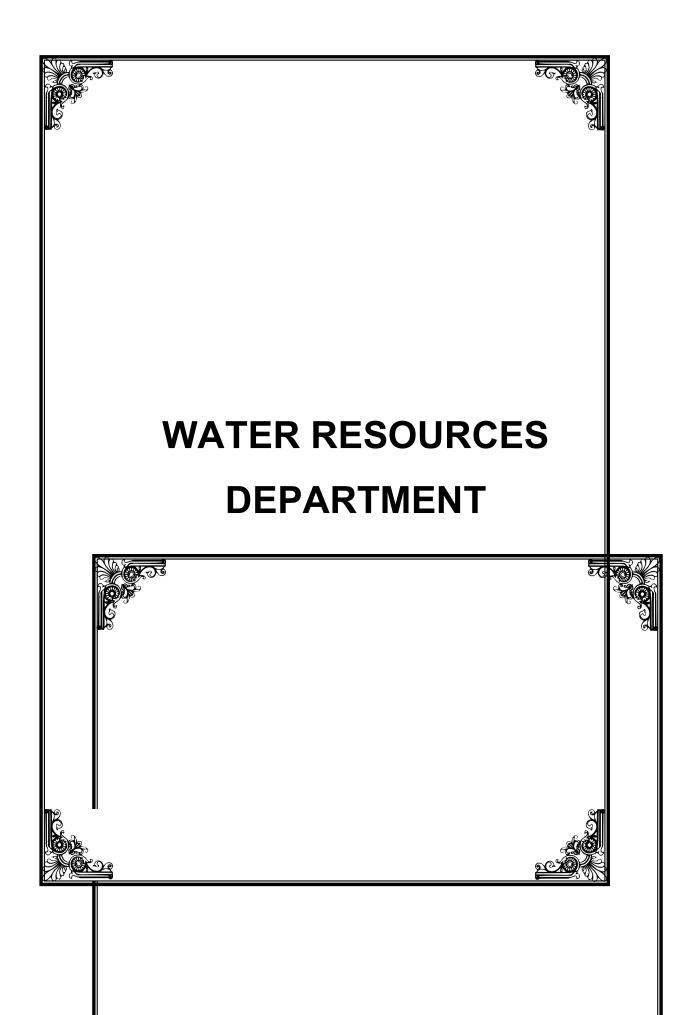
In most of the command areas of the channels, tanks, irrigation channels etc. distribution are taken upto a certain limit only, beyond this the water is left to be conveyed by the farmers themselves to the fields for irrigation. No technical attention is paid on the application of water to the fields. The farmers with out the proper awareness of irrigation leave most of the fields with zigzag boundaries and the field bunds are abnormal in size which reduces the cultivatable area considerably.

The major problems being experienced in the Paralaiyar sub basin are as follows.

- Lack of efficient on farm water management.
- Poor infra structure facilities.
- Non-adoption of modern micro irrigation methods and new agricultural practices.
- Inadequate farm mechanization.
- Inadequate coordination among rural agencies, Government departments and other financial institution etc.
- Lower crop yield.
- Low field application efficiency
- Traditional method of farming.
- Excess use of chemical fertilizers and pesticides.
- Inadequate post harvest management facilities.

2.3 SCOPE OF THE PROJECT


The Water Resources Department in coordination with the following line departments have proposed to improve the irrigation service delivery and productivity of irrigated agriculture with effective integrated water resources management in this sub basin. The line departments are


- 1. Agriculture Department
- 2. Department of Horticulture and Plantation Crops.
- 3. Agriculture Engineering Department.
- 4. Tamil Nadu Agricultural University.
- 5. Department of Agricultural Marketing and Agribusiness services
- 6. Animal Husbandry and Veterinary services.
- 7. Fisheries Department.
- 8. Environmental cell of Water Resources Organization.

2.4 Water Resources Department

In order to improve the conveyance and operational efficiency, it is now proposed to improve and modernize the structural components in Paralaiyar Sub-basin.

- Desilt the supply channels by earthwork excavation using Machinery.
- Strengthening the tank bund by earthfill placement duly compacted.
- Repairs to Head Sluices
- Reconstruction of Collapsed weirs
- Repairs to the damaged weirs
- Reconstruction of Collapsed Sluices
- Repairs to the damaged Sluices
- Retaining walls and Model Section in selective area of the tanks
- Providing S.G. Shutter / Plug arrangements to Sluices, Head sluices, Scour vents etc.,
- Removing, Repairing and refixing in position of the existing S.G. shuttering arrangements to the sluices and providing locking arrangements etc.,
- Rehablitation of old anicut and Desilt of its supply channel.
- Fixing Boundary Stones in the tank bund and water spread area
- Providing Turfing on the rear side of the tank bund for a length of 100m near every sluice to prevent the soil erosion.

CHAPTER – 1.1 INTRODUCTION

INTRODUCTION

1.1.1 GENERAL

Agriculture is the dominant sector in the Indian economy. Tamil Nadu, depends largely on the surface water irrigation as well as ground water irrigation. The state has used the surface and ground water potentials to the maximum limit and hence the future development and expansion depends only on the efficient and economical use of water potential and resources.

To achieve higher water use efficiency, it is necessary to improve and upgrade the existing conveyance system and also to introduce modern irrigation methods.

With the above objective, a comprehensive programme has been proposed with a Multi Disciplinary Approach.

1.1.2 Description of the GUNDAR Basin

The Gundar river takes rise from the eastern slope of Varusanadu Hills at an altitude of 1273 m near Kottaimalai of Saptur reserve forest on the eastern slopes of Western Ghats in Madurai District and runs southeast for a distance of 150 km and finally empties into Gulf of Mannar at about 6 km of south east of Sayalkudi of Ramanathapuram District. The Gundar river basin is located between latitude $9^0 05^{\circ}$ N to $10^0 03^{\circ}$ N and longitude $77^0 35^{\circ}$ E to $78^0 35^{\circ}$ E having an area of 569023 Sq.Km and is surrounded by Vaigai Basin on the South, Vaigai Basin on the West and North and Gulf of Mannar / Bay of Bengal on the east.

This basin has been divided into nine sub-basins namely as follows;

- 1 Upper Gundar
- 2 Therkkar
- 3 Kanal Odai
- 4 Gridhumal Nadhi

5 Paralaiyar

- 6 Uthirakosamangaiaru
- 7 Palar
- 8 Lower gundar
- 9 Vembar

1.1.2 Description of the Paralaiyar Sub-Basin

The Gundar Basin has been divided into 9 sub basins and Paralaiyar is one of the sub basins. A river Paralaiyar originates from Melapasalai village in Manamadurai Taluk and it is named as Somathur odai and fed by surplus of many Vaigai fed tanks in Manamadurai taluk. The diverted water from river vaigai through Parthibanoor regulator also joins the odai and becomes Paralaiyar. The river runs into two arms upto Mosukudi where it joins together and runs through Manamadurai, Paramakudi, Mudhukulathur and kamuthi taluks. The major tributaries Gridhumal and Paralaiyar after crossing the Raghunatha cauvery channel through surplus weirs runs independently for about 2 km and joins as a single river. Then the combined tributary falls into the Malattar (Gundar) river in Keelavalasai village. The length of the tributary is about 40km, There is only one anicut namely Paralai anicut across Paralaiyar feeding 34 tanks through Keelathoval channel and Keeranur channel.

The Paralaiyar Sub basin is located between latitude 9⁰15'00" to 9⁰46'50" N and longitude 78⁰18'50" E to 78⁰26'00" E and is surrounded by Vaigai river on the North and Lower Gundar Sub basin on South. Paralaiyar Sub basin area is 398.283 Sq.Km with a plain area. The taluks covered in the sub basin are Manamadurai, Thiruchuli, Paramakudi, Kamuthi and Mudhukulathur taluks of Sivagangai Virudhunagar and Ramanathapuram District respectively. It receives an annual average rainfall of 759mm, with its major share during North-East Monsoon.

Observation Well

There are five observation wells existing in this sub basin. The winter water level varies from 7.25 to 7.50m and the summer water level varies from 7.75 – 7.50m .In Kattikulam, Parthibanur, and Appanur village, the quality of groundwater is good with TDS value permissible limit. In the concentration of all ions lies below desirable limit.

Moderate quality of groundwater is available in Manamadurai and Parthibanur villages. The TDS values observed are within the permissible limit. The geochemical type is calcium chloride for all wells in this sub basin.

While considering the ground water quality data for 1983, 1993 and 2003 premonsoon period, the quality is observed was found to be good in Manamadurai and suitability for both drinking and irrigation proposes. There are **89** tanks situated within the Paralaiyar sub basin catchment area.

Apart from the resources from its own water spread the Paralaiyar sub basin get supply from Vaigai sources. The length of Tributary in Paralaiyar is 40 Km.

1.1.1.CLUSTER CONVERGENCE TABLE - IV PHASE SUB-BASINS

NAME OF THE SUB BASIN: PARALAIYAR SUB BASIN

		1		1	_	1			1											<u> </u>		<u></u>							
Sl.No	Clusters with the name of the tank	Name of the Cluster Blocks	Name of the Cluster Revenue Villages	Total	l Ayacut area	in Ha	Total A	rea in Ha	a in Ha WRD		WRD		Agriculture		Agriculture		Horticulture		AED		AED		AU	Agri	narketing	A	HD	Fishe	ries
				Ы	Ы	Gap area	WOP	WP	(Focus crop)	Activities	vos.& length in 'M'	Activities	Nos /Ha	Activities	Nos/Ha	Activi ties	Nos./ Ha	Activities	Nos./ Ha	Activities	Nos./ Ha	Activities	Nos./ Ha	Activities	Nos./ Ha				
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	27	28				
	SIVA	GANGA DI	STRICT							-	_		_	_	-	_													
	CLUSTER I		MUTHANENDAL CLUSTER	I	1	1	1																						
1	Vagudi Tank	adurai	Vagudi	123.65	27.39	25.60	151.04	157.70		Tank bund impts.	3416									DY	1	FC	0.2						
		Manamadurai								Sluice impts.	3																		
		_	-							Sup.Chl.impts.	1000																		
2	Vidathakulam Tank		Vagudi	32.10	7.59	11.50	39.69	42.68		Tank bund impts.	2408						2	SRI	5	CG DY	1	FC	0.2						
		-								Sluice impts.	2											-							
			-							Sup.Chl.impts.	1000																		
3	Muthanendal Tank	-	Muthanendal	24.20	19.22	18.20	43.42	48.15		Tank bund impts.	1799									DY	1	FC	0.2						
		-	-							Sluice impts.	4																		
		-								Sup.Chl.impts.	2900											-							
4	Thuthikulam Tank	-	Thuthikulam	22.20	16.92	13.50	39.12	42.63		Tank bund impts.	1105						1			DY	1	FC	0.2	FP	1				
			-							Sluice impts.	2						1												
			-							Sup.Chl.impts.	3200																		
5	Mullaikulam Tank		Mullaikulam	55.60	24.29	20.00	79.89	85.09		Tank bund impts.	1798									DY	1	FC	0.2						
		-								Sluice impts.	4																		
		urai								Sup.Chl.impts.	2500																		
6	Kuvalaiveli Tank	Manamadurai	Kuvalaiiveli	140.20	41.60	20.00	181.80	187.00		Tank bund impts.	4420									DY	1								
			-							Sluice impts.	5																		

									Sup.Chl.impts.	7900										
7	Kattikulam Tank	-	Kattikulam	980.90	151.05	155.00	1131.95	1172.25	Tank bund impts.	5822			3	SRI	3	CG DY	1	FC	0.2	
									Sluice impts.	8			2							
			-						Sup.Chl.impts.	8800			2							
8	Milaganur Tank		Milaganur	400.00	47.90	121.00	447.90	479.36	Tank bund impts.	5395										
									Sluice impts.	7										
									Sup.Chl.impts.	9500										
				1778.85	335.96	384.80	2114.81	2214.86	Weir impts.	1										
	CLUSTER II		M.KARISALKULAM CLUSTER		I	1	1													
1	Chinnakannanur Tank	Irai	Chinnakannanur	96.90	100.12	60.60	197.02	212.78	Tank bund impts.	3171		Mec	2							
		Manamadurai	-						Weir impts.	1										
		W .	-						Sup.Chl.impts.	1500										
									Sluice impts.	2										
2	Manakathan Tank		Manakathan	20.20	20.33	13.80	40.53	44.12	Tank bund impts.	38.71										
									Sluice impts.	2										
									Sup.Chl.impts.	1020										
3	Somathur Tank		Somathur	26.90	19.74	15.60	46.64	50.70	Strength tankbund	3920										
		_	-						Sluice impts.	5										
		urai	-						Sup.Chl.impts.	1530										
		Manamadurai							Weir impts.	1										
4	M.Karisalkulam Tank	×	M.Karisalkulam	46.80	22.77	32.30	69.57	77.97	Tank bund impts.	3292										<u> </u>
			-						Sluice impts.	3										ļ
			-						Weir impts.	1										
			-						Sup.Chl.impts.	2230										
5	Melapasalai Tank		Melapasalai	65.00	40.36	21.00	105.36	110.82	Tank bund impts.	3885										
			-						Sluice impts.	3										

									Weir impts.								
										1							+
		-							Sup.Chl.impts.	3815							
6	Arimandapam Tank	_	Arimandapam	50.00	50.56	32.00	100.56	108.88	Tank bund impts.	3857							
									Sluice impts.	2							
									Weir impts.	1							
				305.80	253.88	175.30	559.68	605.26	Sup.Chl.impts.	2100							
	CLUSTER: III		MANAMADURAI CLUSTER														
1	Annavasal tank	Manamadurai	Annavasal	35.00	73.23	22.00	108.23	114.04	Tank bund impts.	4115			2		F G	1	
		Manar							Sluice impts.	5			2				
			-						Weir impts.	1			1				
			-						Sup.Chl.impts.	2510							
2	Sangamangalam Tank		Sangamangalam	20.00	28.75	20.00	48.75	53.86	Tank bund impts.	2835			1				
									Sluice impts.	1			1 1				
		[ai.							Sup.Chl.impts.	1000							
3	Kilankattur Tank	mamadurai	Kilankattur	35.00	33.31	25.80	68.31	75.02	Tank bund impts.	2515			1				
		Ma							Sluice impts.	2							
									Sup.Chl.impts.	1800							
4	Keelamelkudi Tank		Keelamelkudi	98.00	61.74	32.00	159.74	168.06	Tank bund impts.	2987			1				
									Sluice impts.	3			1				
									Weir impts.	1							
									Sup.Chl.impts.	4190							
5	Manamadurai Tank	-	Manamadurai	77.18	91.59	58.42	168.77	183.96	Tank bund impts.	3170			1 1				
		1							Sluice impts.	2							
		-	-						Sup.Chl.impts.	3520							
6	Melamelkudi tank	-	Melamelkudi	48.50	48.29	26.20	96.79	103.60	Tank bund impts.	2498			1				
			-						Sluice impts.	5			1				

7	Kalpirivu tank		Kalpirivu	26.80	14.26	15.20	41.06	45.01	Tank bund impts.	1170		1 1				
									Sluice impts.	2						
			-	340.48	351.26	199.62	691.74	743.55	Sup.Chl.impts.	2500						
	CLUSTER: IV		RAJAKAMBEERAM CLUSTER	1												
1	Puluvaimarichan tank		Puluvaimarichan	35.80	28.35	25.20	64.15	70.70	Tank bund impts.	2256		1		FC	2	
									Sluice impts.	2		1				
2	Kaliyanendal Tank		Kaliyanendal	17.90	13.27	16.20	31.17	35.38	Tank bund impts.	2384		2				
		rai	-						Sluice impts.	2						
		Manamadurai	-						Weir impts.	1						
		M							Sup.Chl.impts.	1600						
3	Pallayiramadai Tank		Pallayiramadai	17.25	15.88	10	33.13	35.73	Tank bund impts.	1494						
			-						Sluice impts.	3						
4	Rajakambeeram tank		Rajakambeeram	35.60	37.63	36.60	73.23	82.75	Tank bund impts.	1820		1				
									Sluice impts.	3		2				
									Sup.Chl.impts.	1200		1				
5	S.Karisalkulam tank		S.Karisalkulam	13.80	14.59	12.10	28.39	31.54	Tank bund impts.	1974		5 1				
									Sluice impts.	2		1				
6	Meeakshipuram tank		Meeakshipuram	10.00	19.69	10.80	29.69	32.50	Tank bund impts.	1260		1 1				
			-						Sluice impts.	2		1				
			-						Sup.Chl.impts.	1200						
7	Narattai tank		Narattai	20.00	18.24	15.20	38.24	42.19	Tank bund impts.	2286		1 1 1				
									Sluice impts.	2						
8	Thamaraikudi tank		Thamaraikudi	21.50	12.07	16.20	33.57	37.78	Tank bund impts.	3170						
			-						Sluice impts.	3						
			-						Sup.Chl.impts.	2500						
9	Killukudi tank	adurai	Killukudi	50.00	23.70	26.60	73.70	80.62	Tank bund impts.	1845						

			-						Sluice impts.	2				
		-	-						Weir impts.	1				
		-							Sup.Chl.impts.	1800				
10	Karuvaikudi tank	-	Karuvaikudi	25.62	7.93	15.69	33.55	37.63	Tank bund impts.	2741	4			
		-	-						Sluice impts.	4	1			
		-	-						Weir impts.	1	1			
		-	-						Sup.Chl.impts.	1210				
11	M.Pudukulam Tank	-	M.Pudukulam	42.00	44.25	35.60	86.25	95.53	Tank bund impts.	4185	1			
			-						Sluice impts.	2	1			
			-						Weir impts.	1	1			
									Sup.Chl.impts.	1800				
12	Arasakulam tank	-	Arasakulam	52.00	49.48	25.00	101.48	107.98	Tank bund impts.	2377	2			
			-						Sluice impts.	4	1			
			-						Weir impts.	1				
			-						Sup.Chl.impts.	2110				
13	Nachodai tank		Nachodai	15.20	21.87	13.50	37.07	40.67	Tank bund impts.	1415				
		_		356.67	306.95	258.69	663.62	731.09	Sluice impts.	3				
			-	2781.80	1248.05	1018.41	4029.85	4294.76						
	RAMANATHAPURAM DISTRICT													
	CLUSTER: V		PARTHIBANUR CLUSTER											
1	Pudukottai Tank		Pudukottai	52.00	90.00	46.90	142.00	162.64	Tank bund impts.	2450	2		FG 1	
									Sluice impts.	3	2			
		akudi	-						Weir impts.	1	1			
2	Perungarai Tank	Paramakudi	Perungarai	109.40	166.00	98.25	275.40	333.63	Tank bund impts.	5200	1			
									Sluice impts.	2				
3	Parthibanur Tank		Parthibanur	180.00	220.00	114.77	400.00	455.88	Tank bund impts.	5400	2			
			-						Sluice impts.	5	1			

			-						Sup.Chl.impts.	3970						
4	Melakodumalur Tank	Muhdu kulathu r	Melakodumalur	83.00	105.00	49.05	188.00	209.58	Tank bund impts.	4755		2				
			-						Sluice impts.	5		1				
5	Arungulam Tank	kudi	Arungulam	118.02	147.00	52.80	265.02	288.25	Tank bund impts.	3962		4				
		Paramakudi	-						Sluice impts.	2		1				
		_	-						Weir impts.	1						
6	Kamini tank	_	Kamini	15.00	29.00	9.21	44.00	48.05	Tank bund impts.	1403		4				
			-						Sluice impts.	2		1				
7	Kallikudi Tank		Kallikudi	30.00	51.00	18.45	81.00	89.12	Tank bund impts.	2745				FC	2	
			-						Sluice impts.	2						
8	Konakulam Tank		Konakulam	11.00	21.00	11.08	32.00	36.88	Tank bund impts.	1620		1				
									Sluice impts.	2						
9	Kothankulam Tank		Kothankulam	15.00	27.00	15.03	42.00	48.61	Tank bund impts.	2225		1				
			-						Sluice impts.	3		1				
10	Keelasivankulam Tank		Keelasivankulam	11.00	17.00	14.38	28.00	34.33	Tank bund impts.	1950		4				
			-	624.42	873.00	429.92	1497.42	1706.97								
	CLUSTER: VI		MOSAKUDI CLUSTI	ER												
1	Veppankulam tank		Veppankulam	13.00	22.00	14.68	35.00	41.46	Tank bund impts.	2100						
		_							Sluice impts. Tank bund	3				-		
2	P.Pudur tank		P.Pudur	40.04	53.00	43.90	93.04	112.36	impts.	2895		1				
			-						Sluice impts.	3		1				
3	Pidariseri Tank		Pidariseri	20.00	35.00	9.58	55.00	59.22	Tank bund impts.	3566		5				
			-						Sluice impts.	3		1				
4	Nelmadur Tank		Nelmadur	16.00	18.00	9.60	34.00	38.22	Tank bund impts.	3040						
									Sluice impts.	2						
5	Mosakudi Tank	Paramakudi	Mosakudi	34.98	65.00	24.70	99.98	110.85	Tank bund impts.	3560		1				
		Pa	-						Sluice impts.	3						
			-						Weir impts.	2						

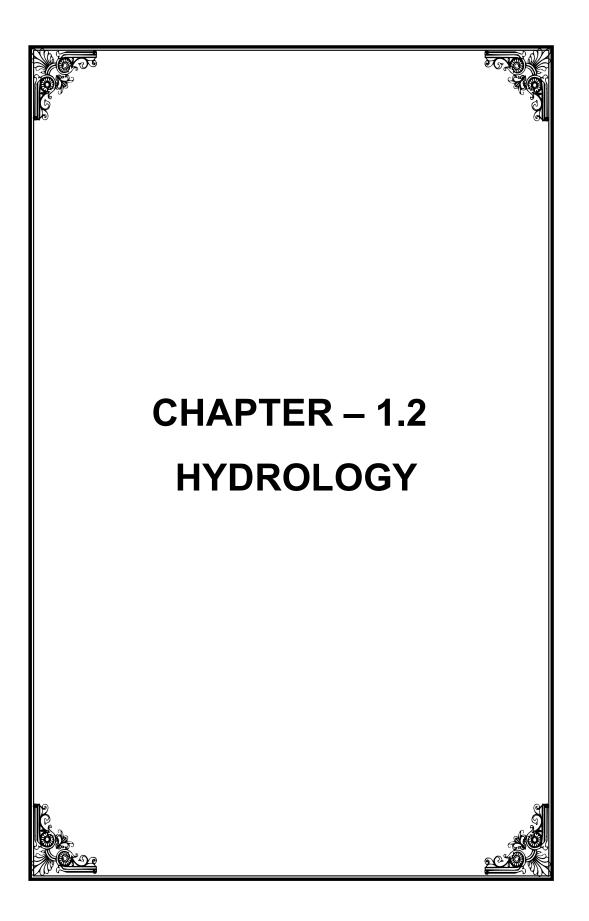
6 Maraneri Tank		Maraneri	13.00	18.00	12.26	31.00	36.39	Tank bund impts.	2250						
		-						Weir impts.	1						
		-						Sluice impts.	3			1			
7 Idayathur Tank		Idayathur	51.95	69.00	26.70	120.95	132.70	Tank bund impts.	3900			2			
			188.97	280.00	141.42	468.97	531.19	Sluice impts.	3			1			
CLUSTER: VII		KEERANUR CLUSTER													
1 Athikulam Tank		Athikulam	15.66	23.75	16.92	39.41	46.85	Tank bund impts.	1951		MIS	1			
	lathur							Sluice impts.	4		FP	1			
2 Keeranur Tank	Mudhukulathur	Keeranur	20.34	38.37	27.58	58.71	70.85	Tank bund impts.	3414						
	W	-						Sluice impts.	4						
	_	-						Sup.Chl.impts.	9005						
3 Melavidathakulam Tank		Melavidathakulam	12.13	25.90	6.49	38.03	40.89	Tank bund impts.	1341						
		-						Sluice impts.	5						
								Weir impts	1						
			48.13	88.02	50.99	136.15	158.59	Sup.Chl.impts.	3000						
CLUSTER: VIII		KEELAKULAM CLUSTER	1												
1 Keelakulam Tank		Keelakulam	20.76	29.04	8.50	49.80	53.54	Sluice impts.	1						
	ulathur	-						Sup.Chl.impts.	11670						
2 Melakulam Tank	Mudhukulathur	Melakulam	19.41	26.24	7.47	45.65	48.94	Tank bund impts.	2100						
		-						Sluice impts.	4						
3 Manaloor Tank		Manaloor	17.07	28.22	7.73	45.29	48.69	Tank bund impts.	2430						
		-						Sluice impts.	1						
4 Kannathan Tank		Kannathan	14.93	21.66	6.00	36.59	39.23	Sup.Chl.impts.	2500		MIS FP	6 6			
			72.17	105.16	29.70	177.33	190.40								
CLUSTER: IX		SONAIPERIYANKOTTAI CLUSTER													

1	Keelakanjirankulam Tank		Keelakanjirankulam	18.10	34.49	8.62	52.59	56.38	Tank bund impts.	1768		MIS FP	5 4			
		hur	-						Sluice impts.	3		Mec	1			
		Mudhukulathur							Sup.Chl.impts.	1400						
2	Chittirangudi Tank	Muć	Chittirangudi	67.43	71.65	32.87	139.08	153.54	Tank bund impts.	3962						
			-						Sluice impts.	4						
			-						Weir impts.	1						
									Sup.Chl.impts.	3500						
3	Enathi Tank		Enathi	46.80	67.99	33.50	114.79	129.53	Tank bund impts.	3688						
			-						Sluice impts.	4						
		1	-	132.33	174.13	74.99	306.46	339.46	Sup.Chl.impts.	1200						
	CLUSTER: X		KIDATHIRUKKAI CLUSTER	1	1	1	1									
1	Koovarkulam Tank		Koovarkulam	12.17	33.24	7.75	45.41	48.82	Tank bund impts.	1463		MIS	2			
			-						Sluice impts.	3		FP	1			
		-			1	1			Sup.Chl.impts.	1600						
2	Sonaiperiyakottai Tank	Mudhukulathur	Sonaiperiyakottai	85.89	98.44	57.19	184.33	209.49	Tank bund impts.	4938						
		Iudbul							Sluice impts.	3						
									Sup.Chl.impts.	4250						
3	Kondulavi Tank		Kondulavi	19.40	29.70	13.51	49.10	55.04	Tank bund impts.	1524		FP	1			
									Sluice impts.	1						
4	Kidathirukkai Tank		Kidathirukkai	36.59	50.88	14.90	87.47	94.03	Tank bund impts.	2652						
			-						Sluice impts.	4						
				154.05	212.26	93.35	366.31	407.38	Sup.Chl.impts.	1220						
	CLUSTER: XI		APPANUR CLUSTER	1												
1	Pothikulam Tank		Pothikulam	56.75	83.10	41.41	139.85	158.07	Tank bund impts.	4462		FP	2			
									Sluice impts.	8		Mec	2			
		-	-						Sup.Chl.impts.	2050						
2	P.Kadambankulam Tank	Kadaladi	P.Kadambankulam	22.33	23.21	7.47	45.54	48.83	Tank bund impts.	1615						
		Kadi							Sluice impts.	3						

									Weir impts.	1						
3	Therakuruchi Tank		Therakuruchi	8.84	15.22	17.73	24.06	31.86	Tank bund impts.	1097						
		-	-						Sluice impts.	3						
4	Appanur Tank	-	Appanur	107.04	132.02	64.17	239.06	267.29	Tank bund impts.	4175		FP	3			
		-		I		I	1		Sluice impts.	5						
									Weir impts.	2						
				194.96	253.55	130.78	448.51	506.05	Sup.Chl.impts.	14760						
	CLUSTER: XII		SEYYAMANGALAM CLUSTER	1	I											
1	Kattu Emaneswaram Tank		Kattu Emaneswaram	11.49	28.42	4.44	39.91	25.86	Tank bund impts.	2130		FP	1			
									Sluice impts.	3						
									Weir impts.	1						
		uthi	-						Sup.Chl.impts.	3000						
2	Seyyamangalam Tank	Kamuthi	Seyyamangalam	22.32	28.90	5.64	51.22	53.70	Tank bund impts.	2550		Mec	1			
									Sluice impts.	5						
			-						Supply channel	2000						
3	Virathakulam Tank		Virathakulam	25.92	28.24	15.70	54.16	61.07	Tank bund impts.	2130						
									Sluice impts.	4						
									Weir impts.	1						
				59.73	85.56	25.78	145.29	140.63	Sup.Chl.impts.	3487						
	CLUSTER: XIII		PERIYUR CLUSTER													
1	Periyur Tank		Periyur	145.43	172.73	74.23	318.16	350.82	Tank bund impts.	3900						
									Sluice impts.	4						
									Weir impts.	1						
		ithi							Sup.Chl.impts.	4500						
2	Anaiyur Tank	Kamuthi	Anaiyur	24.25	22.13	10.70	46.38	51.09	Tank bund impts.	2250		Mec	1			
									Sluice impts.	3						
		1							Weir impts.	1						
			-						Sup.Chl.impts.	2290						

4	Navalkiniyan Tank		Navalkiniyan	19.23	20.12	11.04	39.35	44.21	Tank bund impts.	1560						
									Sluice impts.	4						
									Weir impts.	1						
3	Pulvoikulam Tank	hur	Pulvoikulam	29.23	34.62	18.20	63.85	72.04	Tank bund impts.	1860	Mec	1				
		Mudhukulathur							Sluice impts	3						
		Muc		218.14	249.60	114.17	467.74	518.16	Sup.Chl.impts.	1000						
				1692.90	2321.28	1091.10	4014.18	4498.83								
	VIRUDHUNAGAR D	ISTRICT														
	CLUSTER: XIV		SATHASERI CLUSTER													
1	T.Velankudi Tank		T.Velankudi	29.17	59.81	15.03	88.98	104.01	Tank bund impts.	2255		2		FG	1	
									Sluice impts.	7		2				
			-						Weir impts.	1		1				
									Sup.Chl.impts.	5000						
2	Andiyendal Tank		Andiyendal	28.37	9.84	4.59	38.21	42.8	Tank bund impts.	1616		1				
									Sluice impts.	5						
		Narikudi							Weir impts.	1						
									Sup.Chl.impts.	2000						
3	Sathiseri Tank		Sathaseri	22.83	14.53	10.26	37.36	47.62	Tank bund impts.	2640						
									Sluice impts.	4						
				80.37	84.18	29.88	164.55	194.43	Sup.Chl.impts.	4000						
	CLUSTER: XV		VALANERI CLUSTER													
1	Mullikudi Tank		Velaneri	59.08	13.82	16.19	72.90	89.09	Tank bund impts.	1975						
									Sluice impts.	3						
		Narikudi							Weir impts.	1						
									Sup.Chl.impts.	2000						
2	Sorikulam Tank		Velaneri	30.32	7.76	7.48	38.08	45.56	Tank bund impts.	1525						

	1	I		1	1	1	1		1				1 1	I	
									Sluice impts.	2					
									Weir impts.	1					
3	Velaneri Tank		Velaneri	36.45	4.67	1.64	41.12	42.76	Tank bund impts.	1525					
									Sluice impts.	3					
									Weir impts.	1					
									Sup.Chl.impts.	1000					
4	Alangulam Tank	Narikudi	Alangulam	25.05	3.15	17	28.20	45.20	Tank bund impts.	1830					
									Sluice impts.	3					
									Weir impts.	1					
				150.90	29.40	42.31	180.30	222.61	Sup.Chl.impts.	1500					
	CLUSTER: XVI		THELI CLUSTER												
1	Keelakondraikulam Tank		Theli	19.89	9.13	13.49	29.02	42.51	Tank bund impts.	2310					
									Sluice impts.	4					
									Weir impts.	1					
									Sup.Chl.impts.	2000					
2	T.Kadambankulam Tank	Narikudi	Theli	29.13	6.42	11.96	35.55	47.51	Tank bund impts.	2030					
		2							Sluice impts.	3					
									Weir impts.	1					
3	Kaniyamurichan Tank		Theli	14.54	35.32	3.56	49.86	53.42	Tank bund impts.	2130					
									Sluice impts.	5					
4	Kottakachiyendal Tank		Kottakachiyendal	19.77	8.14	45.85	27.91	73.76	Tank bund impts.	3995					
									Sluice impts.	6					
									Weir impts.	1					
5	Theli Tank	-	Theli	19.71	6.64	18.04	26.35	44.39	Tank bund impts.	2010					
		Narikudi							Sluice impts.	3					
		Nar							Weir impts.	1					
									Sup.Chl.impts.	1500					


6	Dharmam Tank	Irunjirai	11.79	4.67	35.51	16.46	51.97	Tank bund impts.	3240
								Sluice impts.	3
								Weir impts.	
			114.83	70.32	128.41	185.15	313.56	Sup.Chl.impts.	2500
			346.10	183.90	200.60	530.00	730.60		

1.1.2.CONVERGENT TABLE ABSTRACT

B BASIN

Tota	l Ayacut area ir	i Ha	Total Ar	ea in Ha		WRD	
E	Ē	Gap area	MOP	WP	(Focus crop)	Activities	Nos.& length in 'M'
5	6	7	8	9	10	11	12
							-
1778.85	335.96	384.80	2114.81	2214.86		Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	26161 35 1 36800
305.80	253.88	175.30	559.68	605.26		Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	20996 15 5 12195
340.48	351.26	199.62	691.74	743.55		Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	19290 20 2 15520
356.67	306.95	258.69	663.62	731.09		Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	29407 35 5 11120
2781.80	1248.05	1018.41	4029.85	4294.76			
624.42	873.00	429.92	1497.42	1706.97		Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	31710 30 2 4720
188.97	280.00	141.42	468.97	531.19		Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	21311 18 2 0
	ш 5 1778.85 305.80 340.48 356.67 2781.80 624.42	ш ш ш ш 5 6 1778.85 335.96 305.80 253.88 305.80 253.88 340.48 351.26 356.67 306.95 2781.80 1248.05 624.42 873.00	5 6 7 5 6 7 1778.85 335.96 384.80 305.80 253.88 175.30 340.48 351.26 199.62 356.67 306.95 258.69 2781.80 1248.05 1018.41 624.42 873.00 429.92	Indef At Indef At	Image: Hotal Alea in Ha Ha Image: Hotal Alea in Ha	Indef Adea in Fra Indef Adea in Fra Image: Indef Adea in Fra Image: In	Index Adea in Frag WRD Image: Second s

48.13	88.02	50.99	136.15	158.59	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	6706 13 1 3000
72.17	105.16	29.70	177.33	190.40	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	4530 6 0 3500
132.33	174.13	74.99	306.46	339.46	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	9418 11 1 6100
154.05	212.26	93.35	366.31	407.38	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	5639 11 0 7070
194.96	253.55	130.78	448.51	506.05	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	7174 17 1 2050
59.73	85.56	25.78	145.29	140.63	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	6810 12 2 8490
218.14	249.60	114.17	467.74	518.16	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	9570 10 1 7790
1692.90	2321.28	1091.10	4014.18	4498.83		
80.37	84.18	29.88	164.55	194.43	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	5695 8 1 0
150.90	29.40	42.31	180.3	222.61	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	1975 7 0 0
114.83	70.32	128.41	185.15	313.56	Tank bund Improvement, Sluice Improvement, Weir Improvement and Supply channel improvement	13480 17 5 3360
346.10	183.90	200.60	530.00	730.60		
4820.80	3753.23	2310.11	8574.03	9524.19		
	72.17 132.33 154.05 194.96 59.73 218.14 1692.90 80.37 150.90 114.83 346.10	72.17 105.16 132.33 174.13 154.05 212.26 194.96 253.55 59.73 85.56 218.14 249.60 1692.90 2321.28 80.37 84.18 150.90 29.40 114.83 70.32 346.10 183.90	72.17 105.16 29.70 132.33 174.13 74.99 154.05 212.26 93.35 194.96 253.55 130.78 59.73 85.56 25.78 218.14 249.60 114.17 1692.90 2321.28 1091.10 80.37 84.18 29.88 150.90 29.40 42.31 114.83 70.32 128.41 346.10 183.90 200.60	72.17 105.16 29.70 177.33 132.33 174.13 74.99 306.46 154.05 212.26 93.35 366.31 194.96 253.55 130.78 448.51 59.73 85.56 25.78 145.29 218.14 249.60 114.17 467.74 1692.90 2321.28 1091.10 4014.18 80.37 84.18 29.88 164.55 150.90 29.40 42.31 180.3 114.83 70.32 128.41 185.15 346.10 183.90 200.60 530.00	1 1	48.13 88.02 50.99 136.15 158.59 Stice Improvement and Supply channel improvement, Stupply channel improvement, Stuphy channel improvement, Stuphy channel improvement, St

1.2.1. GENERAL

Paralaiyar is a separate river in the plain area.

1.2.2. LOCATION

The Gundar Basin has been divided into 9 sub basins and Paralaiyar is one of the sub basins. A river Paralaiyar originates from Melapasalai village in Manamadurai Taluk and it is named as Somathur odai and fed by surplus of many Vaigai fed tanks in Manamadurai taluk. The diverted water from river vaigai through Parthibanoor regulator also joins the odai and becomes Paralaiyar. The river runs into two arms upto Mosukudi where it joins together and runs through Manamadurai, Paramakudi, Mudhukulathur and kamuthi taluks. The major tributaries Gridhumal and Paralaiyar after crossing the Raghunatha cauvery channel through surplus weirs runs independently for about 2km and joins as a single river. Then the combined tributary falls into the Malattar (Gundar) river in Keelavalasai village. The length of the tributary is about 40km, There is only one anicut namely Paralai anicut across Paralaiyar feeding 34 tanks through Keelathoval channel and Keeranur channel.

The Paralaiyar Sub basin is located between latitude 9⁰15'00" to 9⁰46'50" N and longitude 78⁰18'50" E to 78⁰26'00" E and is surrounded by Vaigai river on the North and Lower Gundar Sub basin on South. Paralaiyar Sub basin area is 398.283 Sq.Km with a plain area. The taluks covered in the sub basin are Manamadurai, Thiruchuli, Paramakudi, Kamuthi and Mudhukulathur taluks of Sivagangai Virudhunagar, and Ramanathapuram District respectively. It receives an annual average rainfall of 759mm, with its major share during North-East Monsoon.

1.2.3 CATCHMENT AREA OF PARALAIYAR SUB-BASIN

The Paralaiyar sub Basin has a typical climate, owing to the extensive major catchments area in plains. Paralaiyar sub-basin enjoys the benefits of mostly North East monsoon and slightly in summer season.

1.2.4 HYDRO METEOROLOGY

The Hydro Meteorology parameters include rainfall, temperature, humidity, wind velocity, evaporation and duration of sun shine which determine the climate of the basin.

1.2.5 RAIN FALL

Average annual rainfall of gauging stations influencing this sub basin is as follows

SI No	Name of Rain gauge Station	North East Monsoon	Summer	South west monsoon	Winter	Annual
1.	Manamadurai	494	147	306	43	990
2.	Thiruchuli	361	107	201	32	701
3.	Kamuthi	328	96	195	35	654
4.	Mudhukulathur	324	115	186	28	653
5.	Paramakudi	nakudi 365		265	39	797
	AVERAGE	374	119	231	35	759

1) Vaigai – Paralaiyar link:

The Vaigai water diverted from Parthibanur regulator to Paralaiyar river. This river runs into two arms upto Mosukudi where it joins togetherand runs through Manamadurai, Paramakudi, Mudhukulathur, Kamuthi and Kadaladi taluks and feeds 45 tanks with an ayacut of 1677.94 ha in Paralaiyar sub basin.

2). Diversion of Vaigai water through supply channels

The supply channel namely, Vagudi supply channel, Kuvalaiveli supply channel, Muthanendal supply channel, Kattikulam supply channel, Thuthikulam supply channel, Milaganur supply channel, Keelamelkudi supply channel, Manamadurai supply hannel, Melapasali supply channel, Kalpirivu supply channel, Perungarai supply channel, Parthibanur supply channel, Pudukkulam supply channel, Arunkulam supply channel, Kamini supply channel and Melakodumalur supply channel are diverting from the Vaigai water.

a. CLIMATE

The Paralaiyar Sub basin lies in a low rainfall belt having an annual average rainfall of 759mm. Southwest monsoon contribute 231mm, while NE monsoon contributes 374mm. This basin receives a major share of its rainfall during NE monsoon. This monsoon helps to build up storage in the tanks Non system. This basin lies on the leeward side of Western Ghats on Western sides. Southwest monsoon rainfall, though lesser that the NE monsoon rainfall, still contribute some runoff helping to buildup storage in tanks. For the measurement of Hydro meteorological parameters in the basin area, there is one weather station at Kavalur near Virudhunagar; its data is taken for the study.

b. SOIL CLASSIFICATION

In this sub basin, due to different stages, Weathering & parent material, the soil types are met with in combination of Inceptisol, Alfisol and Vertisol. More prominent type is Inceptisol.

(Change as suited to this sub-basin)

Inceptisol	Red or brown or grey soil with surface horizon more developed than sub surface. They are developing soils, moderately deep, coarse loamy to loam moderately drained to well drained	Suited for commonly grown crops with exceptions
Alfisol	The red or brown soils having accumulation of alleviated clay in sub surface horizon it well drained, poor water and nutrient holding capacity.	Annual crops with shallow roots systems cum up wells
Vertisols	Black soil	Suitable for cotton, Pulses etc

c. LAND HOLDINGS

The details of farm holdings and size classes prevalent in Paralaiyar Sub basin are given below:

Category	Size of holdings	Numbers	Percentage
Marginal	Below 1.00 Ha	10325	99
Small	1.00 – 2.00 Ha	55	0.8
Medium	2.00 – 5.00 Ha	15	0.2
Big	5.0 ha & above		
Total		10395	100

Above table revealed that the marginal farmers alone accounted for 28 percent in the sub basin followed by small farmers. Developmental initiatives will be establishment in marginal and small farmers.

1.2.6 DEMOGRAPHY

Name of Sub Basin	Total No. of	Total No. of	Population in Million			
Name of Sub Basin	Blocks	Villages	2005	2010	2020	
Paralaiyar sub basin	6	118	21.591	27.632	33.724	

1.2.7 LIVE STOCK - POPULATION

Name of Sub basin	Cattle	Buffalo	Sheep	Goats	Pigs	Dogs	Others
Paralaiyar	8651	179	11588	23279	1425	2205	38
Requirement	0.512	0.203	0.105	0.143	0.021	0.016	0.00

Name of Sub Basin:- Paralaiyar

District:- SIVAGANGAI

Registered Ayacut Area:-

5048.26 Ha

Fully Irrigated:-2781.80 Ha Partially Irrigated:-1248.05 Ha Gap:-1018.41 Ha

				Total Ayacut Area: 5048.26 Ha						
S.No	CROP		WITHOUT	PROJECT			WITH	PROJECT		INGRE
3.140	CKOT	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	ASING
Ι	Perrennial crop									
1	Coconut	75.00	0.00	0.00	75.00	75.00	0.00	0.00	75.00	0.00
	Total	75.00	35.67	0.00	75.00	75.00	0.00	0.00	75.00	0.00
	Annual crop									
1	Sugarcane	103.00	0.00	0.00	103.00	103.00	0.00	0.00	103.00	0.00
2	Banana	316.00	0.00	0.00	316.00	316.00	0.00	0.00	316.00	0.00
	Total	419.00	0.00	0.00	419.00	419.00	0.00	0.00	419.00	0.00
III	1st.crop (Sep-Jan)	•								
1a	Paddy	1902.00	1113.05	0.00	3015.05	0.00	0.00	0.00	0.00	-3015.05
1b	Paddy SRI	0.00	0	0.00	0.00	2800.00	0.00	0.00	2800.00	2800.00
2	Ragi	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	Groundnut	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	Maize	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	Cotton	0.00	50.00	0.00	50.00	75.76	0.00	0.00	75.76	25.76
6	Pulses	0.00	0	0.00	0.00		0.00	0.00	0.00	0.00
7	Chillies	252.00	61.00	0.00	313.00	465.00	0.00	0.00	465.00	152.00
8	Bhendi	49.00	12.00	0.00	61.00	190.00	0.00	0.00	190.00	129.00
9	Brinjal	41.80	4.00	0.00	45.80	125.00	0.00	0.00	125.00	79.20
10	Tomato	43.00	3.00	0.00	46.00	125.00	0.00	0.00	125.00	79.00
11	Senna	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	Cluster Bean	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	Fodder cholam	0.00	5.00	0.00	5.00	20.00	0.00	0.00	20.00	15.00
14	Non-agri purpose	0.00	0	753.50	753.50	0.00	0.00	753.50	753.50	0.00
15	Fallow	0.00	0	264.91	264.91	0.00	0.00	0.00	0.00	-264.91
	Total	2287.80	1248.05	1018.41	4554.26	3800.76	0.00	753.50	4554.26	0.00
	Grand Total(I+II+III)	2781.80	1248.05	1018.41	5048.26	4294.76	0.00	753.50	5048.26	0.00
IV	2 nd crop									
1	Maize	0	0	0	0.00	750.00	0	0	750.00	750.00
2	Pulses	0	25.00	0	25.00	400.00	0	0	400.00	375.00
3	Cotton	0	300.00	0	300.00	500.00	0	0	500.00	200.00
4	Chillies	0	0	0	0.00	0	0	0	0.00	0
5	Bhendi	0	0	0	0.00	0	0	0	0.00	0
6	Coriander	0	25.00	0	25.00	25.00	0	0	25.00	0.00
7	Fooder Cholam	0	0	0	0.00	0	0	0	0.00	0
	Total	0.00	325.00	0.00	325.00	1650.00	0.00	0.00	1650.00	1325.00
v	Great Grand Total	2781.80	1573.05	1018.41	5373.26	5944.76	0.00	753.50	6698.26	1325.00
	Cropping inte	nsitv			86.26%				117.76%	

1.2.8 CROPPING PATTERN

CROPPING PATTERN

Name of Sub Basin:- Paralaiyar

District:- RAMANATHAPURAM

Registered Ayacut Area:- 5105.28 Ha

Fully Irrigated:-	1692.90	На
Partially Irrigated:-	2321.28	На
Gap:-	1091.10	На
Total Ayacut		

						Area:			510	5.28 Ha
C N	CDOD		WITHOUT	PROJECT				PROJECT		INGREASI
S.No	CROP	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	NG
Ι	Perrennial crop									
1	Coconut	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Annual crop									
1	Sugarcane	1.20	0.00	0.00	1.20	1.20	0.00	0.00	1.20	0.00
2	Banana	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Total	1.20	0.00	0.00	1.20	1.20	0.00	0.00	1.20	0.00
	1st.crop (Sep-	Jan)								
1a	Paddy	, 1691.70	1911.73	0.00	3603.43	3100.00	0.00	0.00	3100.00	-503.43
1b	Paddy SRI	0.00	0.00	0.00	0.00	300.00	0.00	0.00	300.00	300.00
2	Ragi	0.00	3.16	0.00	3.16	7.63	0.00	0.00	7.63	4.47
3	Groundnut	0.00	25.00	0.00	25.00	30.00	0.00	0.00	30.00	5.00
4	Maize	0.00	14.00	0.00	14.00	50.00	0.00	0.00	50.00	36.00
5	Cotton	0.00	40.56	0.00	40.56	50.00	0.00	0.00	50.00	9.44
6	Pulses	0.00	23.00	0.00	23.00	50.00	0.00	0.00	50.00	27.00
7	Chillies	0.00	303.83	0.00	303.83	850.00	0.00	0.00	850.00	546.17
8	Bhendi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9	Brinjal	0.00	0.00	0.00	0.00	30.00	0.00	0.00	30.00	30.00
10	Tomato	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	Senna	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	Cluster Bean	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	Fodder cholam	0.00	0.00	0.00	0.00	30.00	0.00	0.00	30.00	30.00
14	Non-agri purpose	0.00	0.00	606.45	606.45	0.00	0.00	606.45	606.45	0.00
15	Fallow	0.00	0.00	484.65	484.65	0.00	0.00	0.00	0.00	-484.65
	Total	1691.70	2321.28	1091.10	5104.08	4497.63	0.00	606.45	5104.08	0.00
	Grand Total(I+II+III)	1692.90	2321.28	1091.10	5105.28	4498.83	0.00	606.45	5105.28	0.00
IV	2 nd crop									
1	Maize	10.80	0.00	0.00	10.80	450.00	0.00	0.00	450.00	439.20
2	Pulses	21.60	0.00	0.00	21.60	350.00	0.00	0.00	350.00	328.40
3	Cotton	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	Chillies	1.80	0.00	0.00	1.80	50.00	0.00	0.00	50.00	48.20
5	Bhendi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	Coriander	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	Fooder Cholam	0.00	0.00	0.00	0.00	15.00	0.00	0.00	15.00	15.00
	Total	34.20	0.00	0.00	34.20	865.00	0.00	0.00	865.00	830.80
v	Great Grand Total	1727.10	2321.28	1091.10	5139.48	5363.83	0.00	606.45	5970.28	830.80
	Cropping intensity				79.30%				105.60%	

CROPPING PATTERN

Name of Sub Basin:- Paralaiyar

District:- VIRUDHUNAGAR

Fully Irrigated:-	346.10	На
Partially Irrigated:-	183.90	На
Gap:-	200.60	На

Registered Ayacut Area:-

730.60 Ha

						Tot	al Ayc	acut Are	a: 73	30.60 Ha
S.No	CROP		WITHOUT	PROJECT	1		WITH	PROJECT	1	INGREASI
3.110	CROT	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	NG
Ι	Perrennial crop									
1	Coconut	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Annual crop									
1	Sugarcane	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	Banana	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
111	1st.crop (Sep-Jan)									
1a	Paddy	346.10	146.50	0.00	492.60	0.00	0.00	0.00	0.00	-492.60
1b	Paddy SRI	0.00	0.00	0.00	0.00	490.00	0.00	0.00	490.00	490.00
2	Ragi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3	Groundnut	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	Maize	0.00	0.00	0.00	0.00	25.00	0.00	0.00	25.00	25.00
5	Cotton	0.00	37.40	0.00	37.40	40.00	0.00	0.00	40.00	2.60
6	Pulses	0.00	0.00	0.00	0.00	25.60	0.00	0.00	25.60	25.60
7	Chillies	0.00	0.00	0.00	0.00	80.00	0.00	0.00	80.00	80.00
8	Bhendi	0.00	0.00	0.00	0.00	10.00	0.00	0.00	10.00	10.00
9	Brinjal	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10	Tomato	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	Senna	0.00	0.00	0.00	0.00	45.00	0.00	0.00	45.00	45.00
12	Cluster Bean	0.00	0.00	0.00	0.00	15.00	0.00	0.00	15.00	15.00
13	Fodder cholam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	Non-agri purpose	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	Fallow	0.00	0.00	200.60	200.60	0.00	0.00	0.00	0.00	-200.60
	Total	346.10	183.90	200.60	730.60	730.60	0.00	0.00	730.60	0.00
	Grand Total(I+II+III)	346.10	183.90	200.60	730.60	730.60	0.00	0.00	730.60	0.00
IV	2 nd crop									
1	Maize	0.00	0.00	0.00	0.00	170.00	0.00	0.00	170.00	170.00
2	Pulses	0.00	0.00	0.00	0.00	110.00	0.00	0.00	110.00	110.00
3	Cotton	0.00	0.00	0.00	0.00	0.00	0.00	0.00	700.00	0.00
4	Chillies	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	Bhendi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	Coriander	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7	Fooder Cholam	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Total	0.00	0.00	0.00	0.00	280.00	0.00	0.00	280.00	280.00
v	Great Grand Total	346.10	183.90	200.60	730.60	1010.60	0.00	0.00	1010.60	280.00
	Cropping inte	nsity			72.54%				138.32%	

CROPPING PATTERN

10884.14 Ha

Name of Sub Basin:- Paralaiyar District:- NODAL DISTRICT (RAMANATHAPURAM)

Registered Ayacut Area:-

Fully Irrigated:-**4820.80** Ha Partially Irrigated:-3753.23 Ha Gap:-**2310.11** Ha

						Toto	al Aya	cut Arec	1088	4.14 Ha
S No.	CBOB		WITHOUT	PROJECT			WITH	PROJECT		INGREASI
S.No	CROP	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	NG
- 1	Perrennial crop									
1	Coconut	75.00	0.00	0.00	75.00	75.00	0.00	0.00	75.00	0.00
	Total	75.00	0.00	0.00	75.00	75.00	0.00	0.00	75.00	0.00
	Annual crop									
1	Sugarcane	104.20	0.00	0.00	104.20	104.20	0.00	0.00	104.20	0.00
2	Banana	316.00	0.00	0.00	316.00	316.00	0.00	0.00	316.00	0.00
	Total	420.20	0.00	0.00	420.20	420.20	0.00	0.00	420.20	0.00
	1st.crop (Sep-	-Jan)								
1a	Paddy	3939.80	3171.28	0.00	7111.08	3100.00	0.00	0.00	3100.00	-4011.08
1b	Paddy SRI	0.00	0.00	0.00	0.00	3590.00	0.00	0.00	3590.00	3590.00
2	Ragi	0.00	3.16	0.00	3.16	7.63	0.00	0.00	7.63	4.47
3	Groundnut	0.00	25.00	0.00	25.00	30.00	0.00	0.00	30.00	5.00
4	Maize	0.00	14.00	0.00	14.00	75.00	0.00	0.00	75.00	61.00
5	Cotton	0.00	127.96	0.00	127.96	165.76	0.00	0.00	165.76	37.80
6	Pulses	0.00	23.00	0.00	23.00	75.60	0.00	0.00	75.60	52.60
7	Chillies	252.00	364.83	0.00	616.83	1395.00	0.00	0.00	1395.00	778.17
8	Bhendi	49.00	12.00	0.00	61.00	200.00	0.00	0.00	200.00	139.00
9	Brinjal	41.80	4.00	0.00	45.80	155.00	0.00	0.00	155.00	109.20
10	Tomato	43.00	3.00	0.00	46.00	125.00	0.00	0.00	125.00	79.00
11	Senna	0.00	0.00	0.00	0.00	45.00	0.00	0.00	45.00	45.00
12	Cluster Bean	0.00	0.00	0.00	0.00	15.00	0.00	0.00	15.00	15.00
13	Fodder cholam	0.00	5.00	0.00	5.00	50.00	0.00	0.00	50.00	45.00
14	Non-agri purpose	0.00	0.00	1359.95	1359.95	0.00	0.00	1359.95	1359.95	0.00
15	Fallow	0.00	0.00	950.16	950.16	0.00	0.00	0.00	0.00	-950.16
	Total	4325.60	3753.23	2310.11	10388.94	9028.99	0.00	1359.95	10388.94	0.00
	Grand Total(I+II+III)	4820.80	3753.23	2310.11	10884.14	9524.19	0.00	1359.95	10884.14	0.00
IV	2 nd crop									
1	Maize	10.80	0.00	0.00	10.80	1370.00	0.00	0.00	1370.00	1359.20
2	Pulses	21.60	25.00	0.00	46.60	860.00	0.00	0.00	860.00	813.40
3	Cotton	0.00	300.00	0.00	300.00	500.00	0.00	0.00	500.00	200.00
4	Chillies	1.80	0.00	0.00	1.80	50.00	0.00	0.00	50.00	48.20
5	Bhendi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6	Coriander	0.00	25.00	0.00	25.00	25.00	0.00	0.00	25.00	0.00
7	Fooder Cholam	0.00	0.00	0.00	0.00	15.00	0.00	0.00	15.00	15.00
	Total	34.20	325.00	0.00	359.20	2795.00	0.00	0.00	2795.00	2435.80
v	Great Grand Total	4855.00	4078.23	2310.11	11243.34	12319.19	0.00	1359.95	13679.14	2435.80
	Cropping inte	ensity			82.08%				113.18%	

			ER	ATE IT IN	ATE VT @).53	NT
NAME OF CROP		AREA IN Ha	CROP WATER REQUIREMENT mm/ Ha	TOTAL CROP WATER REQUIREMENT IN Mcum.	IRRIGATION WATER REQUIREMENT @ SOURCE n= 0.53	TOTAL IRRIGATION REQUIREMENT
Perennial	Coconut	75	975	0.73	1.38	1.38
	Total	75	975	0.73	1.38	1.38
Annual	Sugarcane	104.2	700	0.73	1.38	1.38
	Banana	316	700	2.21	4.17	4.17
	Total	420.2	1400.00	2.94	5.55	5.55
Ist. Crop	Paddy	7111.08	650	46.22	87.21	87.21
	Ragi	3.16	450	0.01	0.03	0.03
	Groundnut	25	434	0.11	0.20	0.20
	Maize	14	450	0.06	0.12	0.12
	Cotton	127.96	500	0.64	1.21	1.21
	Pulses	23	290	0.07	0.13	0.13
	Chillies	618.83	600	3.71	7.01	7.01
	Bhendi	61	290	0.18	0.33	0.33
	Brinjal	45.8	290	0.13	0.25	0.25
	Tomato	46	290	0.13	0.25	0.25
	Fodder cholam	5	290	0.01	0.03	0.03
	Non-agri purpose	1359.95		0	0.00	0.00
	Fallow	950.16				0.00
	Total	10388.94	4534.00	51.28	96.76	96.76
II nd Crop	Pulses	46.6	290	0.14	0.25	0.25
	Maize	10.8	450	0.05	0.09	0.09
	Chillies	1.8	600	0.01	0.02	0.02
	Cotton	300	500	1.50	2.83	2.83
	Coriander	25	350	0.09	0.17	0.17
	Total	359.2	2190.00	1.78	3.36	3.36
	Grand Total	11243.34	9099.00	56.74	107.06	107.06

1.2.9 CROP WATER REQUIREMENT FOR WITHOUT PROJECT

Water Potential

Surface water Potential in Mcum	49.86
Ground water potential in Mcum	80.61
Flood water from Vaigai river in Mcum	12.23
	142.70

Water demand without project

Domestic	Mcum	19.62
Live stock	Mcum	3.68
Industrial	Mcum	5.16
Irrigation		
WRO	Mcum	107.06
		135.52
Water Balance	ce	+7.18

1.2.10 CROP WATER REQUIREMENT FOR WITH PROJECT

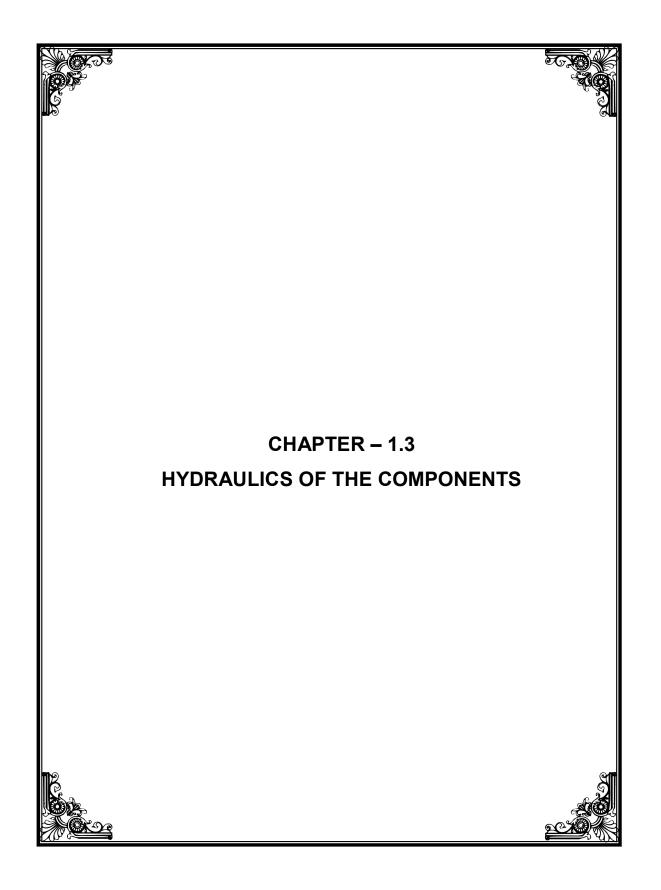
NAME OF CROP		AREA IN Ha	CROP WATER REQUIREMENT mm/ Ha	TOTAL CROP WATER REQUIREMENT IN Mcum.	IRRIGATION WATER REQUIREMENT @ SOURCE n= 0.60	TOTAL IRRIGATION REQUIREMENT
Perennial	Coconut	75	975	0.73	1.22	1.22
	Total	75	975	0.73125	1.21875	1.22
Annual	Sugarcane	104.2	700	0.73	1.22	1.22
	Banana	316	700	2.21	3.69	3.69
	Total	420.2	1400	2.9414	4.90233	4.90
Ist. Crop	Paddy	3100	650	20.15	33.58	33.58
	PaddySRI	3590	601	21.58	35.96	35.96
	Ragi	7.63	450	0.03	0.06	0.06
	Groundnut	30	434	0.13	0.22	0.22
	Maize	75	450	0.34	0.56	0.56
	Cotton	165.76	500	0.83	1.38	1.38
	Pulses	75.6	290	0.22	0.37	0.37
	Chillies	1395	600	8.37	13.95	13.95
	Bhendi	200	290	0.58	0.97	0.97
	Brinjal	155	290	0.45	0.75	0.75
	Tomato	125	290	0.36	0.60	0.60
	Senna	45	250	0.11	0.19	0.19
	Cluster Bean	15	250	0.04	0.06	0.06
	Fodder cholam	50	290	0.15	0.24	0.24
	Non-agri purpose	1359.95		0	0	
	Total	10388.94	5635	53.332975	88.8883	88.89

	Grand Total	13679.14	10490	68.595625	114.326	114.33
	Total	2795	2480	11.59	19.3167	19.32
	Fooder Cholam	15	290	0.04	0.07	0.07
	Coriander	25	350	0.09	0.15	0.15
	Chillies	50	600	0.30	0.50	0.50
	Cotton	500	500	2.50	4.17	4.17
	Pulses	860	290	2.49	4.16	4.16
II nd Crop	Maize	1370	450	6.17	10.28	10.28

Water Potential

water i otentiar		
Surface water Potential in		
Mcum	•••	49.86
Ground water potential in Mcun	1	80.61
Flood water from Vaigai in Mcu	ım	12.23
		142.70

Water demand with project


Domestic	Mcum	19.62
Live stock	Mcum	3.68
Industrial	Mcum	5.16
Irrigation		
WRO	Mcum	114.33
		142.79
Water Balar	ice	-0.09

1.2.11 WATER POTENTIAL

Surface water potential		49.86 Mcum.
Ground water yield		80.61 Mcum.
Flood water from Vaigai river	-	12.23 Mcum
Total		142.70 Mcum.

1.2.12 . WATER DEMAND: -	WITHOUT PROJECT	WITH PROJECT
1) Domestic	19.62	19.62
2) Live stock	3.68	3.68
3) Industrial	5.16	5.16
4) Irrigation		
a) PWD tanks	107.06	114.33
TOTAL	135.52	142.79

1.2.13	WATER BALANCE: -	+ 7.18	- 0.09

1.3.1. HYDRAULICS PARTICULARS OF ANICUTS

PARALAIYAR SUB BASIN

	ΰŢ				Ъ	(M)	CATC SQ.KI	HMENT IN M	Ŋ			Ъ.			SUPP	LY CHAN	NEL		
S. No	NAME OF ANICUT	VILLAGE	AYACUT	LENGTH OF ANICUT (M)	CREST LEVEL ANICUT (M)	FRONT MFL (N	FREE	COMBINED	MFD IN CUSECS	HEAD SLUICE LOCATION	VENT	SLUICE (M) SILL LEVEL OF	DISCHARGE IN CUSECS	LENGTH (M)	BED WIDTH (M)	FSD (M)	BED SLOP E	SLUIC E	REMARKS
1	Paralaiyar Anicut	Achankulam	825.16	70.15	30.90	32.55		121.97	12550	Right	3 Nos	30.00	149.82	19500	6.00	0.75	1 IN 2500	3 Nos	

SI. N0	Name of Tank	Village	Ayacut Ha	Capacity	No.of Fillings	Annual Storage
	SIVAGANGAI DISTRICT					
1	Vagudi Tank	Vagudi	176.64	24.74	3.00	74.22
2	Vidathakulam Tank	Vidathakulam	51.19	7.60	2.80	21.28
3	Muthanendal Tank	Muthanendal	61.62	8.90	2.85	25.37
4	Kattikulam Tank	Kattikulam	1286.95	173.84	3.05	530.21
5	Thuthikulam Tank	Thuthikulam	52.62	21.68	1.00	21.68
6	Kalpiravu Tank	Kalpiravu	56.26	28.50	1.00	28.50
7	Keelamelkudi Tank	Keelamelkudi	191.74	31.04	2.60	80.70
8	Manamadurai Tank	Manamadurai	227.19	93.50	1.00	93.50
9	Milaganur Tank	Milaganur	568.90	78.90	3.00	236.70
10	Kuvalaiveli Tank	Kuvalaiveli	201.80	61.10	1.40	85.54
11	Melapasalai Tank	Melapasalai	126.36	35.46	1.50	53.19
12	Sangamangalam	Sangamangalam	68.75	12.39	2.30	28.50
	RAMNAD DISTRICT	1			1	
13	Melakodumalur Big Tank	Melakodumalur	237.05	69.35	1.40	97.09
14	Pudukudi Tank	Pudukudi	188.90	22.27	2.00	44.54
15	Arunkulam Tank	Arunkulam	317.82	65.20	2.00	130.40
16	Kamini Tank	Kamini	53.21	2.30	2.00	4.60
17	Perunkarai Tank	Perunkarai	373.65	81.60	2.00	163.20
18	Parthibanur Tank	Parthibanur	514.77	92.16	2.00	184.32

1.3.2 HYDRAULICS OF SYSTEM TANKS

SI. N0	Name of Tank	Village	Ayacut Ha	Capacity	No.of Fillings	Annual Storage
SIV	AGANGAI DISTRICT					
1	Pallayiramadai Tank	Pallayiramadai	43.13	21.26	1.40	29.76
2	Killukudi Tank	Killukudi	100.30	9.15	1.50	13.73
3	Rajakambeeram Tank	Rajakambeeram	109.83	0.58	2.00	1.16
4	Melamelkudi Tank	Melamelkudi	122.99	10.80	1.80	19.44
5	Narattai Tank	Narattai	53.44	22.03	1.60	35.25
6	Arimandapam Tank	Arimandapam	132.56	25.53	2.00	51.06
7	Thamaraikudi Tank	Thamaraikudi	49.77	17.25	1.50	25.88
8	Karuvaikudi Tank	Karuvaikudi	49.24	7.02	2.00	14.04
9	Mullaikulam Tank	Mullaikulam	99.89	7.24	1.30	9.41
10	Kaliyanendal Tank	Kaliyanendal	47.37	18.53	1.60	29.65
11	M.Pudukulam Tank	M.Pudukulam	121.85	20.29	1.40	28.41
12	Meenakshipuram Tank	Meenakshipuram	40.49	3.50	1.80	6.30
13	Manankathan Tank	Manankathan	54.33	22.30	2.00	44.60
14	Annavasal Tank	Annavasal	130.32	34.72	1.20	41.66
15	S.Karisalkulam Tank	S.Karisalkulam	40.49	15.25	1.60	24.40
16	Kilankattur Tank	Kilankattur	94.11	18.41	1.40	25.77
17	Nachodai Tank	Nachodai	50.57	21.68	2.00	43.36
18	Arasakulam Tank	Arasakulam	126.48	23.94	1.50	35.91
19	Chinnakannanur Tank	Chinnakannanur	257.62	61.86	1.50	92.79
20	Pulavaimarichan Tank	Pulavaimarichan	89.35	8.05	2.00	16.10
21	M.Karisalkulam Tank	M.Karisalkulam	101.87	14.22	1.50	21.33
22	Somathur Tank	Somathur	62.24	15.26	1.30	19.84
	RAMANATHAPURAM DISTR	ІСТ				
23	Pidariseri Tank	Pidariseri	64.58	12.17	2.00	24.34
24	P.Puthur Tank	P.Puthur	136.94	43.70	1.50	65.55

25	Kallikudi Tank	Kallikudi	99.45	14.26	2.00	28.52
26	Konakulam Tank	Konakulam	43.08	9.10	1.95	17.75
27	Nelmadur Tank	Nelmadur	43.60	15.81	1.80	28.46
28	Maraneri Tank	Maraneri	43.26	7.52	2.00	15.04
29	Veppankulam Tank	Veppankulam	49.68	6.55	2.00	13.10
30	Idayathur Tank	ldayathur	147.65	24.12	2.00	48.24
31	Mosukudi Tank	Mosukudi	124.68	15.19	2.00	30.38
32	Keelasivankulam Tank	Keelasivankulam	42.38	8.20	2.00	16.40
33	Kothankulam Tank	Kothankulam	57.03	7.60	2.00	15.20
34	Kattu Emaneswaram Tank	Kattu Emaneswaram	44.35	12.23	2.00	24.46
35	Seyyamangalam Tank	Seyyamangalam	56.86	17.64	2.00	35.28
36	Virathakulam Tank	Virathakulam	69.86	14.71	2.00	29.42
37	Melakulam Tank	Melakulam	53.12	5.67	2.00	11.34
38	Keelakulam Tank	Keelakulam	58.30	10.66	2.00	21.32
39	Kannathan Tank	Kannathan	42.59	12.80	2.00	25.60
40	Manalur Tank	Manalur	53.02	15.40	2.00	30.80
41	Melavidathakulam Tank	Melavidathakulam	44.52	6.24	2.00	12.48
42	Keeranur Tank	Keeranur	86.29	22.00	2.00	44.00
43	Anaiyur Tank	Anaiyur	57.08	16.63	2.00	33.26
44	Athikulam tank	Athikulam	56.33	7.77	2.00	15.54
45	Pulvoikulam Tank	Pulvoikulam	82.05	14.59	2.00	29.18
46	Keelakanjirankulam Tank	Keelakanjirankulam	61.21	16.40	2.00	32.80
47	Peraiyur Tank	Peraiyur	392.39	92.33	2.00	184.66
48	Chittirankudi Tank	Chittirankudi	171.95	30.27	2.00	60.54
49	Sonaipriyankottai Tank	Sonaipriyankottai	241.52	1.05	2.00	2.10
50	Navalkiniyan tank	Navalkiniyan	50.39	10.6	2.00	21.20
51	Kondulavi Tank	Sonaipriyankottai	62.61	0.148	2.00	0.30
52	Enathi Tank	Enathi	148.29	0.834	2.00	1.67

53	Koovarkuttam Tank	Kidathirukkai	53.16	0.27	2.00	0.54
54	Kidathirukkai Tank	Kidathirukkai	102.37	0.642	2.00	1.28
55	Pothikulam Tank	Pothikulam	181.26	19.65	2.00	39.30
56	P.Kadambankulam Tank	P.Kadambankulam	53.01	0.189	2.00	0.38
57	Therakurichi Tank	Therakurichi	41.79	7.34	2.00	14.68
58	Appanur Tank	Appanur	303.23	1.12	2.00	2.24
	VIRUDHUNAGAR DISTRICT	·				
59	Alangulam	Alangulam	45.20	11.76	1.00	11.76
60	T. Velangudi	T. Velangudi	104.01	18.89	1.00	18.89
61	Andiyendal	Andiyendal	42.80	7.10	1.00	7.10
62	Sathiseri	Sathiseri	47.62	9.25	1.25	11.56
63	Mullikudi	Mullikudi	89.09	22.06	1.00	22.06
64	Keelakondrai kulam	Theli	42.51	15.65	1.00	15.65
65	Sorikulam	Sorikulam	45.55	5.82	1.00	5.82
66	Velaneri	Velaneri	42.76	3.43	1.00	3.43
67	T. Kadambankulam	T. Kadambankulam	47.51	3.50	1.00	3.50
68	Kanayamurichan	Kanayamurichan	53.42	6.52	1.00	6.52
69	Kottakachiyendal	Kottakachiyendal	73.76	24.83	1.00	24.83
70	Theli	Theli	44.39	11.47	1.00	11.47
71	Dharmam	Irunjirai	51.97	12.25	1.50	18.38

	-		1			1.3.4						17.000			TAK SUDI					
SI.No.	Name of District	Name of Taluk	Name of Tank	Ayacut in HA	Capacity in Mcft.	Number of filling	Free Catchment in Sqkm	Combined Catchment in Sqkm	water spread area	FTL in M	MWL in M	No.of Suice	No of Weir	Length of weir	Discharge in cusecs	Length of supply channel	Length of bund	Upper Tank	Lower Tank	Nameof Village
1			Vagudi Tank	176.64	24.74	3.00	0.20	0.20	0.65	49.00	49.45	5	1	8.50	256.30	1000	3414	Vaigai river	Kuvalaiveli	Vagudi
2			Vidathakulam Tank	51.19	7.60	2.80	0.11	0.11	3.36	50.00	50.60	3	1	6.00	180.90	1000	2408	Vaigai river	Vagudi	Vidatha kulam
3			Muthanendal Tank	61.62	8.90	2.85	0.15	0.15	0.36	50.40	51.00	5	1	8.60	259.30	2900	1799	Vaigai river	Keelakattikulam	Muthan endal
4			Kattikulam Tank	1286.95	173.8 4	3.05	3.70	3.70	14.77	101.50	102.05	8	1	70.60	2128.60	8800	5822	Vaigai river	Mullaikulam	Kattikul am
5		_	Thuthikulam Tank	52.62	21.68	1.00	0.24	0.24	0.30	50.00	50.45	2	1	5.50	165.85	3200	1105	Vaigai river	Kattikulam	Thuthik ulam
6	IGAI	DURA	Kalpiravu Tank	56.26	28.50	1.00	0.12	0.12	0.13	49.00	49.60	2	1	8.00	241.20	2500	1170	Vaigai river	Melamelkudi	Kalpirav u
7	SIVAGANGAI	MANAMADURAI	Keelamelkudi Tank	191.74	31.04	2.60	1.25	1.25	3.03	51.00	51.60	3	1	16.15	486.90	4190	2967	Vaigai river	Kilankattur	Keelam elkudi
8	_ \s	MAN	Manamadurai Tank	227.19	93.50	1.00	0.80	0.80	6.41	50.00	50.50	4	1	48.00	1447.25	3520	3170	Vaigai river	Kilankattur	Manam adurai
9			Milaganur Tank	568.90	78.90	3.00	22.44	22.44	1.20	50.00	50.60	7	2	34.50 & 18.50	1040.20& 557.75	9500	5395	M.Pudukulam	Arimandapam	Milagan ur
10			Kuvalaiveli Tank	201.80	61.10	1.40	12.50	12.50	1.70	30.00	30.60	6	1	100.00	557.75	7900	4420	Maranadu	Karuppanendal	Kuvalaiv eli
11			Sangamangalam Tank	68.75	12.39	2.30	1.60	1.60	0.53	50.00	50.60	2	2	30.30 & 12.20	3015.10 & 367.85	1000	2835	Vaigai river	Theeyanur	Sangam angala m
12			Melapasalai Tank	126.36	35.46	1.50	2.85	2.85	1.13	50.00	50.60	4	2	24.50 & 35.50	913.58 & 1070.50	3815	3871	Sangamangalam	Narrattai	Melapas alai
13			Pudukkudi Tank	188.90	22.27	2	3.25	3.25	9.25	46.00	46.60	4	1	16.00	403.75	8390	2450	Arunkulam	Urakkudi	Pudukk udi
14	RAMANATHAPURAM	ā	Perungarai Tank	373.65	81.60	2	2.12	2.12	27.6	30.5	31.1	3	1	14.3	309.6	750	5200	Vaigai		Perunga rai
15	THAP	MAKL	Parthibanur Tank	514.77	92.16	2	2.72	2.72	23.04	50.1	50.7	7	2	10.00 & 130.00	268.00 & 365.00	3970	5400	Konakulam	Mosakkudi	Parthipa nur
16	AANA'	PARAMAKUDI	Melakodumalur Tank	237.05	69.35	1.4	9.74	34.55	22.99	13.48	14.08	7	1	63.10	2399.30	4185	4755	Velakudi	Keelamaduvur	Melakod umalur
17	RAN		Arungulam Tank	317.82	65.20	2	3.89	6.48	27.85	31.1	31.7	4	1	54.9	1288	3030	3962	Keelasivankulam & Kothankulam		Arungul am
18	1		Kamini Tank	53.21	2.30	2	0.75	0.75	1.44	29.9	30.5	3	1	11.70	351.00		1403	Kothakulam		Kamini
				4755.42												66260				

1.3.4 HYRAULIC PARTICULARS OF SYSTEM TANKS IN PARALAIYAR SUB BASIN

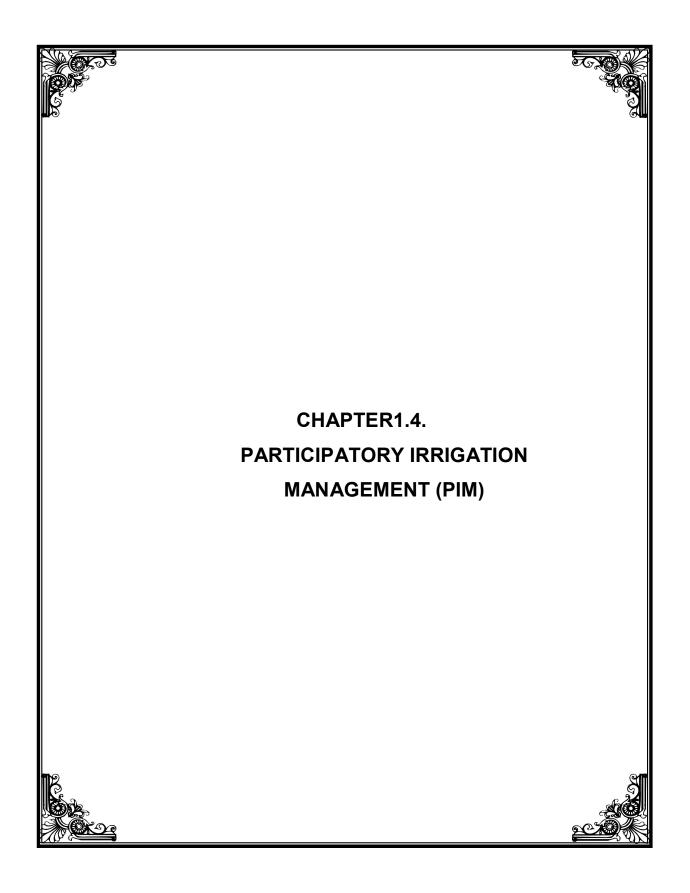
						HYRAU	ILIC PAI	RTICUL	ARS OF NO	N SYSTEM	TANKS I	N PARA		SUB BASI					
SI.No. Name of District	Name of Taluk	Name of Tank	Ayacutin HA	Capacity in Mcft.	Number of filling	Free Catchmentin Sqkm	Combined Catchmentin Sqkm	water spread area	FTL in M	MWL in M	No.of Suice	No of Weir	Lengthof weir	Discharge in cusecs	Length of supply channel	Lengthof bund	Upper Tank	Lower Tank	Nameof Village
1		Pallayiramadai Tank	43.13	21.26	1.40	0.90	0.90	0.23	45.00	45.45	3	1	33.00	994.95	1000	1494	Vaviyarendal	Sokkileyendal	Pallayiramadai
2		Killukudi Tank	100.30	9.15	1.50	2.80	2.80	1.19	49.00	49.60	2	1	13.50	407.10	1800	1645	Kuvalaiveli	Thamaraikudi	Killukudi
3		Rajakambeeram Tank	109.83	0.58	2.00	1.26	1.26	0.60	95.25	96.35	3	1	15.00	452.25	1200	1829	Kattikulam	Annavasal	Rajakambeeram
4		Melamelkudi Tank	122.99	10.80	1.80	0.62	0.62	0.50	48.00	48.60	7	1	34.00	1025.15	800	2496	Rajakambeeram	Annavasal	Melamelkudi
5		Narattai Tank	53.44	22.03	1.60	0.60	0.60	0.11	50.00	50.60	3	1	8.00	241.25	500	2266	Free catchment	Paralaiyar Odai	Narattai
6		Arimandapam Tank	132.56	25.53	2.00	9.00	9.00	1.03	50.00	50.60	4	1	16.00	482.45	2100	3657	Mailaganur	Pillaneri	Arimandapam
7		Thamaraikudi Tank	49.77	17.25	1.50	4.46	4.46	0.13	99.00	99.45	3	1	50.50	1522.65	2500	3170	Maranadu	Killukudi	Thamaraikudi
8		Karuvaikudi Tank	49.24	7.02	2.00	3.55	3.55	0.12	33.00	33.60	4	1	28.00	844.25	1210	2743	Nadukkanendal	Paralaiyar Odai	Karuvaikudi
9		Mullaikulam Tank	99.89	7.24	1.30	0.55	0.55	3.34	52.00	52.30	5	1	17.00	512.50	2500	1798	Kattikulam	Milaganur	Mullaikulam
10	A	Kaliyanendal Tank	47.37	18.53	1.60	0.35	0.35	0.30	100.00	100.60	2	1	28.00	844.25	1600	2383	Nadukkanendal	Paralaiyar Odai	Kaliyanendal
11 IVAGANGAI	MANAMADURAI	M.Pudukulam Tank	121.85	20.29	1.40	18.01	18.01	3.26	50.50	51.10	2	2	15.00 & 19.00	452.25& 582.85	1800	4185	Kattikulam	Mailaganur	M.Pudukulam
12 DA	NAM	Meenakshipuram Tank	40.49	3.50	1.80	1.88	1.88	0.56	50.00	50.60	2	1	10.00	572.85	1200	1250	Free catchment	Annavasal	Meenakshipuram
13 0	MA	Manankathan Tank	54.33	22.30	2.00	0.89	0.89	10.50	50.00	50.60	2	1	20.00	301.55	1020	3871	Milaganur	Puthili	Manankathan
14		Annavasal Tank	130.32	34.72	1.20	5.00	5.00	13.07	100.00	100.60	5	1	18.00	603.20	2510	4115	Rajakambeeram	Arimandapam	Annavasal
15		S.Karisalkulam Tank	40.49	15.25	1.60	1.22	1.22	0.11	94.50	95.10	2	1	24.50	542.75	500	1974	Free catchment	Milaganur	S.Karisalkulam
16		Kilankattur Tank	94.11	18.41	1.40	3.80	3.80	0.30	50.00	50.60	4	1	30.00	738.70	1800	2515	Free catchment	Paralaiyar Odai	Kilankattur
17		Nachodai Tank	50.57	21.68	2.00	3.20	3.20	0.84	85.05	85.65	3	1	22.00	904.60	700	1615	Free catchment	Paralaiyar Odai	Nachodai
18		Arasakulam Tank	126.48	23.94	1.50	0.74	0.74	0.78	50.50	51.10	4	1	11.00	663.30	2110	2327	Milaganur	Vaviyarendal	Arasakulam
19		Chinnakannanur Tank	257.62	61.86	1.50	3.40	3.40	1.51	40.00	40.60	3	1	72.00	331.70	1500	3172	Milaganur	Keelakarisalkulam	Chinnakannanur
20		Pulavaimarichan Tank	89.35	8.05	2.00	1.13	1.13	0.80	48.00	48.60	2	1	12.00	2170.90	1000	2256	Kondachioorani	Annavasal	Pulavaimarichan
21		M.Karisalkulam Tank	101.87	14.22	1.50	4.30	4.30	0.07	40.60	41.20	3	2	12.50 & 28.00	361.85& 884.50	2230	3292	Melapasali	Paralaiyar river	M.Karisalkulam
22		Somathur Tank	62.24	15.26	1.30	0.53	0.53	7.20	50.00	50.60	3	1	9.50	376.90	1530	2920	Arimandapam	Paralaiyar river	Somathur
			1978.24												33110				

							HY	RAULIC	PARTIC	ULARS OF N		EM TANKS	S IN PAR	ALAIYAR	SUB BAS	SIN				
SI.No.	District	Name of Taluk	Name of Tank	Ayacutin HA	Capacity in Mcft.	Number of filling	Free Catchmentin Sqkm	Combined Catchmentin Sqkm	water spread area	FTL in M	MWL in M	No.of Suice	No of Weir	Lengthof weir	Discharge in cusecs	Length of supply channel	Lengthof bund	Upper Tank	Lower Tank	Nameof Village
23			Veppankulam	49.68	6.55	2	7.66	7.66	3.96	30.330	30.930	4	2	70.00 & 10.00	762 & 303		2100	Pidariseri	Idayathur	Veppankulam
24			P.Puthur	136.94	43.70	1.5	3.5	37.43	14.98	16.76	17.36	5	2	32.6 & 33.5	1068 & 1106		2895		Pidariseri	P.Puthur
25			Pidariseri	64.58	12.17	2	2.9	5.18	4.05	16.15	16.75	4	1	26.8	821		3566		Veppankulam	Pidariseri
26	-	5	Nelmadur	43.60	15.81	1.8	8.03	15.81	9.51	12.5	13.1	3	1	29	896		3040	Veppankulam	Kidiyathur	Nelmadur
27		PARAMAKUDI	Mosakudi	124.68	15.19	2	2.59	165.94	6.34	20	20.6	4	2	42.6& 33.00	1260 & 984		3560	Idayathur		Mosakudi
28		RAM	Maraneri	43.26	7.52	2	2.8	2.8	3.8	15.24	15.84	2	1	9.2	285		2250		Veppankulam	Maraneri
29		PA	Kallikudi	99.45	14.26	2	10.42	15.5	7.13	14.93	15.53	3	1	18.3	566		2745		Kothankulm	Kallikudi
30			Konakulam	43.08	9.10	1.95	0.66	1.48	4.55	15.24	15.84	3	1	8.25	244		1620	Kallikudi	Mosukudi	Konakulam
31			Kothankulam	57.03	7.66	2	3.89	3.89	4.6	20	20.6	5	1	38.1	1179		2225		Arunkulam	Kothankulam
32			Keelasivankulam	42.38	8.20	2	0.49	3.65	4.1	14.63	15.23	4	1	10.05	312		1950		Arunkulam	Keelasivankulam
33			Idayathur	147.65	24.12	2	2.59	12.92	10.59	50	50.6	5	2	31.25 & 10.4	1260 & 306		3900	Veppankulam	Mosukudi	Idayathur
34			Kattu Emaneswaram Tank	44.35	12.23	2.00	0.35	0.66	5.16	30.00	30.60	4	1	28.80	691.25	3000	2190	Free catchment	Paralai river	Kattu Emaneswaram
35	RAMANATHAPURAM	_	Seyyamangalam Tank	56.86	17.64	2.00	1.80	5.30	5.24	15.80	16.45	8	1	36.00	1390.80	2000	2550	Pudukkudithiradiyendal	Muniyanendal	Seyyamangalam
36	IAPU	IUTH	Virathakulam Tank	69.86	14.71	2.00	0.29	0.29	6.30	15.00	15.60	4	1	7.62	234.51	3487	2130	Paralai River	Arasanendal	Virathakulam
37	IATH	KAMUTHI	Anaiyur Tank	57.08	16.63	2.00	0.73	1.29	8.00	15.00	15.60	3	1	13.70	423.07	2290	2250	Free catchment	Paralai river	Anaiyur
38	AMA		Peraiyur Tank	392.39	92.33	2.00	5.12	12.10	27.70	28.12	28.72	5	1	22.50	1028.98	4500	3900	Sonaiperiyakottai	Paralai river	Peraiyur
39	22		Navalkiniyan tank	50.39	10.6	2.00	2.00	5.00	5.00	15.01	15.61	4	1	14.60	556.32		1560	Free catchment	Malattar	Navalkiniyan
40			Athikulam	56.33	7.77	0.74	0.380	1.96	3.37	16.150	15.240	4	1	14	533		1951	Nallur Tank	Regunatha cauvery	Athikulam
41			Kelakulam	58.30	10.68	2.67	0.440	0.6	5.61	31.470	30.470	4	1	7.60	235.75	11670	1882	Keelathoval channel	Nallankulan & annaicheri Tank	Kelakulam
42			Meelakulam	53.12	5.671	2	0.500	0.62	3.905	38.890	37.890	4	1		194.7		2100	Keelathoval channel	Keelkulam Tank	Meelakulam
43		~	Manaloor	53.02	15.40	2	1.630	2.73	0.371	16.240	15.240	5	1	Culvert	630		2430	Keeranur channel	Keelkulam Tank	Manaloor
44		MUDHUKULATHUR	Kannathan	42.59	12.88	1.7	0.400	1	5.220	39.060	38.060	4	1	13.10	405.3	2500	1980	Keeranur channel	Adimudithanki Tank	Kannathan
45		INLAT	Melavidathakulam	44.52	6.24	0.84	0.650	0.6	2.880	14.740	13.840	7	1	7.00	216.89	3000	1341	Keeranur channel	Paralai river	Melavidathakulam
46		HUK		86.29	22.00	1.85	1.750	3.6	1.760	16.760	15.850	7	1	44.50	942.14	9005	3414	Keeranur channel	Vathiyarendal	
47		MUD	Keeranur Kelakanjirankulam	61.21	16.40	1.85	0.250	0.37	7.080	29.850	28.950	3	1	44.50	132.02	1400	1768	Raagunatha cauveri	Mudukulathur	Keeranur Kelakanjirankulam
48			Chittrankudi	171.95	30.27	1.48	1.860	0.57	1.490	29.850	26.950	4	1	38.40	329.32	3500	3962	Ragunatha cauveri channel	Ragunatha cauveri channel	Chittrankudi
49																		Ragunatha cauveri	Ragunatha	
			Enathi	148.29	0.834	3	2.590	1	1.751	32.100	31.100	4		20.10 2 Nos-	172.52	1200	3688	channel	cauveri channel	Enathi
50			Pulvoikulam Tank	82.05	14.59	2.00	0.22	0.22	6.26	28.520	29.120	3	1	0.90 dia	109.70		1951		Chithrankudi	Pulvoikulam

			1							1								1	
51		Sonaiperiyankottai	241.52	1.05	2	0.518	4.662	1.793	30.600	29.600	5	1	18.30		4250	4938	Ragunatha cauveri channel	Kondulavi	Sonaiperiyankottai
52		Kondulavi	62.61	0.148	2	4.290	15.98	0.201	31.500	30.500	3	1	33.50	351.06		1524	Sonaiperiyankottai	Malattar	Sonaiperiyankottai
52 53 55 56 56		Kidathirukkai	102.37	0.642	1.995	3.885	3.885	1.052	17.150	16.150	4	1	21.65	189.5	1220	2652	Ragunatha cauveri channel	Appanur supply channel	Kidathirukkai
53 JAP	KADALADI	Koovarkuttam	53.16	0.27	2.2	0.278	0.278	4.21	23.050	22.050	3	1	3.65	32.04	1600	1463	Ragunatha cauveri channel	pothikulam supply channel	Kidathirukkai
55 414	ADAI										-						Ragunatha cauveri	Oruvanendal	
A	12	Pothikulam	181.26	19.65	2	0.141	0.178	17.220	21.250	20.250	6	1	24.70	18.92	2050	4462	channel		Pothikulam
56 NA		P.Kadambankulam	53.01	0.189	2	0.052	0.65	3.920	19.550	18.550	3	1	49.70	389.79		1615	Pothikulam	Arunakri- kottagal	P.Kadambankulam
57		Therakuruchi	41.79	7.34	1.3	1.295	10.36	3.510	19.400	18.400	3	1	29.60	264.12		1097			Therakuruchi
58		Appanur	303.23	1.12	3	4.791	16.96	1.828	16.850	15.850	5	2	21.35& 10.90	292.18 292.18	14760	4175	Ragunatha cauveri channel	A.Punavasal	Appanur
			3419.88																
59		Alangulam Tank	45.20	11.76	1.00	10.88	10.88	0.31	48.00	18.60	3	1	23.00	693.45	1500	1830	Dharmam	Nagachiyendal	Alangulam
60		T. Velangudi Tank	104.01	18.89	0.75	10.88	8.74	1.82	88.83	89.43	7	1	31.41	947.10	5000	2255	Pattanendal	Andiyendal	T. Velangudi
61		Andiyendal Tank	42.80	7.1	1.00	8.74	35.29	0.09	87.01	87.61	5	1	32.95	993.45	2000	1616	Vacharendal	Kilagulam	Andiyendal
62		Sathiseri Tank	47.62	9.25	1.25	35.29	11.19	4.13	85.45	86.05	4	1	17.07	514.70	4000	2640			Sathiseri
63		Mullikudi Tank	89.09	22.06	0.50	11.19	4.36	0.61	61.04	61.64	3	1	65.50	1974.85	2000	1975	Munarichan and Alangulam	Mosakudi	Velaneri
64 65 66 66 66 66 66 66 66 66 66 66 66 66	IULI	Keelakondrai kulam Tank	42.51	15.65	1.00	4.36	10.59	0.65	65.95	66.55	4	1	23.90	720.65	2000	2310	Nathakulam	Melakondraikulam	Theli
65 NNH	THIRUCHULI	Sorikulam Tank	45.55	5.82	0.80	10.59	38.61	0.80	90.66	91.26	2	1	31.42	947.35		1525	Alangulam	singarendal	Sorikulam
66 DN	1	Velaneri Tank	42.76	3.43	1.00	38.61	7.81	9.51	89.45	90.05	3	1	19.22	579.50	1000	1525		Mullikulam	Velaneri
67 5		T. Kadambankulam Tank	47.51	3.5	1.00	7.81	3.41	0.30	67.82	68.22	3	1	9.90	298.50		2030	Kanyamurichan	Kadambankulam	Theli
68		Kanayamurichan Tank	53.42	6.52	0.75	3.41	3.92	0.61	68.66	69.26	5	1	23.80	717.60		2130	Dharmam	Kadambankulam	Theli
69		Kottakachiyendal Tank	73.76	24.83	1.00	3.92	7.37	0.43	85.48	86.08	6	1	13.42	404.65		3995	Milaganur	Dharmam	Kottakachiyendal
70		Theli Tank	44.39	11.47	1.00	7.37	4.80	0.80	69.62	69.92	3	1	29.80	898.50	1500	2010	Chinnakannanoor	Milaganur	Theli
71		Dharmam Tank	51.97	12.25	1.50	4.80	4.48	0.50	69.45	70.05	3	2	60.00	1809.10	2500	3240	lyedodai konmoi and chinnakanmoi	Arapallam periya kanmoi	Irunjirai
			730.60												21500	29081			

1.3.4.HYDRAULICS PARTICULARS OF SUPPLY CHANNELS.

NAME OF THE SUB BASIN: PARALAIYAR


SI. NO		Start Poir	nt	End Poir	nt	Length in metres	Bed width	Bed slope	Side slope	MFD in cusecs.	Depth of flow	Remarks
		Location	Sill level	Location	Sill level							
	SYSTEM TANKS											
1	Vagudi Tank	RMC 28625m from Virahanur Regulator	81.54	Vagudi	81.00	1000	8.00	1/2000	1:1	342.10	0.60	
2	Vidathakulam Tank	RMC 28625m from Virahanur Regulator	81.54	Vidathakulam	80.70	1000	7.00	1/2000	1:1	359.50	0.75	
3	Muthanendal Tank	RMC 29240m from Virahanur Regulator	80.98	Muthanendal	79.80	2900	5.00	1/2500	1:1	245.00	0.90	
4	Kattikulam Tank	RMC 29000m from Virahanur Regulator	81.46	Kattikulam	75.45	8800	10.00	1/2500	1:1	681.25	0.90	
5	Thuthikulam Tank	RMC 31470m from Virahanur Regulator	78.41	Thuthikulam	76.90	3200	4.00	1/2250	1:1	113.65	0.60	
6	Kalpiravu Tank	RMC 33820m from Virahanur Regulator	75.57	Kalpiravu	73.20	2500	4.00	1/2000	1:1	120.55	0.60	
7	Keelamelkudi Tank	RMC 37790m from Virahanur Regulator	73.32	Keelamelkudi	71.20	4190	7.00	1/2000	1:1	359.50	0.75	
8	Manamadurai Tank	RMC 39800m from Virahanur Regulator	69.48	Manamadurai	67.70	3520	5.00	1/2500	1:1	149.70	0.60	

		DM0 00000										
	· · ·	RMC 30980m					10.00					
9	Milaganur Tank	from Virahanur	78.98	Milaganur	73.90	9500	10.00	1/2250	1:1	718.10	0.90	
		Regulator										
		RMC 28125m										
10	Kuvalaiveli Tank	from Virahanur	81.54	Kuvalaiveli	76.75	7900	8.00	1/2250	1:1	512.25	0.90	
		Regulator										
		RMC 42500m										
11	Melapasalai Tank	from Virahanur	62.80	Melapasalai	60.60	3815	6.00	1/2000	1:1	355.50	0.90	
		Regulator										
	0	RMC 42500m										
12	Sangamangalam	from Virahanur	62.60	Sangamangalam	62.10	1000	4.00	1/2250	1:1	113.65	0.60	
	Tank	Regulator										
		Vannikudi										
	Parthibanur Tank	S.Channel @	52.59	Parthipanur	50.70	3970	6.00	1/2100	1:1	250	1.10	
13		LS1800m										
		RB of Arungulam										
		channel @ LS	47.00	Pudukkudi	45.00	2500	5.00	1/2500	1:1	233	1.20	
14	Pudukkudi Tank	2500M			10.00	2000	0.00	.,2000		200	1.20	
		RMC of										
		Parthipanur										
		regulator- LS	30.83	Perungarai	30.50	750	3.00	1/2250	1:1	85	0.90	
15	PerungaraiTank	5532M										
10	r orangararranit	Venunathadaiyar										
	Melakodumalur	channel @ LS	13.69	Melakodumalur	13.48	4185	5.00	1/1950	1:1	98	0.75	
16	Tank	2500m	10.00	Welakoddinaidi	10.40	4100	0.00	1/1000			0.70	
	I GINA	RMC of										
		Parthipanur										
		regulator- LS	33.79	Arungulam	31.10	5530	8.00	1/2050	1:1	275	1.00	
17	Arungulam Tank	4060M										
17												
						66250						
	NON SYSTEM T	ANKS										
	Killukudi Tank	NALL AND	50.00	Killukudi	47.00	1800	4.00	1/2000	1:1	120.55	0.60	
18	_	Milaganur										
	Rajakambeeram		101.50	Rajakambeeram	95.75	1200	3.00	1/2500	1:1	71.65	0.60	
19	Tank	Kattikulam	101.00	rajakambooram	00.10	1200	0.00	1,2000		11.00	0.00	

											-	
20	Arimandapam Tank	Milaganur	50.00	Arimandapam	46.00	2100	4.00	1/1900	1:1	123.70	0.60	
21	Thamaraikudi Tank	Maranadu	105.50	Thamaraikudi	99.00	2500	5.00	1/2000	1:1	167.35	0.60	
22	Karuvaikudi Tank	Nadukkanendal	38.50	Karuvaikudi	33.00	1210	4.00	1/2500	1:1	107.80	0.60	
23	Mullaikulam Tank	Free catchment	55.00	Mullaikulam	52.00	2500	5.00	1/2200	1:1	157.75	0.60	
24	Kaliyanendal Tank	Nadukkanendal	50.00	Kaliyanendal	48.60	1600	5.00	1/2500	1:1	149.70	0.60	
25	M.Pudukulam Tank	Kattikulam	101.50	M.Pudukulam	99.70	1800	4.00	1/2000	1:1	120.60	0.60	
26	Meenakshipuram Tank	Free catchment	45.00	Meenakshipuram	43.90	1200	4.00	1/2000	1:1	120.60	0.60	
27	Manankathan Tank	Milaganur	50.00	Manankathan	49.20	1020	4.00	1/2250	1:1	113.70	0.60	
28	Annavasal Tank	Rajakambeeram	48.00	Annavasal	45.60	2510	5.00	1/2000	1:1	163.75	0.60	
29	Kilankattur Tank	Free catchment	50.00	Kilankattur	48.20	1800	5.00	1/2500	1:1	149.70	0.60	
30	Arasakulam Tank	Milaganur	50.00	Arasakulam	48.60	2110	5.00	1/2250	1:1	157.80	0.60	
31	Chinnakannanur Tank	Mllaganur	50.00	Chinnakannanur	48.90	1500	4.00	1/2000	1:1	120.60	0.60	
32	M.Karisalkulam Tank	Melapasalai	50.00	M.Karisalkulam	48.10	2230	5.00	1/2500	1:1	150.70	0.60	
33	Somathur Tank	Arimandapam	45.00	Somathur	42.65	1530	4.00	1/2000	1:1	120.60	0.60	
34	KattuEmaneswaram Tank	Paralai River	31.85	Kattu Emaneswaram	30.00	3000	4.20	1/2130	1:1	125.42	0.60	
35	Seyyamangalam Tank	Paralai River	16.95	Seyyamangalam	15.85	2000	5.00	1/2000	1:1	30.77	0.90	
36	Virathakulam Tank	Paralai River	17.80	Virathakulam	15.00	3487	2.30	1/3056	1:1	26.45	0.6	

					1						
37	Anaiyur Tank	Paralai River	16.90	Anaiyur	15.00	2290	2.70	1/2500	1:1	17.63	0.45
38	Pulvoikulam Tank	Regunatha cauvery	29.55	Pulvoikulam	28.52	1000	4.40	1/2000	1:1	33.79	0.60
39	Peraiyur Tank	Regunatha cauvery	32.15	Peraiyur	28.12	4500	7.00	1/2000	1:1	152.06	0.90
40	Alangulam Tank	Dharmam	49.00	Alangulam	48.00	1500	3.00	1/1500	1:1	92.50	0.60
41	T. Velangudi Tank	Pattanendal	90.50	T. Velangudi	88.84	5000	6.00	1/3000	1:1	214.95	0.70
42	Andiyendal Tank	Vacharendal	88.01	Andiyendal	87.01	2000	3.00	1/2000	1:1	97.85	0.70
43	Sathiseri Tank	Free catchment	86.78	Sathiseri	85.45	4000	3.00	1/3000	1:1	65.45	0.60
44	Mullikudi Tank	Alangulam	62.04	Mullikudi	61.04	2000	4.00	1/2000	1:1	145.80	0.70
45	Keelakondrai kulam Tank	Nathankulam	66.96	Keelakondrai kulam	65.96	2000	3.50	1/2000	1:1	99.50	0.60
46	Velaneri Tank	Free catchment	90.45	Velaneri	89.45	1000	3.00	1/1000	1:1	138.40	0.70
47	Theli Tank	Chinnnakannanur	70.13	Theli	69.63	1500	4.00	1/3000	1:1	98.45	0.60
48	Dharmam Tank	Chinna Kanmoi	72.00	Dharmam	69.46	2500	6.00	1/1000	1:1	403.90	0.75
49	Kelakulam	KeelaThooval	50.00	Nallankulam	48.60	11670	4.00	1/2000	1:1	120.57	0.60
50	Kannathan	Keeranur	50.00	Adimudithangi	48.90	2500	6.00	1/3000	1:1	179.67	0.60
51	Melavidathakulam	Keeranur	50.00	Paralai river	48.10	3000	5.00	1/2000	1:1	167.34	0.60
52	Keeranur	Keeranur channel	45.00	Vethiyarendal	42.65	9005	4.00	1/2000	1:1	120.57	0.60
53	Kelakanjirankulam	Regunatha cauvery	31.85	Mudhukulathur	30.00	1400	3.00	1/1000	1:1	113.32	0.60
54	Chittrankudi	Regunatha cauvery	16.95	Regunatha cauvery	15.85	3500	3.00	1/3000	1:1	65.43	0.60

55	Enathi	Regunatha cauvery	17.80	Regunatha cauvery	15.00	1200	4.00	1/1000	1:1	170.50	0.60	
56	Sonaiperiyankottai	Regunatha cauvery	16.90	Kondulavi	15.00	4250	4.00	1/2000	1:1	120.57	0.60	
57	Kidathirukkai	Regunatha cauvery	29.55	Appanur	28.52	1220	5.00	1/2000	1:1	167.34	0.60	
58	Koovarkuttam	Regunatha cauvery	32.15	Pothikulam	28.12	1600	6.00	1/3000	1:1	179.67	0.60	
59	Pothikulam	Regunatha cauvery	49.00	Oruvanendal	48.00	2050	5.00	1/2000	1:1	167.34	0.60	
60	Appanur	Regunatha cauvery	90.50	A.Punavasal	88.84	14760	4.00	1/2000	1:1	120.57	0.60	
						122545						

Salient Features of Implementation of PIM in Paralaiyar Sub-basin

1) The Sub-basin: This is one of the nine sub-basins of the Gundar River Basin. Totally 89 irrigation tanks are under the control of Water Resources Department (WRD) of Public Works Department (PWD) in this sub-basin. List of Tanks covered with more details are furnished in the Annexure – 1. These 89 tanks are located within the sub-basin's hydraulic boundary spread over 89 villages of Manamadurai taluk, Paramakudi taluk, Mudhukulathur taluk, Kamuthi taluk, Kadaladi and Thiruchuli taluk of Sivaganga, Ramanathapuram and Virudhunagar District. The total Command area under these 89 tanks works out to 10884.14 ha.

2) Command area:

i. Under System tanks (18 Tanks)	4755.42Ha
ii. Under Non-system tanks (71 tanks)	6128.72 Ha

Total (89) Tanks	10884.14Ha
------------------	------------

3) An assessment of number of WUAs.

- Associations already formed 13 WUA Nos (4339.92 ha) under WRCP 10 WUA in Sivagangai District and 3 WUA in Ramanathapuram District,
- ii) Associations proposed to be 40 WUA Nos (6544.22 ha)
 formed under IAMWARM Project
 covering 40 WUA

- 4) An account of "Awareness creation".Activities undertaken and "Walkthrough Surveys" carried out:
- i) There are 89 tanks in the sub-basin spread over 89 villages.
- ii) As detailed out in Annexure 01. All these villages were visited by the WRD official and awareness about various activities, contemplated under IAMWARM project has been created.
- iii) Details of villages covered, walkthrough surveys conducted, farmers attended, list of works suggested by the farmers, list of works analysed and finalized by WRD officials, are all furnished in the Annexure – 02.
- 5) Schedule for completion of delineation and preparation for WUA documents, comprising of:
 - Form I : Details to be notified by District Collectors (End of November 10)
 - Form II: WUA document to be notified by District Collectors (End of December 10)
 - iii) Completion of preparatory works for the conduct of Elections for WUAs (End of Jan–10)
- 6) Schedule for Conduct of Elections in the sub-basin for farming Management committees will be completed by end of Feb 2011.
- 7) Initiating and completing the process of publishing EOI to hire Support Organisation at sub-basin level (End of March - 2011)
- 8) Providing Request for Proposals (RFPs) to all the short listed agencies, and obtaining Technical and Cost Proposals (Middle of May, 2011)
- Selection and deployment of Support Organisation to the sub-basin (End of April, 2011)
- 10)Appointment and the Role of Competent Authorities:
 - Section 26 of the Tamil Nadu Farmers' Management of Irrigation Systems (TNFMIS) Act provides for the appoint of "Competent Authorities" to assist the respective farmers organizations (WUA, Distributory Committee and Project Committee), in the implementation and execution of all decisions taken by such farmers organization. Similarly, every

farmer's organization shall extend such co-option or assistance, as may be required by the Competent Authority, for carrying out all the tasks related to implementation of TNFMIS Act.

- ii) It is proposed to form 40 WUAs only under IAMWARM Project to cover a command area of 7035.67 ha.
- iii) Appointment of Competent Authorities for the WUAs proposed to be formed under IAMWARM project is based on the "WRO Section officer wise" distribution as indicated below.

Name of the WRO Sub Division Officers working in the

Paralaiyar Sub-basin:

WUA's Already formed

Assistant Executive Engineer, W.RO, P.W.D, Saruganiyar Basin Sub Division, Manamadurai. ---- WUA's ---- 1 – 10 Assistant Executive Engineer, W.RO, P.W.D, Lower Vaigai Basin Sub Division, Paramakudi. ----WUA's----- 11 – 13

WUA's to be formed

Assistant Executive Engineer, W.RO, P.W.D,	
Saruganiyar Basin Sub Division , Sivaganga.	WUA's 1 – 7
Assistant Executive Engineer, W.RO, P.W.D,	
Gundar Basin Sub Division , Mudhukulathur.	WUA's 8 – 20
Assistant Executive Engineer, W.RO, P.W.D,	
Gundar Basin Sub Division , Kamuthi.	WUA's 21 -
27	
Assistant Executive Engineer, W.RO, P.W.D,	
Lower Vaigai Basin Sub Division , Paramakudi.	WUA's 28 - 32
Assistant Executive Engineer, W.RO, P.W.D,	
Gundar Basin Sub division Kariapatti	WUA'S 33 – 40

List of Competent authorities :-<u>WUA's Already formed</u>

a.	Section Officer, WRD, Irrigation	WUA's -1-10		
	section , Manamadurai.	WOAS -1-10		
b.	Section Officer, WRD, Parthibanur	WUA's – 11-13		
	regulator Section, Parthibanur	WUN3 - 11-13		

WUA's to be formed

a. Section Officer, WRD, Irrigation section , Madagupatti.	WUA's -1
b. Section Officer, WRD, Irrigation Section , Kalayarkoil.	WUA's – 2-4
c. Section Officer, WRD, Irrigation Section I, Sivaganga.	WUA's – 5-7
d. Section Officer, WRD, Irrigation Section II, Mudhukulathur	WUA's – 8 -16 & 18 - 20
e. Section Officer, WRD, Irrigation Section, Kadaladi	WUA's – 17
 f. Section Officer, WRD, Irrigation Section, Abiramam and Irrigation Section II Kamuthi. 	WUA's –21-27
g. Section Officer, WRD, Parthibanur regulator Section, Parthibanur.	WUA's –28-32
h. Section Officer, WRD, Irrigation Section,Kallikudi	WUA's -33 & 40

11)Involvement of farmers in the preparation "Scheme Modernisation Plans".

- i) Based on the outcome of the "Awareness Creation Programme" and Walkthrough survey carried out with the involvement of farmers, a list of tasks proposed to be taken up for "Modernization" under IAMWARM project was discussed with No.of farmers from 89 villages and the tasks was also prepared and exhibited in the Notice Board of the Village Administrative Officers Office and Panchayat Office.
- ii) During the meeting, the farmers present were also informed that soon after finalization of contract for carrying out "Modernization of Irrigation Systems" a "Notice Board" with the details about the nature of works, its cost, period of contract and Name of the contractor will all be fixed at the site of the work, as well as in the Panchayath Office, for information of the farmers. They have also been informed that they are free to supervise the work by the contractor and any lapse in the quality of work may

be reported to the field officers of WRD, as well as the Executive Engineer of WRD, who has been designated as the Nodal Officer for the sub-basin concerned.

- iii) The field officers of WRD have all been informed about the problems in handing over the operation and maintenance responsibilities to the farmers concerned, if the tasks as desired by them are not included in the modernization of the system and also in case some of the tasks already planned are not implanted due to some reasons or other.
- iv) The WRD officers were also informed that hey are personally responsible for handing over the irrigation systems after completing the tasks related to modernization of Irrigation systems.

12)Current status of Recovery of water charges:

- An enquiry conducted with the "Village Administrative Officers" (VAO's) of randomly selected villages (15 numbers out of 89 villages), the normal water charges recovery as informed by the VAO, works out to 50-60% only, about the expected percentage of 80-90%.
- With the proposal to form new WUA's under IAMWARM in Paralaiyar
 Sub-basin", the Managing Committee will be trained to take up the responsibility of improving the Water charges recovery percentage.
 These will be followed up, after completing the modernization tasks and handing over of the O & M responsibilities to WUAs.

13)"**Capacity Building**" of the WUA farmers:

- The "Support Organisation Group" will prepare "Training Modules" required for **building the capacity** of the WUA farmers, based on a "Training Needs" Analysis. They will also organize various "Capacity building" programmes at **suitable locations** within the sub-basin command area, to benefit the farmers of the WUA's in the sub-basin.
- The "Support Organisation" will also arrange for organizing the "Study Tours" both within and outside the state to enhance their knowledge and experiences which will help them to improve the crop productivity and there by the farmer's income.
- iii) The Support Organisation will also conduct necessary "awareness Programme" and impart training to educate the farmers of the WUA's in all aspects of the TNFMIS Act, TNFMS Rules

and Election procedures for constituting the "Managing Committees" of the WUA's.

14)The "Competent Authorities" appointed for the **sub-basin** will also be trained to effectively to interact with WUA farmers and maintain good rapport and relationship with the farming community in the sub-basin.

An Assessment of Command Area and WUAS under the Control of WRO OF PWD in PARALALYAR SUB BASIN										
WUA No	Name of Irrigation System and Tanks	Command Area Ha.	Location of the Command Area			Coverage of Command area under different Projects (Ha.)		Status of formation WUAs in sub basin		
8	and	ŏ`	Village	Tal uk	Dist rict	WR CP and Oth	₹ ¤ § Å	er CP CP	d und EA M	
1	2	3	4	5	6	7	8	9	10	
Existing V	NUA									
1	Vagudi and Vidathakulam Tank WUA	227.83	Vagudi Vidathakulam	Manamadurai	Sivaganga	227.83		SVG-33		
2	Kuvalaiveli Tank WUA	201.18	Kuvalaiveli			201.18		SVG -28		
3	Muthanendal and Thuthikulam Tank WUA	114.24	Muthanendal Thuthikulam			114.24		SVG- 32		
4	Kattikulam and MullaikulamTank WUA	1386.84	Kattikulam			1386.84		SVG -34		
5	Milaganur Tank WUA	568.90	Milaganur	Ĕ		568.90		SVG-39		
6	Keelamelkudi Tank WUA	191.74	Keelamelkudi	na		191.74		SVG -36		
7	Kalpirivu Tank WUA	56.26	Kalpirivu	Ma		56.26		SVG- 31		
8	Manamadurai Tank WUA	227.19	Manamadurai			227.19		SVG-30		
9	Melapasalai Tank WUA	126.36	Melapasalai			126.36		SVG-38		
10	Sangamangalam Tank WUA	68.75	Sangamangalam			68.75		SVG-35		
11	Pudukkudi, Arunkulam and Kamini tank WUA	559.93	Pudukkudi Arunkulam Kamini	aramakkudi	Ramanathap uram	559.93		RMD -3		
12	Perunkarai tank WUA	373.65	Perunkarai	an		373.65		RMD -4		
13	Melakodumalur tank WUA	237.05	Melakodumalur	Ра		237.05		RMD -6		
Proposed	WUA									
14	Rajakambeeram , Melamemgudi Tanks	232.82	Rajakambeeram , Melamemgudi Tanks				232.82		SVG -1	
15	Narattai , Meenakshipuram , annavasal Tanks WUA	224.25	Naranttai , Meenakshipuram , annavasal	Manamadurai	a Lai	ŋ		224.25		SVG - 2
16	Thamaraikudi , Karuvaukudi , Kaliyanendal , Pallayiramadai , Killukudi Tank WUA	289.81	Thamaraikudi , Karuvaukudi , Kaliyanendal , Pallayiramadai , Killukudi Tank		Sivaganga		289.81		SVG - 3	
17	M,Puthukulam, Arsakulam , Arimandapam Tanks WUA	380.77	M,Puthukulam, Arsakulam , Arimandapam				380.77		SVG - 4	
18	Kilankattur , Natchodai Tanks WUA	144.68	Kilnkattur , Natchodai Tank				144.68		SVG - 5	
19	Pulvoimarichan, S,karichalkulam , Chinna	387.46	Pulvoimarichan,				387.46		SVG - 6	

ANNEXURE I An Assesment of Commamd Area and WUAs under the Control of WRO OF PWD in PARALAIYAR SUB BASIN

	kannanoor Tanks WUA		S,karichalkulam , chinna kannanoor				
20	Somathur , Manakathan ,M.Karisalkulam Tanks WUA	218.54	Somathur , Manakathan ,M.Karichalkulam			218.54	SVG - 7
21	Melakulam and Kannathan Tank WUA Tanks WUA	95.71	Melakulam Kannathan			95.71	RMD -1
22	Keelakulam Tank WUA	58.30	Keelakulam	Mudhukulathur	uram	58.30	RMD-2
23	Keeranur Tank WUA		Keeranur	lat l	api		RMD-3
24	Manaloor Tank WUA	86.29	Manaloor] 록	ath	86.29	RMD-4
25	Chitterankudi Tank WUA	53.02	Chitterankudi	٦ ٦	ana	53.02	RMD-5
26	Athikulam and Keelakanjirankulam Tank WUA	171.95	Athikulam Keelakanjirankulam	Mug	Ramanathapuram	171.95	RMD-6
27	Enathi Tank WUA	117.54	Enathi			117.54	RMD-7
28	Melavidathakulam Tank WUA	148.29	Melavidathakulam			148.29	RMD-8
29	Appanur Tank WUA	44.52	Appanur			44.52	RMD-10
30	Koovarkuttam, Pothikulam, P.Kadambankulam and Therakuruchi Tank WUA	303.23	Kidathirukkai, Pothikulam, P.Kadambankulam Therakuruchi	Kadaladi	Ramanathapur am	303.23	RMD-11
31	Sonaipiriyankottai Tank WUA	329.22	Sonaipiriyankottai	ac ac	nai	329.22	RMD-12
32	Kunduveli Tank WUA	241.52	Sonaipiriyankottai	- -	kan	241.52	RMD-13
33	Kidathirukkai Tank WUA	62.61	Kidathirukkai	-	Ľ.	62.61	RMD-14
34	Pulvoikulam Tank WUA	102.37	Pulvoikulam			102.37	RMD-9
35	Kattu Emaneswaram Tank WUA	82.05	Kattu Emaneswaram		Ramanathapur am	82.05	RMD-15
36	Seyyamangalam Tank WUA	44.35	Seyyamangalam	Kamuthi	ha	44.35	RMD-16
37	Virathakulam Tank WUA	56.86	Virathakulam	- L	am	56.86	RMD-17
38	Anaiyur Tank WUA	69.86	Anaiyur	ai 🤇	nar	69.86	RMD-18
39	Peraiyur Tank WUA	57.08	Peraiyur		lan	57.08	RMD-19
40	Navalkiniyan Tank WUA	392.39	Navalkiniyan			392.39	RMD-20
41	Parthipanur tank	50.41	Parthipanur			50.41	RMD-21
42	Veppankulam, Pidariseri and Maraneri Tank WUA	514.77	Veppankulam, Pidariseri Maraneri		ram	514.77	RMD-22
43	Kallikudi, Konakulam, Nelmadur and P.Pudur Tank WUA	157.52	Kallikudi, Konakulam, Nelmadur P.Pudur	Paramakkudi	Ramanathapuram	157.52	RMD-23
44	Idayathur and Mosakudi Tank WUA		Idayathur Mosakudi	Para	Ramar		RMD-24
45	Kothankulam and Keelasivankulam Tank WUA	323.07	Kothankulam Keelasivankulam			323.07	RMD-25
46	Alankulam Tank WUA		Alankulam		- <u>-</u> -		VNR 1
47	T.Velangudi Tank WUA	272.33	T.Velangudi	Thiru	Viru dhun agar	272.33	VNR 2
48	Andiyendal Tank WUA		Andiyendal	- °	~ ~ ~ ~		VNR 3

49	Sathaseri Tank WUA	99.41	Sathaseri	99.41	VNR 4
50	Velaneri, Sorikulam and Mullaikudi Tank WUA	45.20	Velaneri, Sorikulam Velaneri	45.20	VNR 5
51	Theli, Keelakondaraikulam, T.Kadambankulam and Kaniyiramurichan Tank WUA	104.01	Theli Theli Theli Theli	104.01	VNR 6
52	Kottakachiyendal Tank WUA	42.82	Kottakachiyendal	42.82	VNR 7
53	Dharmam Tank WUA	47.64	Irunjirai	47.64	VNR 8

ABSTRACT:

1.Command Area already covered under WRCP and other projects/schemes	4339.92 Ha
command area proposed to be covered under IAMWARM project	6544.22 Ha
Total command area controlled by WRO of PWD in the sub basin	10884.14 Ha
4.Total No. of WUA's already formed under WRCP	13 Nos
Total No of WUA's proposed to be formed under IAMWARM	40 Nos
Total No of WUA's that will cover the entire Sub Basin	53 Nos

ANNEXURE: II

De	tails of "Av	vareness Creation A	ctivities and Walk	x - Through Survey Walk - Through	s"
	Date of	Name of the	Programme (No.of farmers attended) (Prepare the list of farmers	Survey (No.of farmers Participated) (Prepare the list of farmers with	
Sl. No	Visit	Villages Visited	with acknowledgement seperately and attach)	acknowledgement seperately and attach)	Remarks
RAMANAT	HAPURAM				
1	26.05.10	Kannathan	15	5	
		Manaloor	10	8	
		Melavidathakulam	22	12	
2	29.05.10	Keelakanjirankulam	12	8	
		Kundaiveli	10	6	
		Sonaipirankottai	8	7	
		Chittirankudi	11	10	
3	03.06.10	Keelakulam	12	5	
		Melakulam	8	8	
		Athikulam	12	10	
		Keeranur	15	10	
		Enathi	10	20	
4	08.06.10	Koovarkuttam	8	11	
		Kidathirukkai	5	9	
		Pothikulam	8	30	
		P.Kadambankulam	8	12	
		Therakurichi	5	15	
		Appanur	10	18	
5	26.06.10	Kattu Emaneswaram	10	10	
		Seyyamangalam	20	8	
		Virathakulam	11	5	
6	29.06.10	Anaiyur	9	8	
		Peraiyur	30	13	
		Pulvoikulam	12	5	
		Navalkiniyan	15	10	
7	19.07.10	Pudukkudi	15	5	
		Perungarai	10	8	
		Parthipanur	22	12	
		Melakodumalur	12	8	
	-+	Arungulam	10	6	<u> </u>
		Kothankulam	15	8	
		Keelasivankulam	8	7	

8	20.07.10	Pidariseri	15	6	
		P.Puthur	17	7	
		Kamini	12	5	
		Veppankulam	12	8	
		Nelmadur	10	6	
		Mosakudi	15	8	
		Maraneri	8	7	
		Kallikudi	11	10	
		Konakulam			
		Idayathur	15	6	
VIRUDHU	NAGAR DIS				
9	10.06.10	Alangulam	18	10	
		T.Velangudi	15	12	
		Andiyendal	25	15	
		Sathaseri	10	18	
		Mullikudi	9	15	
		Keelakondaikulam	15	25	
		Sorikulam	10	10	
		Velaneri	20	9	
10	11.06.10	T.Kadambankulam	10	15	
		Kaniamurichan	8	20	
		Kottakachiyendal	30	10	
		Theli	5	8	
		Dharmam	5	30	
SIVAGAN	GA DISTRIC	Γ	J	·	
11	02.06.10	Vagudi	12	5	
		Vidathakulam	8	16	
12	05.06.10	Mullaikulam	9	15	
		Kuvalaiveli	12	10	
		Milaganur	15	13	
13	09.06.10	Kattikulam	8	15	
14	12.06.10	Muthanendal	11	8	
		Thuthukulam	15	9	
15	06.07.10	Somathur	10	6	
		M.Karisalkulam	13	15	
		Melapasali	15	15	
		Annavasal	8	10	
		Keelamelkudi	9	13	
16	08.07.10	M.Pudukulam	6	15	
		Thamaraikudi	15	8	
		Kaliyanendal	11	9	

		Killukudi	15	15	
		Karuvaikudi	10	18	
17	19.07.10	Chinnakannanur	13	10	
		Manankathan	15	8	
		Kilankattur	8	5	
		Sangamangalam	9	8	
		Arimandapam	6	13	
		Kalpiruvu	12	5	
		Manamadurai	15	25	
		Narrattai	10	10	
		S.Karisalkulam	20	9	
18	20.07.10	Rajakambeeram	10	15	
		Meenakshipuram	8	20	
		Puluvoimarichan	30	10	
		Arasakulam	5	8	
		Pallayiramadai	5	30	
		Nachodai	15	25	
		Melamelkudi	25	10	

ANNEXURE - III

Details of Modernisation works as suggested by the Farmers ans as finalised by the officials of WRO

GLN	Date of	Names of the villages	Outcome of walk through survey and discussions with farmers		
Sl.No	Visit	visited	Works Suggested by Farmers	Works finalised by WRO Officials	
1	26.05.10	Kannathan Manaloor	Formers requsted forstrengthen the tank bund and desilt supply channel, to reconstruct and repair the damaged sluices and for Providing S.G Plug	All the requests made by formers are proposed to be fulfilled and have	
		Melavidathakulam	arrangement.	been included in the Estimate.	
	29.05.10	Keelakanjirankulam	Formers requsted forstrengthen the tank	All the requests made by formers	
2		Kundaiveli	bund and desilt supply channel, to reconstruct and repair the damaged	are proposed to be fulfilled and have	
		Sonaipirankottai	sluices and for Providing S.G Plug arrangement.	been included in the Estimate	
		Chittirankudi	arrangement.		
		Keelakulam		All the requests made by formers	
		Melakulam	Formers requsted forstrengthen the tank bund and desilt supply channel, to	are proposed to be fulfilled and have	
3	03.06.10	Athikulam	reconstruct and repair the damaged sluices and for Providing S.G Plug	been included in the Estimate	
		Keeranur	arrangement.		
		Enathi			

		Koovarkuttam		All the requests made by formers	
		Kidathirukkai	Economic receivated forestronethen the tents	are proposed to be fulfilled and have	
		Pothikulam	Formers requested forstrengthen the tank bund and desilt supply channel, to reconstruct and repair the damaged	been included in the Estimate	
4	08.06.10	P.Kadambankulam	sluices to repair and reconstruct the damaged Weir and for Providing S.G	the Estimate	
		Therakurichi	Plug arrangement.		
		Appanur			
		Kattu Emaneswaram	Formers requsted forstrengthen the tank bund and desilt supply channel, to	All the requests made by formers	
5	26.06.10	Seyyamangalam	reconstruct and repair the damaged sluices to repair and reconstruct the	are proposed to be fulfilled and have	
		Virathakulam	damaged Weir and for Providing S.G Plug arrangement.	been included in the Estimate	
		Anaiyur	Formers requsted forstrengthen the tank	All the requests made by formers	
6	20.06.10	Peraiyur	bund and desilt supply channel, to reconstruct and repair the damaged	are proposed to be fulfilled and have	
6	29.06.10	Pulvoikulam	sluices to repair and reconstruct the damaged Weir and for Providing S.G	been included in the Estimate	
		Navalkiniyan Plug arrangement.		ine Estimate	
		Pudukkudi		All the requests made by formers	
	19.07.10	Perungarai		are proposed to be fulfilled and have	
		Parthipanur		been included in the Estimate	
7		Melakodumalur	 Formers requsted forstrengthen the tank bund and to reconstruct damaged sluices. 	the Estimate	
		Arungulam	sinces.		
		Kothankulam			
		Keelasivankulam			
		Pidariseri		All the requests made by formers	
		P.Puthur		are proposed to be fulfilled and have	
		Kamini		been included in the Estimate	
		Veppankulam			
8	20.07.10	Nelmadur	Formers requsted forstrengthen the tank bund and to reconstruct damaged		
0	20.07.10	Mosakudi	sluices.		
		Maraneri			
		Kallikudi			
		Konakulam			
		Idayathur			
		Alangulam	Formers requsted forstrengthen the tank	All the requests made by formers	
9	10.07.10	T.Velangudi	bund and desilt supply channel, to reconstruct and repair the damaged	are proposed to be fulfilled and have	
צ	10.06.10	Andiyendal	sluices to repair and reconstruct the damaged Weir and for Providing S.G	been included in the Estimate	
		Sathaseri	Plug arrangement.		

		Mullikudi		
		Keelakondaikulam		
		Sorikulam		
		Velaneri		
		T.Kadambankulam		All the requests made by formers
		Kaniamurichan	Formers requsted forstrengthen the tank bund and desilt supply channel, to	are proposed to be fulfilled and have
10	11.06.10	Kottakachiyendal	reconstruct and repair the damaged sluices to repair, reconstruct the	been included in the Estimate
		Theli	damaged Weir and for Providing S.G Plug arrangement.	the Estimate
		Dharmam		
11	02.06.10	Vagudi	Formers requised forstrengthen the tank bund and desilt supply channel, to reconstruct and repair the damaged	All the requests made by formers are proposed to be
		Vidathakulam	sluices to repair, construction of Protection wall and Head sluice and for Providing S.G Plug arrangement.	fulfilled and have been included in the Estimate
		Mullaikulam	Formers requsted forstrengthen the tank bund and desilt supply channel, to reconstruct and repair the damaged	All the requests made by formers are proposed to be
12	05.06.10	Kuvalaiveli	sluices to repair, construction of Protection wall and Head sluice, repairs	fulfilled and have been included in the Estimate
		Milaganur	to Weir and for Providing S.G Plug arrangement. Formers requsted forstrengthen the tank	All the requests
13	09.06.10	Kattikulam	bund and desilt supply channel, to reconstruct and repair the damaged sluices to repair, construction of Protection wall and for Providing S.G Plug arrangement.	made by formers are proposed to be fulfilled and have been included in the Estimate
		Muthanendal	Formers requsted forstrengthen the tank bund and desilt supply channel, to reconstruct and repair the damaged	All the requests made by formers are proposed to be
14	12.06.10	Thuthukulam	sluices to repair, construction of Protection wall and Head sluice and for Providing S.G Plug arrangement.	fulfilled and have been included in the Estimate
		Somathur		All the requests made by formers
		M.Karisalkulam	Formers requised forstrengthen the tank bund and desilt supply channel, to	are proposed to be fulfilled and have
15	06.07.10	Melapasali	reconstruct and repair the damaged sluices to repair, reconstruction of Weir,	been included in the Estimate
		Annavasal	repairs to Weir and for Providing S.G Plug arrangement.	
		Keelamelkudi		
		M.Pudukulam		All the requests made by formers
		Thamaraikudi	Formers requsted forstrengthen the tank bund and desilt supply channel, to	are proposed to be fulfilled and have
16	08.07.10	Kaliyanendal	reconstruct and repair the damaged sluices to repair, reconstruction of Weir,	been included in the Estimate
		Killukudi	repairs to Weir and for Providing S.G Plug arrangement.	
		Karuvaikudi		
17	19.07.10	Chinnakannanur	Formers requsted forstrengthen the tank bund and desilt supply channel, to	All the requests made by formers
-		Manankathan	reconstruct and repair the damaged	are proposed to be

		Kilankattur	sluices to repair, construction of reconstruction of Weir, repairs to Weir	fulfilled and have been included in
		Sangamangalam	and for Providing S.G Plug	the Estimate
		Arimandapam	arrangement.	
		Kalpiruvu		
		Manamadurai		
		Narrattai	_	
		S.Karisalkulam		
		Rajakambeeram		All the requests made by formers are proposed to be fulfilled and have
		Meenakshipuram	Formers requsted forstrengthen the tank bund and desilt supply channel, to reconstruct and repair the damaged sluices to repair, construction of reconstruction of Weir, repairs to Weir and for Providing S.G Plug	
		Puluvoimarichan		been included in the Estimate
18	20.07.10	Arasakulam		
		Pallayiramadai		
		Nachodai	arrangement.	
		Melamelkudi		

WATER RESOURCES DEPARTMENT

Saruganiyar Basin Division, Sivaganga

Lower Vaigai Basin Circle, Sivaganga

STATEMENT SHOWING DETAILS OF WALK THROUGH SURVEY CONDUCTED IN PARALAIYAR SUB BASIN

S. No	Date of walk through survey	Location	Taluk	Farmers request	Technical solution	Proposal in the plan
1	2	3	4	5	6	7
1	RAMANATHAI	PURAM DISTRICT				
1	26.5.2010	Kannathan	Mudukulathur	Farmers requested for Strengthen the tank bund, desilt the supply channel, repairs to sluice No.1	Yes.Problems mentioned by the farmers are correct. Strengthen the tank bund, Desilt the channel for 2.5KM length, Repair to Sluice No 1 may be carried out.	It is proposed to Strengthen the tank bund,to repair sluice No 1and to desilt the supply channel.
2	26.5.2010	Manaloor	Mudukulathur	Farmers requested for Strengthen the tank bund, desilt the tank and supply channel, Strengthen the tank bund, Reconstructr sluice No.4, and construction of irrigation channel to sluice No 1&2.	Yes. Problems mentioned by the farmers are correct. Strengthen the tank bund, Reconstruct of thesluice No.4, Desilt the tank and supply channel for1.0KM length, and construction of irrigation channel the sluices No 1&2 may be carried out.	It is proposed to Strengthen the tank bund, reconstruct Sluice NO.4, and construction of irrigation channel to Siuice 1&2, Desilt the tank and supply channel. (Keeranur supply channel).
3	26.5.2010	Melavidathakulam	Mudukulathur	Farmers requested for reconstruct of Sluices No. 1,2,5,6 & 7 and Desilt the supply channel and Strengthen the bund .	Yes.Problems mentioned by the farmers are correct. Strengthen the tank bund, Desilt the supply channel for 3 KM length ,reconstruct the of Sluices No 1,2,5,6 & 7 carried out.	It is proposed to Strengthen the tank bund, reconstruct five Sluices, and Desilt the supply channel,

4	29.5.2010	Keelkanjirankulam	Mudukulathur	Farmers requested for Strengthen the tank bund, reconstruct of three Sluices, and Desilt the tank and supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Strengthen the tank bund, Desilt the tank and supply channel for 1.4 KM length, Reconstruct of Sluice Numbers one, two, three and may be carried out.	It is proposed to Strengthen the tank bund, reconstruct three Sluices, Desilt the tank, supply channel demarking and fixing boundary stones
5	29.5.2010	Kondulavi	Kadaladi	Farmers requested for Strengthen the tank bund, reconstruct of SluicesNo 3 and Desilt the tank and Strengthen the tank bund.,	Yes.Problems mentioned by the farmers are correct. Strengthen the tank bund, Reconstruct of sluice No.3 and to Desilt the tank may be carried out.	It is proposed to Strengthen the tank bund, reconstruct Sluice no.3, and Desilt the tank,
6	29.5.2010	Sonaiperiyankottai	Kadaladi	Farmers requested for reconstruct of Sluice No 1, 4 & 5. And Desilt the tank, supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank, supply channel for4.25 KM length Reconstruct of Sluice No.1,4 & 5 and construction of field Channel may be carried out.	It is proposed to reconstruct Sluices No 1,4&5 construcstion of irrigation channel and Desilt the tank, supply channel.
7	29.5.2010	Chithirankudi	Mudukulathur	Farmers requested for desilt the tank, Strengthen the tank bund Reconstruct the four Sluices,repair to weir .So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Reconstruct of Sluice one, two and three,& four and to desilt the tank,and supply channel to a length of 3.5KM repair to weir may be carried out.	It is proposed to reconstruct four sluices,construction of irrigation channel,repairs to weir and Desilt the tank,supply channel and demarking and fixing boundary stones
8	03.6.2010	Keelakulam	Mudukulathur	Farmers requested for desilt the supply channel, Reconstruct of sluice no. 1.	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluices No.1Desilt the supply channel to a length of 11.67 KM (Kelathoval supply channel) may be carried out	It is proposed to reconstruct Sluice No.1 Desilt the supply channel.

9	03.6.2010	Melakulam	Mudukulathur	Farmers requested for Desilt the tank, Reconstruct of four No of Sluices, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct.Desilt the tank, Reconstruct of Sluice No1,2,3 & 4 ,construction of irrigation channel may be carried out.	It is proposed to reconstruct Sluices No1,2,3&4, construcstion of irrigation channel and Desilt the tank.
10	03.6.2010	Athikulam	Mudukulathur	Farmers requested for improve the tank bund, Reconstruct of 4 sluices, Construction of irrigation channel So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund, Reconstruct of sluices no1,2,3&4 ,construction of irrigation channel may be carried out.	It is proposed to Standardise the tank bund, Reconstruct sluices no1,2,3&4, construction of irrigation channel, demarking, fixing of boundary stone may be carried out.
11	03.6.2010	Keeranur	Mudukulathur	Farmers requested for Desilt the tank,and supply channel Reconstruct of four Sluices, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Desilt the tank and supply channel to a length of 9.005KM, Repair to Sluices No 4,5& 6 and Reconstruct of Sluice no1,2,3,&7, Field channels may be carried out.	It is proposed to Desilt the tank and supply channel Repair three sluices and Reconstruct four Sluices, construction of field Channels and Demarking, fixing of
12	03.6.2010	Enathi	Mudukulathur	Formers requsted for Desilt the tank and supply channel, Reconstruct of Sluice 4 Nos, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund and desilling the supply channel for 1.2 KM, Reconstruct of sluices No 1,2,3&4, may be carried out.	It is proposed to improve the tank bund and Desilt the supply channel, Reconstruct four sluices, construction of irrigation channels, and demarking ,fixing of boundary stones
13	08.6.2010	Koovarkuttam	Kadaladi	Formers requsted for Desilt the tank and supply channel, Reconstruct of Sluice 3 Nos, repairs to weir, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund and desilling the supply channel for 1.6 KM, Reconstruct of sluices No 1,2&3 may be carried out.	It is proposed to improve the tank bund and Desilt the supply channel, Reconstruct three sluices, construction of field channels, and demarking & fixing of boundary stones

14	08.6.2010	Kidathirukkai	Kadaladi	Formers requsted for Desilt the tank and supply channel, Reconstruct of Sluice 4 Nos, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund and desilling the supply channel for 1.22 KM, Reconstruct of four sluices may be carried out.	It is proposed to improve the tank bund and Desilt the supply channel, Reconstruct four sluices, construction of field channels, and demarking & fixing of boundary stones
15	08.6.2010	Pothikulam	Kadaladi	Formers requsted for desilt the supply channel and also tank to Strengthen the tank bund.and also reparesented to additional S.G.Plug &plug rods to sluices.	Yes.Problems mentioned by the farmers are correct. Desilt the tank and supply channel for 2.05 KM length and S.G.Plug &plug rods to the eight sluices carried out.	It is proposed to improve the tank bund and Desilt the supply channel,and S.G.Plug &plug rods to the eight sluices carried out.
16	08.6.2010	P.Kadambankulam	Kadaladi	Formers requsted for reconst the SluiceNo1,2&3, to Desilt the tank and Strengthen the tank bund,Repairs to weir, construction of irrigation channel.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund , Reconstruct of three sluices, repairs to weir may be carried out.	It is proposed to improve the tank bund and Reconstruct three sluices,repairs to weir, construction of field channels, and demarking & fixing of boundary stones
17	08.6.2010	Therakuruchi	Kadaladi	Formers requsted for reconst the SluiceNo1,2&3, to Desilt the tank and Strengthen the tank bund, construction of irrigation channel.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund , Reconstruct of three sluices, may be carried out.	It is proposed to improve the tank bund and Reconstruct of three sluices, construction of field channels, and demarking & fixing of boundary stones
18	08.6.2010	Appanur	Kadaladi	Formers requsted for Desilt the tank and supply channel, Reconstruct of Sluice 5 Nos, repairs to weirs,So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct.Desilt the tank and supply channel for 14.76KM length, Reconstruct of Sluice No1,2,3,4 &5, repairs to weir, may be carried out.	It is proposed to reconstruct Sluices No.1,2,3,4&5, repairs to weir, and Desilt the tank and supply channel and demarking and fixing boundary stones

19	26.06.201 0	Kattu Emaneswaram Tank	Kamuthi	Formers requsted for reconstruct of three Sluices, Desilt the tank,repair to weir supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank and supply channel for 3.0KM length, Reconstruct of Sluice Numbers 2,4&5, repair to weir may be carried out.	It is proposed to Reconstruct Sluices No 1,2 3, and construction of irrigation channel,Repairs to weir, Desilt the tank, supply channel and demarking and fixing Boundary stones.
20	26.06.201 0	Seyyamangalam Tank	Kamuthi	Formers requsted for desilt the tank and supply channel, Strengthen the tank bund, 5 Nos of Reconstructr sluice, Demarking and fixing boundary stones, and construction of irrigation channel.So that can use water at the end of crop period without any deficit.	Yes. Problems mentioned by the farmers are correct. Reconstruct the 5nos of sluices.,Desilt the tank and supply channel for 2KM length, Demarking and fixing Boundary Stones and construction of irrigation channel may be carried out.	It is proposed to Reconstruct Sluices No1,2,3,4,5,and construction of irrigation channel, Desilt the tank, supply channel and demarking and fixing Boundary stones.
21	26.06.201 0	Virathakulam Tank	Kamuthi	Formers requsted for reconstruct of four Sluices, Desilt the tank,reconstruct of weir and supply channel and Strengthen the bund and construction of irrigation channel .So that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Desilt the tank and supply channel for 3.487KM length ,reconstruct of 4Nos of Sluices, construction of leading Channel for Sluices,	It is proposed to Reconstruct four Sluices No 1,2,3,4, construction of irrigation channel and Desilti the tank, supply channel, repair to weir, demarking and fixing boundary stones
22	29.06.201 0	Anaiyur Tank	Kamuthi	Formers requsted for reconstruct of three Sluices, and Desilt the tank and supply channel, repairs to weir and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Desilt the tank and supply channel for 2.29KM length, Reconstruct of 3 Nos Sluice , repairs to weir.	It is proposed to Reconstruct of three Sluices No, construction of irrigation channel repairs to weir and Desilt the tank, supply channel demarking and fixing boundary stones

23	29.06.201 0	Peraiyur Tank	Kamuthi	Formers requsted for reconstruct of 4 Nos Sluices, Desilt the tank, repair to weir, supply channel and Strengthen the bund and construction of irrigation channel .So that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Reconstruct of 4 Nos Sluices, to Desilt the tank, repair to weir, supply channel for 4.50KM length and construction of irrigation channel may be carried out.	It is proposed to reconstruct of three Sluices, construction irrigation channel, repairs to weir, Desillti the tank, supply channel, repair to weir, demarking and fixing boundary stones
24	29.06.201 0	Pulvoikulam Tank	Mudhukulathur	Formers requsted for reconstruct of three Sluices,. And Desilt the tank, supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank, supply channel for 2KM length Reconstruct of 4 No of Sluices and construction of field Channel may be carried out.	It is proposed to reconstruct of Sluices NO 1,2,3,construction of irrigation channel and Desilt the tank, supply channel and demarking and fixing boundary stones
25	29.06.201 0	Navalkiniyan Tank	Kamuthi	Formers requsted for desilt the tank, Strengthen the tank bund Reconstruct of 4 Nos Sluices, repair to weir .So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Reconstruct of 4 Nos Sluice, to desilt the tank, repair to weir may be carried out.	It is proposed to reconstruct of four Sluices,construction of irrigation channel, repairs to weir and Desilt the tank, and demarking and fixing boundary stones
26	19.07.201 0	Kothankulam	Paramakkudi	Formers requsted for strengthen the tank bund	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund	It is proposed to strengthen the tank bund
27	19.07.201 0	Keelasivankulam	Paramakkudi	Formers requsted for strengthen the tank bund	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund	It is proposed to strengthen the tank bund
28	19.07.201 0	Pudukkudi	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.

29	19.07.201 0	Perungarai	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
30	19.07.201 0	Parthipanur	Paramakkudi	Formers requsted for strengthen the tank bund, desilt the supply channel and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and, Desilt the supply channel and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund, to desilt the supply channel and to reconstruct damaged sluices.
31	19.07.201 0	Melakodumalur	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
32	19.07.201 0	P.Puthur	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices and weir	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices and weir may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices and weir.
33	20.07.201 0	Pidariseri	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
34	20.07.201 0	Nelmadur	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.

35	20.07.201 0	Mosakudi	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices and weirs	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices and weirs may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices and weir.
36	20.07.201 0	Maraneri	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
37	20.07.201 0	Kallikudi	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
38	20.07.201 0	Konakulam	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
39	20.07.201 0	Arungulam	Paramakkudi	1. Formers requsted for strengthen the tank bund and to reconstruct damaged sluices and weir	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices and weirs may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices and weir.
40	20.07.201 0	Kamini	Paramakkudi	1. Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.

41	20.07.201 0	Veppankulam	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
42	20.07.201 0	Idayathur	Paramakkudi	Formers requsted for strengthen the tank bund and to reconstruct damaged sluices.	Yes.Problems mentioned by the farmers are found correct.Strengthenning the tank bund and reconstructing the damaged sluices may be carried out.	It is proposed to strengthen the tank bund and to reconstruct damaged sluices.
VIR	UDHUNAGAR	DISTRICT				
43	10.6.2010	Alangulam	Narikudi	Formers requsted for reconstruct of three Sluices, Desilt the tank,repair to weir supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank and supply channel for 1.5KM length, Reconstruct of Sluice Numbers 1,2&3, repair to weir may be carried out.	It is proposed to reconstructed three no of sluices, fixing boundary stone and Desilt the tank and supply channel.
44	10.6.2010	T. Velangudi	Narikudi	Formers requsted for desilt the tank and supply channel, Strengthen the tank bund, 5 Nos of Reconstructr sluice, 2nos of repairs to sluices, flood escape,, Demarking and fixing boundary stones, and construction of irrigation channel.So that can use water at the end of crop period without any deficit.	Yes. Problems mentioned by the farmers are correct. Repairs to two Sluices No. 1&3, Reconstructof sluice nos 2,4,5,5&7.flood escape,Desilt the tank and supply channel for 5KM length, Demarking and fixing Boundary Stones and construction of irrigation channel may be carried out.	It is proposed to repairs to first and third Sluices, reconstruct of Sluice No. 2,4,5,6&7, and construction of irrigation channel, Desilt the tank, supply channel and demarking and fixing Boundary stones.
45	10.6.2010	Andiyendal	Narikudi	Formers requsted for reconstruct of four Sluices, Repairs to one Sluice, Desilt the tank, repair to weir and supply channel and Strengthen the bund and construction of irrigation channel .So that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Desilt the tank and supply channel for 2KM length ,reconstruct the nos of Sluice No, 2,3,4&5, Repairs to one Sluice No. 1. construction of leading Channel for Sluices, repairs to weir may be carried out.	It is proposed to reconstruct of four Sluices, construction of irrigation channel and Desilt the tank, supply channel, repair to weir, demarking and fixing boundary stones

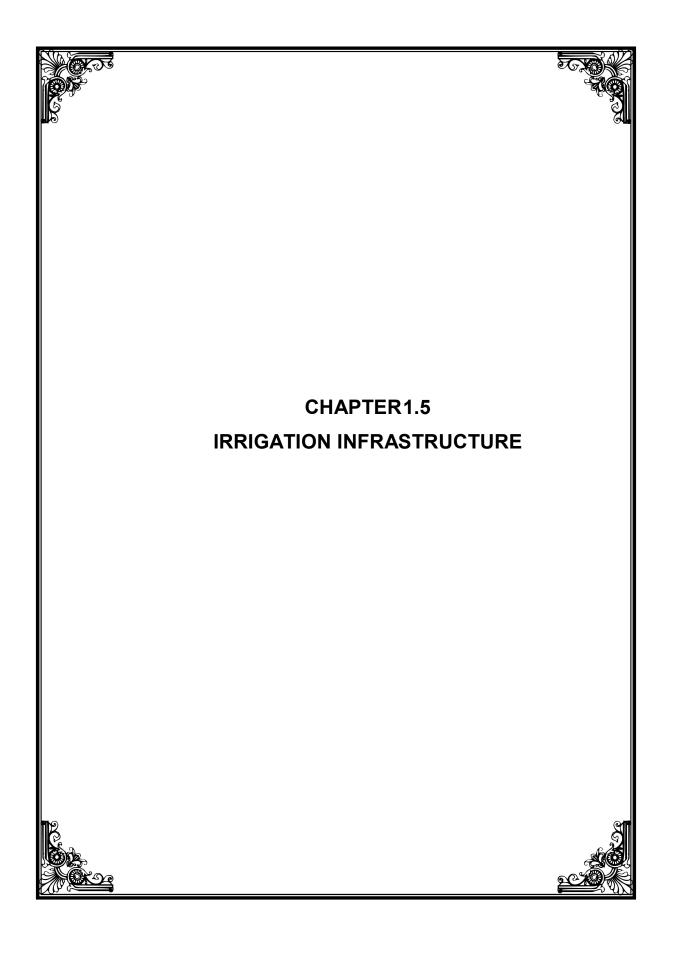
46	10.6.2010	Sathiseri	Narikudi	Formers requsted for reconstruct of three Sluices, and repair to one sluice. And Desilt the tank and supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repairs to first Sluice. Desilt the tank and supply channel for 4KM length, Reconstruct of Sluice Numbers two, three and four may be carried out.	It is proposed to reconstruct of three Sluices, construction of irrigation channel and Desilt the tank, supply channel demarking and fixing boundary stones
47	10.6.2010	Mullikudi	Narikudi	Formers requested for reconstruct of three Sluices, to Desilt the tank, repair to weir, supply channel and Strengthen the bund and construction of irrigation channel .So that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Reconstruct of three Sluice No. 1,2&3, to Desilt the tank, repair to weir,supply channel for 2KM length and construction of irrigation channel may be carried out.	It is proposed to reconstruct of three Sluices, construction of irrigation channel and Desilt the tank, supply channel, repair to weir, demarking and fixing boundary stones
48	10.6.2010	Keelakondrai kulam	Narikudi	Formers requsted for reconstruct of four Sluices,. And Desilt the tank, supply channel and also Strengthen the bund. so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank, supply channel for 2KM length Reconstruct of 4 No of Sluices No. 1,2,3&4 and construction of field Channel may be carried out.	It is proposed to reconstruct of Sluices NO 1,2,3&4,construction of irrigation channel and Desilt the tank, supply channel and demarking and fixing boundary stones
49	10.6.2010	Sorikulam	Narikudi	Formers requsted for desilt the tank, Strengthen the tank bund Reconstruct the two Sluices, repair to weir .So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Reconstruct of Sluice one and two and to desilt the tank, repair to weir may be carried out.	It is proposed to reconstruct of two Sluices,construction of irrigation channel and Desilt the tank, and demarking and fixing boundary stones
50	10.6.2010	Velaneri	Narikudi	Formers requsted for desilt the tank, supply channel, Strengthen the tank bund, 2 Nos of Reconstructr sluice, 1nos of repairs to sluices, repair to weir, Demarking and fixing boundary stones, and construction of irrigation channel.	Yes.Problems mentioned by the farmers are correct.Repairs to Sluice no.1,Reconstruct of sluice No. 2&3.Desilt the tank and supply channel or 1KM length, repair to weir,Demarking and fixing Boundary Stones and construction of irrigation channel may be carried out.	It is proposed to repairs to first Sluices, reconstruct of Sluices Two and Three sluices, Desilt the tank, supply channel and demarking and fixing Boundary stones.

1 11.6.2010 T. Kadambankulam	Narikudi	Formers requsted for Desilt the tank, Reconstruct of Sluice 3 Nos, reconstruct of weir, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct.Desilt the tank, Reconstruct of Sluice No1,2,&3 ,reconstruct of weir,construction of irrigation channel may be carried out.	It is proposed to reconstruct of Sluices NO 1,2&3,construction of irrigation channel and Desilt the tank, and demarking and fixing boundary stones			
2 11.6.2010 Kaniamurichan	Narikudi	Formers requsted for improve the tank bund, Reconstruct of 5 sluices, Construction of irrigation channel So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund, Reconstruct of sluices no1,2,3,4&5, construction of irrigation channel may be carried out.	It is proposed to. Standards the tank bund, Reconstruct of sluices no1,2,3,4&5 , construction of irrigation channel,demarking, fixing of boundary stone may be carried out.			
3 11.6.2010 Kottakachiyendal	Narikudi	Formers requsted for Desilt the tank, Reconstruct of Sluice 5 Nos and repair to sluice1no, repairs to weir, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Desilt the tank, Repair to Sluices no 3 and Re Construction of Sluice no1,2,4,5,&6, repairs to weir,Field channels may be carried out.	It is proposed to Desilt the tank, Repair to Sluices and Construction of Sluice, field Channels and Demarking, fixing of boundary stones.			
4 11.6.2010 Theli	Narikudi	Formers requested for Desilt the tank and supply channel, Reconstruct of Sluice 3 Nos, repairs to weir, construction of irrigation channel.So that they can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are found be correct. Standards the tank bund and desilling the supply channel for 1.5KM, Reconstruct of sluices No 1,2&3,repairs to weir may be carried out.	It is proposed to improve the tank bund and Desilt the supply channel, Reconstruct of 3 sluices ,repairs to weir, construction of field channels, and demarking ,fixing of boundary stones			
5 11.6.2010 Dharmam	Narikudi	Formers requsted for Desilt the tank and supply channel, Reconstruct of Sluice 3 Nos, repairs to weir, construction of irrigation channel.So that they can use water at the end of crop period	Yes.Problems mentioned by the farmers are found be correct.Desilt the tank and supply channel for 2.50KM length, Reconstruct of Sluice No1,2,&3 , repairs to weir, construction of irrigation channel	It is proposed to reconstruct of Sluices NO 1,2&3,construction of irrigation channel and Desilt the tank and supply channel and demarking and fixing			
Image: style							

56	2.6.2010	Vagudi	Mana- madurai	Formers requsted for repair to three sluices. Desilt the tank supply channel and construction of protection wall, head sluice and also Strengthen the bund. construction of field bothie.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank and supply channel for 1.0KM length, Repair to Sluice No 2,3&4,construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to the tank supply channel and construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel
57	2.6.2010	Vidathakulam	Mana- madurai	Formers requsted for repair to two sluices. Desilt the tank supply channel and construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Desilt the tank and supply channel for 1.0KM length, Repair to Sluice No 2&3,construction of protection wall, head sluice and also Strengthen the bund .construction of irrigation channel may be carried out.	It is proposed to desilt the tank supply channel and construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel
58	5.6.2010	Mullaikulam	Mana- madurai	Formers requsted for reconstruct of two Sluices, Repairs to two Sluice, Desilt the tank supply channel and Strengthen the bund and construction of protection wall .construction of irrigation channel So that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Desilt the tank and supply channel for 2.5KM length ,reconstruct of sluice No. 3& 4, Repairs to Sluices No. 2& 5,construction of protection wall . construction of irrigation channel may be carried out.	It is proposed to reconstruct of two Sluices,Repairs to two Sluice, Desilt the tank supply channel and Strengthen the bund and construction of protection wall.construction of irrigation channel
59	5.6.2010	Kuvalaiveli	Mana- madurai	Formers requsted for reconstruct of three Sluices, and repair to one sluice. construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel . so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.reconstruct of Sluices No. 2&4.Repairs to Sluice No. 3,5&6. Desilt the tank and supply channel for 7.9KM length and construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to reconstruct of three Sluices, and repair to one sluice. construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel

60	5.6.2010	Milaganoor	Mana- madurai	Formers requsted for reconstruct of three Sluices, and repair to three sluice. Repair to one weir. construction of protection wall, head sluice and also Strengthen the bund.	Yes.Problems mentioned by the farmers are correct.reconstruct of Sluices No. 3,4,5 & 6.Repairs to Sluice No. 1,2&7. Desilt the tank and supply channel for 9.5KM length and construction of protection wall, head sluice and also Strengthen the bund.	It is proposed to reconstruct of three Sluices, and repair to three sluice. Repair to one weir. construction of protection wall, head sluice and also Strengthen the bund.
61	9.6.2010	Kattikulam	Mana- madurai	Formers requsted for reconstruct of two Sluices, and repair to six sluice. construction of protection wall and also Strengthen the bund. construction of irrigation channel so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.reconstruct of Sluices No. 2,3,4,5,6&7.Repairs to Sluice No. 1& 8. Desilt the tank and supply channel for 8.0KM length and construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to reconstruct of two Sluices, and repair to six sluice. construction of protection wall and also Strengthen the bund. construction of irrigation channel
62	12.6.2010	Muthanendal	Mana- madurai	Formers requsted for reconstruct of two Sluices, and repair to two sluice. construction of protection wall and head sluice also Strengthen the bund. construction of irrigation channel so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.reconstruct of Sluices No. 3&4.Repairs to Sluice No.2&5. Desilt the tank and supply channel for 2.9KM length and construction of protection wall, head sluice and also Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to reconstruct of two Sluices, and repair to two sluice. construction of protection wall and head sluice also Strengthen the bund. construction of irrigation channel
63	12.6.2010	Thuthikulam	Mana- madurai	Formers requsted for reconstruct of one Sluice, and repair to one sluice. construction of protection wall and head sluice also Strengthen the bund. construction of irrigation channel so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.reconstruct of Sluices No.2.Repairs to Sluice No.1. Desilt the tank and supply channel for 3.2KM length and construction of protection wall, head sluice and also Strengthen the bund.	It is proposed to reconstruct of one Sluice, and repair to one sluice. construction of protection wall and head sluice also Strengthen the bund. construction of irrigation channel

64	06.07.2010	Somathur	Mana- madurai	Formers requsted for reconstruct of three sluices, repairs to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluice No. 1,2&3.Desilt the tank and supply channel for 1.53KM length, Repair to weir No 1,and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to reconstruct of two sluices, repairs to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel
65	06.07.2010	M. Karisalkulam	Mana- madurai	Formers requsted for reconstruct of three sluices, reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluice No. 1,2&3.Reconstruct to weir No.1. Desilt the tank and supply channel for 2.23 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed toreconstruct of three sluices, reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
66	06.07.2010	Melapasalai	Mana- madurai	Formers requsted for reconstruct of three sluices, reconstruct to one weir. Repair to one weir.Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluice No. 1,2&3.Reconstruct to weir No.1.Repair to one weir. Desilt the tank and supply channel for 3.815 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to reconstruct of three sluices, reconstruct to one weir. Repair to one weir.Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
67	06.07.2010	Annavasal	Mana- madurai	Formers requsted for reconstruct of three sluices and repairs to two sluices reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluice No. 2,3&4 and repairs to sluice No.1&5.Desilt the tank and supply channel for 2.51KM length, Reconstruct to weir No 1,and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed to reconstruct of three sluices, repairs to two sluices reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel
68	06.07.2010	Keelamelkudi	Mana- madurai	Formers requsted for reconstruct of three sluices and reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluice No. 1,2&3.Desilt the tank and supply channel for 4.19 KM length, reconstruct weir No 1,and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed toreconstruct of three sluices and reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel


]	deficit.		
69	08.07.2010	M.Pudukulam	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 and reconstruct of sluice No.2 Reconstruct to weir No.1.Desilt the tank and supply channel for 1.80 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct to one sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
70	08.07.2010	Thamaraikudi	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to two sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 and reconstruct of sluice No.2 &3 Reconstruct to weir No.1.Desilt the tank and supply channel for 2.50 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct to two sluices. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
71	08.07.2010	Kaliyanendal	Mana- madurai	Formers requsted for repair to one sluice and Reconstruct to one sluices. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 and Reconstruct to sluice No. 2 Reconstruct to weir No.1.Desilt the tank and supply channel for 1.60 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct to one sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
72	08.07.2010	Killukudi	Mana- madurai	Formers requsted for reconstruct to two sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Reconstruct of sluice No.1& 2 Reconstruct to weir No.1.Desilt the tank and supply channel for 1.80 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed reconstruct to two sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.

73	08.07.2010	Karuvaikudi	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to three sluices. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 and reconstruct to sluice No. 2,3&4 Reconstruct to weir No.1.Desilt the tank and supply channel for 1.21 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct to three sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
74	19.07.2010	Chinnakannanur	Mana- madurai	Formers requsted for reconstruct to two sluices. Repairs to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Reconstruct to sluice No. 1&2 Repairs to weir No.1.Desilt the tank and supply channel for 1.50 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed Reconstruct to two sluice. Repairs to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
75	19.07.2010	Manankathan	Mana- madurai	Formers requsted for Reconstruct to two sluices. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Reconstruct to sluice No. 1 &2. Desilt the tank and supply channel for 1.0 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed Reconstruct to two sluice. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
76	19.07.2010	Kilankattur	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.2 and reconstruct to sluice No. 1. Desilt the tank and supply channel for 1.80 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct to one sluice. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
77	19.07.2010	Sangamangalam	Mana- madurai	Formers requsted for repair to one sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Repair of sluice No.1 Reconstruct to weir No.1.Desilt the tank and supply channel for 1.00 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.

78	19.07.2010	Arimandapam	Mana- madurai	Formers requsted for Reconstruct to two sluices. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Rreconstruct to sluice No. 1&2 Reconstruct to weir No.1.Desilt the tank and supply channel for 2.10 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed Reconstruct to two sluice. Reconstruct to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
79	19.07.2010	Kalpiravu	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct. Repair of sluice No.2 and reconstruct to sluice No. 1. Desilt the tank and supply channel for 2.50 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct to one sluice. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
80	19.07.2010	Manamadurai	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 and reconstruct to sluice No. 2. Desilt the tank and supply channel for 3.50 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct one sluice. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
81	19.07.2010	Narrattai	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.2 and reconstruct to sluice No. 1. Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.
82	19.07.2010	S.Karisalkulam	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.2 and reconstruct to sluice No. 1.Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.

83	20.07.2010	Rajakambeeram	Mana- madurai	Formers requsted for repair to two sluice and reconstruct to one sluices. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.2 &3, and reconstruct to sluice No. 1. Desilt the tank and supply channel for 1.20 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.
84	20.07.2010	Meenakshipuram	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.2 and reconstruct to sluice No. 1. Desilt the tank and supply channel for 1.20 KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.
85	20.07.2010	Pulavoimarichan	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.2 and reconstruct to sluice No. 1. Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.
86	20.07.2010	Arasakulam	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to three sluices. Repair to one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 and reconstruct to sluice No. 2,3&4 Repair to weir No.1.Desilt the tank and supply channel for 2.90KM length, and Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair one sluice and reconstruct three sluice. Repair one weir. Desilt the tank supply channel and Strengthen the bund. construction of irrigation channel.
87	20.07.2010	Pallayiramadai	Mana- madurai	Formers requsted for repair to one sluice and reconstruct to one sluices. Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.3 and reconstruct to sluice No. 2. Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.

88	20.07.2010	Nachodai	Mana- madurai	sluices. Strengthen the bund. construction of irrigation channel.so that can use water at	Yes.Problems mentioned by the farmers are correct. Repair of sluice No.2 and reconstruct to sluice No. 1 Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to one sluice and reconstruct one sluice. Strengthen the bund. construction of irrigation channel.
89	20.07.2010	Melamelkudi	Mana- madurai	Formers requsted for repair to two sluice and reconstruct to three sluices. Strengthen the bund. construction of irrigation channel.so that can use water at the end of crop period without any deficit.	Yes.Problems mentioned by the farmers are correct.Repair of sluice No.1 & 5 and reconstruct to sluice No. 2,3&4. Strengthen the bund.construction of irrigation channel may be carried out.	It is proposed repair to two sluice and reconstruct three sluice. Strengthen the bund. construction of irrigation channel.

1.5.1.List of Anicuts

NAME OF THE SUB BASIN: PARALAIYAR

Sl. No	Anicuts	Village	Block	Taluk	District	Direct Ayacut Area in Ha	Capacity
1	2	3	4	5	6	7	8
1	Paralaiyar Anicut	Achankulam	Kamuthi	Kamuthi	Ramanathapuram	-	-

1.5.2.List of Supply channels

NAME OF THE SUB BASIN: PARALAIYAR

Sl. No	NAME OF SUPPLY CHANNEL	OFFTAKE POINT	LENGTH IN KM	VILLAGE	BLOCK	TALUK	DISTRICT	TANK AYACUT
1	2	3			4	5	6	7
	SYSTEM TANK							
1	Vagudi Tank	RMC 28625m from Virahanur Regulator	1000	Vagudi	Manamadurai	Manamadurai	Sivagangai	176.64
2	Vidathakulam Tank	RMC 28625m from Virahanur Regulator	1000	Vidathakulam	Manamadurai	Manamadurai	Sivagangai	51.19
3	Muthanendal Tank	RMC 29240m from Virahanur Regulator	2900	Muthanendal	Manamadurai	Manamadurai	Sivagangai	61.62
4	Kattikulam Tank	RMC 29000m from Virahanur Regulator	8800	Kattikulam	Manamadurai	Manamadurai	Sivagangai	1286.95
5	Thuthikulam Tank	RMC 31470m from Virahanur Regulator	3200	Thuthikulam	Manamadurai	Manamadurai	Sivagangai	52.62
6	Kalpiravu Tank	RMC 33820m from Virahanur Regulator	2500	Kalpiravu	Manamadurai	Manamadurai	Sivagangai	56.26
7	Keelamelkudi Tank	RMC 37790m from Virahanur Regulator	4190	Keelamelkudi	Manamadurai	Manamadurai	Sivagangai	191.74
8	Manamadurai Tank	RMC 39800m from Virahanur Regulator	3520	Manamadurai	Manamadurai	Manamadurai	Sivagangai	227.19
9	Milaganur Tank	RMC 30980m from Virahanur Regulator	9500	Milaganur	Manamadurai	Manamadurai	Sivagangai	568.90
10	Kuvalaiveli Tank	RMC 28125m from Virahanur Regulator	7900	Kuvalaiveli	Manamadurai	Manamadurai	Sivagangai	201.80

11	Melapasalai Tank	RMC 42500m from Virahanur Regulator	3815	Melapasalai	Manamadurai	Manamadurai	Sivagangai	126.36
12	Sangamangalam	RMC 42500m from Virahanur Regulator	1000	Sangamangalam	Manamadurai	Manamadurai	Sivagangai	68.75
13	Parthibanur Tank	RB of Vannikudi channel @ LS 2500M	3970	Parthibanur	Paramakudi	Paramakudi	Ramanathapuram	514.77
14	Pudukkudi	RB of Arungulam channel @ LS 2500M	2500	Pudukkudi	Paramakudi	Paramakudi	Ramanathapuram	188.90
15	Perungarai	RMC of Parthipanur regulator- LS 5532M	750	Perungarai	Paramakudi	Paramakudi	Ramanathapuram	373.65
16	Melakodumalur	Venunathadaiyar channel @ LS 2500m	4185	Melakodumalur	Paramakudi	Paramakudi	Ramanathapuram	237.05
17	Arungulam	RMC of Parthipanur regulator- LS 4060M	5530	Arungulam	Paramakudi	Paramakudi	Ramanathapuram	317.82
			66250					
	NON SYSTEM TANKS							
18	Killukudi Tank	Milaganur	1800	Killukudi	Manamadurai	Manamadurai	Sivagangai	100.30
19	Rajakambeeram Tank	Kattikulam	1200	Rajakambeeram	Manamadurai	Manamadurai	Sivagangai	109.83
20	Arimandapam Tank	Milaganur	2100	Arimandapam	Manamadurai	Manamadurai	Sivagangai	132.56
21	Thamaraikudi Tank	Maranadu	2500	Thamaraikudi	Manamadurai	Manamadurai	Sivagangai	49.77
22	Karuvaikudi Tank	Nadukkanendal	1210	Karuvaikudi	Manamadurai	Manamadurai	Sivagangai	49.29
23	Mullaikulam Tank	Free catchment	2500	Mullaikulam	Manamadurai	Manamadurai	Sivagangai	99.89

24	Kaliyanendal Tank	Nadukkanendal	1600	Kaliyanendal	Manamadurai	Manamadurai	Sivagangai	47.37
25	M.Pudukulam Tank	Kattikulam	1800	M.Pudukulam	Manamadurai	Manamadurai	Sivagangai	121.85
26	Meenakshipuram Tank	Free catchment	1200	Meenakshipuram	Manamadurai	Manamadurai	Sivagangai	40.49
27	Manankathan Tank	Milaganur	1020	Manankathan	Manamadurai	Manamadurai	Sivagangai	54.33
28	Annavasal Tank	Rajakambeeram	2510	Annavasal	Manamadurai	Manamadurai	Sivagangai	130.32
29	Kilankattur Tank	Free catchment	1800	Kilankattur	Manamadurai	Manamadurai	Sivagangai	94.11
30	Arasakulam Tank	Milaganur	2110	Arasakulam	Manamadurai	Manamadurai	Sivagangai	126.48
31	Chinnakannanur Tank	Mllaganur	1500	Chinnakannanur	Manamadurai	Manamadurai	Sivagangai	257.62
32	M.Karisalkulam Tank	Melapasalai	2230	M.Karisalkulam	Manamadurai	Manamadurai	Sivagangai	101.87
33	Somathur Tank	Arimandapam	1530	Somathur	Manamadurai	Manamadurai	Sivagangai	62.24
34	Kattu Emaneswaram Tank	Paralai River	3000	Emaneswaram	Kamuthi	Kamuthi	Ramanathapuram	44.35
35	Seyyamangalam Tank	Paralai River	2000	Seyyamangalam Tank	Kamuthi	Kamuthi	Ramanathapuram	56.86
36	Virathakulam Tank	Paralai River	3490	Virathakulam Tank	Kamuthi	Kamuthi	Ramanathapuram	69.86
37	Anaiyur Tank	Paralai River	2290	Anaiyur Tank	Kamuthi	Kamuthi	Ramanathapuram	57.08
38	Pulvoikulam Tank	Regunatha cauvery	1000	Pulvoikulam Tank	Mudhukulathur	Mudhukulathur	Ramanathapuram	82.05
39	Peraiyur Tank	Regunatha cauvery	4500	Peraiyur Tank	Kamuthi	Kamuthi	Ramanathapuram	392.39
40	Alangulam Tank	Dharmam	1500	Alangulam	Narikudi	Thiruchuli	Virudhunagar	45.20

	1							
41	T. Velangudi Tank	Pattanendal	5000	T. Velangudi	Narikudi	Thiruchuli	Virudhunagar	104.01
42	Andiyendal Tank	Vacharendal	2000	Andiyendal	Narikudi	Thiruchuli	Virudhunagar	42.80
43	Sathiseri Tank	Free catchment	4000	Sathiseri	Narikudi	Thiruchuli	Virudhunagar	47.62
44	Mullikudi Tank	Alangulam	2000	Velaneri	Narikudi	Thiruchuli	Virudhunagar	89.09
45	Keelakondrai kulam Tank	Nathankulam	2000	Theli	Narikudi	Thiruchuli	Virudhunagar	42.51
46	Velaneri Tank	Free catchment	1000	Velaneri	Narikudi	Thiruchuli	Virudhunagar	42.76
47	Theli Tank	Chinnnakannanur	1500	Theli	Narikudi	Thiruchuli	Virudhunagar	44.39
48	Dharmam Tank	Chinna Kanmoi	2500	Irunjirai	Narikudi	Thiruchuli	Virudhunagar	51.97
49	Kelakulam	KeelaThooval	11670	Kelakulam	Mudhukulathur	Mudhukulathur	Ramanathapuram	58.30
50	Kannathan	Keeranur	2500	Kannathan	Mudhukulathur	Mudhukulathur	Ramanathapuram	42.59
51	Melavidathakulam	Keeranur	3000	Melavidathakulam	Mudhukulathur	Mudhukulathur	Ramanathapuram	44.52
52	Keeranur	Keeranur channel	9005	Keeranur	Mudhukulathur	Mudhukulathur	Ramanathapuram	86.29
53	Kelakanjirankulam	Regunatha cauvery	1400	Kelakanjirankulam	Mudhukulathur	Mudhukulathur	Ramanathapuram	61.21
54	Chittrankudi	Regunatha cauvery	3500	Chittrankudi	Mudhukulathur	Mudhukulathur	Ramanathapuram	171.95
55	Enathi	Regunatha cauvery	1200	Enathi	Mudhukulathur	Mudhukulathur	Ramanathapuram	148.29
56	Sonaiperiyankottai	Regunatha cauvery	4250	Sonaiperiyankottai	Kadaladi	Kadaladi	Ramanathapuram	241.52
57	Kidathirukkai	Regunatha cauvery	1220	Kidathirukkai	Kadaladi	Kadaladi	Ramanathapuram	102.37

58	Koovarkuttam	Regunatha cauvery	1600	Kidathirukkai	Kadaladi	Kadaladi	Ramanathapuram	53.16
59	Pothikulam	Regunatha cauvery	2050	Pothikulam	Kadaladi	Kadaladi	Ramanathapuram	181.26
60	Appanur	Regunatha cauvery	14760	Appanur	Kadaladi	Kadaladi	Ramanathapuram	303.23
			122545					

SI. N0	Name of Tank	Village	Block	Taluk	District	Ayacut Ha	Capa city M.Cft
1	Vagudi Tank	Vagudi	-			176.64	24.74
2	Vidathakulam Tank	Vidathakulam	_			51.19	7.6
3	Muthanendal Tank	Muthanendal	-			61.62	8.9
4	Pallayiramadai Tank	Pallayiramadai	-			43.13	21.26
5	Killukudi Tank	Killukudi	-			100.3	9.15
6	Kattikulam Tank	Kattikulam	-			1286.95	173.84
7	Thuthikulam Tank	Thuthikulam	-			52.62	21.68
8	Kalpiravu Tank	Kalpiravu	_			56.26	28.5
9	Rajakambeeram Tank	Rajakambeeram				109.83	0.58
10	Melamelkudi Tank	Melamelkudi				122.99	10.8
11	Keelamelkudi Tank	Keelamelkudi				191.74	31.04
12	Manamadurai Tank	Manamadurai				227.19	93.5
13	Narattai Tank	Narattai	-			53.44	22.03
14	Milaganur Tank	Milaganur	- rrai	urai.	ga	568.9	78.9
15	Arimandapam Tank	Arimandapam	Manamadura	Manamadurai	Sivaganga	132.56	25.53
16	Thamaraikudi Tank	Thamaraikudi	anan	anan	livaç	49.77	17.25
17	Karuvaikudi Tank	Karuvaikudi	Ĕ	Ĕ	0)	49.24	7.02
18	Kuvalaiveli Tank	Kuvalaiveli	-			201.8	61.1
19	Mullaikulam Tank	Mullaikulam				99.89	7.24
20	Kaliyanendal Tank	Kaliyanendal				47.37	18.53
21	M.Pudukulam Tank	M.Pudukulam				121.85	20.29
22	Meenakshipuram Tank	Meenakshipuram				40.49	3.5
23	Manankathan Tank	Manankathan	_			54.33	22.3
24	Annavasal Tank	Annavasal	_			130.32	34.72
25	S.Karisalkulam Tank	S.Karisalkulam	_			40.49	15.25
26	Kilankattur Tank	Kilankattur				94.11	18.41
27	Nachodai Tank	Nachodai				50.57	21.68
28	Sangamangalam Tank	Sangamangalam				68.75	12.39
29	Melapasalai Tank	Melapasalai				126.36	35.46
30	Arasakulam Tank	Arasakulam				126.48	23.94
31	Chinnakannanur Tank	Chinnakannanur				257.62	61.86
32	Pulavaimarichan Tank	Pulavaimarichan	nam Irai	nam Irai	Sivagan gai i	89.35	8.05
33	M.Karisalkulam Tank	M.Karisalkulam	Manam adurai	Manam adurai	Siva g: i	101.87	14.22

1.5.2.LIST OF TANKS IN PARALAIYAR SUB BASIN

34	Somathur Tank	Somathur				62.24	15.26
35	Pidariseri Tank	Pidariseri	Paramakudi	Paramakudi	Ramanathapuram	64.58	12.17
36	P.Puthur Tank	P.Puthur				136.94	43.7
37	Kallikudi Tank	Kallikudi				99.45	14.26
38	Parthibanur Tank	Parthibanur				514.77	92.16
39	Konakulam Tank	Konakulam				43.08	9.1
40	Nelmadur Tank	Nelmadur				43.6	15.81
41	Maraneri Tank	Maraneri				43.26	7.52
42	Veppankulam Tank	Veppankulam				49.68	6.55
43	Idayathur Tank	Idayathur				147.65	24.12
44	Mosukudi Tank	Mosukudi				124.68	15.19
45	Keelasivankulam Tank	Keelasivankulam				42.38	8.2
46	Kothankulam Tank	Kothankulam				57.03	7.66
47	Perunkarai Tank	Perunkarai				373.65	81.6
48	Kamini Tank	Kamini				53.21	2.3
49	Arunkulam Tank	Arunkulam				317.82	65.2
50	Pudukudi Tank	Pudukudi				188.9	22.27
			Mudhu kulath	Mudhu kulath			
51	Melakodumalur Big Tank	Melakodumalur	Mudhukulathur	Mudhukulathur Kamuthi R	Ramanathapuram Ramanathapuram	237.05	69.35
52	Kattu Emaneswaram Tank	Kattu Emaneswaram				44.35	12.23
53	Seyyamangalam Tank	Seyyamangalam				56.86	17.64
54	Virathakulam Tank	Virathakulam				69.86	14.71
55	Melakulam Tank	Melakulam				53.12	5.67
56	Keelakulam Tank	Keelakulam				58.3	10.66
57	Kannathan Tank	Kannathan				42.59	12.8
58	Manalur Tank	Manalur				53.02	15.4
59	Melavidathakulam Tank	Melavidathakulam				44.52	6.24
60	Keeranur Tank	Keeranur	Kamut	Kamut	ame	86.29	22
61	Anaiyur Tank	Anaiyur	hi	hi	r v v	57.08	16.63
62	Athikulam tank	Athikulam	Ч г	놀 늘		56.33	7.77
63	Pulvoikulam Tank	Pulvoikulam	Mudhuk ulathur	Mudhuk ulathur		82.05	14.59
64	Keelakanjirankulam Tank	Keelakanjirankulam				61.21	16.4
65	Peraiyur Tank	Peraiyur	Kamut hi	Kamut hi		392.39	92.33
	,		Mudhu	Mudhu	+		
66	Chittirankudi Tank	Chittirankudi	kulath ur	kulath ur		171.95	30.27
67	Sonaipriyankottai Tank	Sonaipriyankottai	Kadal adi	Kadal adi	apur	241.52	1.05
			Kamut	Kamut	Ramanathapur am		
68	Navalkiniyan tank	Navalkiniyan	hi Kadal	hi Kadal	nan a	50.39	10.6
69	Kondulavi Tank	Sonaipriyankottai	adi	adi	Rar	62.61	0.148

			Mudhu kulath	Mudhu kulath			
70	Enathi Tank	Enathi	ur	ur		148.29	0.834
71	Koovarkuttam Tank	Kidathirukkai				53.16	0.27
72	Kidathirukkai Tank	Kidathirukkai] 			102.37	0.642
73	Pothikulam Tank	Pothikulam	Kadaladi			181.26	19.65
74	P.Kadambankulam Tank	P.Kadambankulam	adi			53.01	0.189
75	Therakurichi Tank	Therakurichi	X			41.79	7.34
76	Appanur Tank	Appanur				303.23	1.12
77	Alangulam	Alangulam				45.2	11.76
78	T. Velangudi	T. Velangudi				104.01	18.89
79	Andiyendal	Andiyendal				42.8	7.1
80	Sathiseri	Sathiseri				47.62	9.25
81	Mullikudi	Mullikudi]		ar	89.09	22.06
82	Keelakondrai kulam	Theli	ipr	Thiruchuli	Virudhunagar	42.51	15.65
83	Sorikulam	Sorikulam	Narikudi	uc	hur	45.55	5.82
84	Velaneri	Velaneri	Z	Thi	rud	42.76	3.43
85	T. Kadambankulam	T. Kadambankulam			< Z	47.51	3.5
86	Kanayamurichan	Kanayamurichan				53.42	6.52
87	Kottakachiyendal	Kottakachiyendal	1			73.76	24.83
88	Theli	Theli				44.39	11.47
89	Dharmam	Irunjirai				51.97	12.25

DETAILS OF TANKS AND AYACUTS FOR PARALAIYARU SUB BASIN

				Sys	tem Tanks	Non S	System Tanks	
SI.No	Name of District	Name of Taluk	Name of Block	No	Ayacut in Hec	No	Ayacut in Hec	Remarks
1	Sivagangai	Manamadurai	Manamadurai	12	3070.02	22	1978.24	
2	Ramanathapuram	Paramakudi	Paramakudi	5	1448.35	11	852.33	
3	Ramanathapuram	Mudukulathur	Mudukulathur	1	237.05	11	857.67	
4	Ramanathapuram	Kadaladi	Kadaladi			8	1038.95	
5	Ramanathapuram	Kamuthi	Kamuthi			6	670.93	
6	Virudhunagar	Thiruchuli	Narikudi			13	730.60	
			Total	18	4755.42	71	6128.72	89 Nos 10884.14 Hec

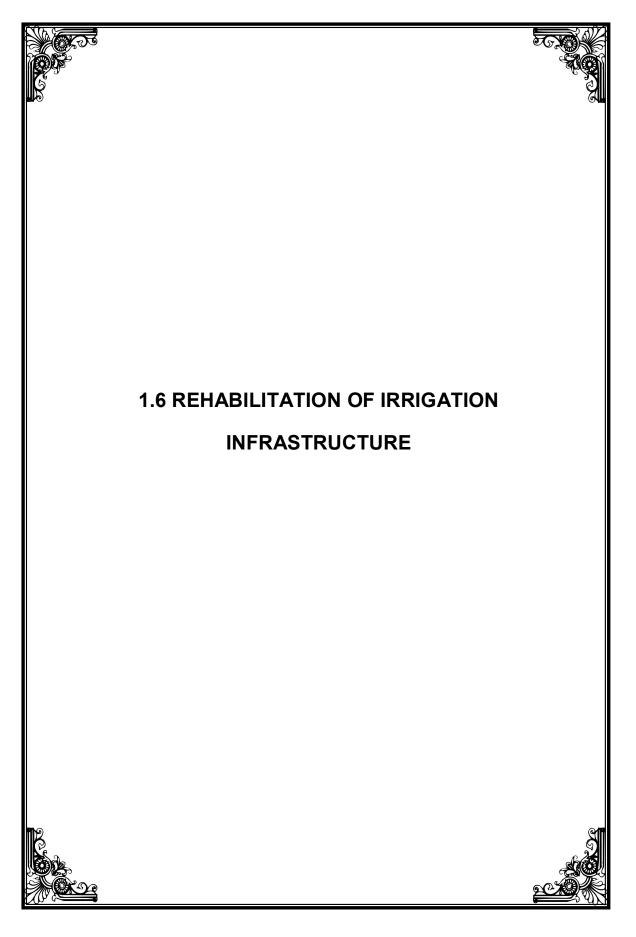
1.5.4.List of tanks/Anicuts executed under various schemes (Viz, Part II Scheme, NABARD, WRCP I etc.,) since 2000.

SI.No.	Name of Anicut / Tank	Ayacut	Scheme in which executed	Amount (lakhs)	Details of components executed	Remarks
1	2	3	4	5	6	7
1	Kothankulam	57.03	NABARD	8.50	Lining of field channels, repairing the sluices Nos 1 & 3, reconstructing the sluice No.2 and repairing the weir.	
2	Keelasivankulam	42.08	NABARD	7.75	Lining of field channels, repairing the sluices Nos 1 to 5 and repairing the weir.	
3	Anaiyur	57.08	IWRM PHASE II (2006-07)	10.61	Earthwork for tank bund and repairs to sluices	
4	Peraiyur	392.39	IWRM PHASE II (2006-07)	10.25	Earthwork for tank bund and repairs to sluices	
5	Navalkiniyan	50.39	IWRM PHASE I (2004-05)	10.44	Earthwork for tank bund and repairs to sluices	
6	Kattu Emaneswaram	44.35	IWRM PHASE I (2004-05)	19.00	Earthwork for tank bund and repairs to sluices	
7	Keelakanjirankulam	61.21	IWRM PHASE II (2006-07)	17.60	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	
8	Melavidathakulam	44.51	IWRM PHASE II (2006-07)	14.00	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	
9	Manalur	53.02	IWRM PHASE II (2006-07)	15.00	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	
10	Kannathan	42.59	IWRM PHASE II (2006-07)	18.00	Earthwork for tank bund and repairs to sluices	
11	Keelakulam	58.30	IWRM PHASE II (2006-07)	17.35	Earthwork for tank bund and repairs to sluices	
12	Pothikulam	181.26	IWRM PHASE II (2006-07)	17.10	Earthwork for tank bund and repairs to sluices no 1	
13	Appanur	303.26	IWRM PHASE I (2004-05)	16.95	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	
		1387.47		182.55		

1.5.4.List of tanks/Anicuts executed under various schemes (Viz, Part II Scheme, NABARD, WRCP I etc.,) since 2000 and Proposed under IAMWARM.

SI.No.	Name of Anicut / Tank	Ayacut	Scheme in which executed	Amount (lakhs)	Details of components executed	Details of components now proposed.
1	2	3	4	5	6	7
1	Kothankulam	57.03	NABARD	8.50	Lining of field channels, repairing the sluices Nos 1 & 3 , reconstructing the sluice No.2 and repairing the weir.	Strengthen the tank bund
2	Keelasivankulam	42.08	NABARD	7.75	Lining of field channels, repairing the sluices Nos 1 to 5 and repairing the weir.	Strengthen the tank bund
3	Anaiyur	57.08	IWRM - PHASE II (2006-07)	10.61	Earthwork for tank bund and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice – 3Nos,and Weir Repair and Desilt the supply channel
4	Peraiyur	392.39	IWRM - PHASE II (2006-07)	10.25	Earthwork for tank bund and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice -4 Nos ,and Weir Repair and Desilt the supply channel
5	Navalkiniyan	50.39	IWRM - PHASE I (2004-05)	10.44	Earthwork for tank bund and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice -4 Nos, Weir Repair and Desilt the supply channel
6	Kattu Emaneswaram	44.35	IWRM - PHASE I (2004-05)	19.00	Earthwork for tank bund and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice -3 Nos, Weir Repair and Desilt the supply channel
7	Keelakanjirankulam	61.21	IWRM - PHASE II (2006-07)	17.60	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice -3 Nosand Weir Repair
8	Melavidathakulam	44.51	IWRM - PHASE II (2006-07)	14.00	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice -5 Nos and Weir Repair
9	Manalur	53.02	IWRM - PHASE II (2006-07)	15.00	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	Strengthen the tank bund as per IAMWARM Standard, Reconstruct of sluice -1 No
10	Kannathan	42.59	IWRM - PHASE II (2006-07)	18.00	Earthwork for tank bund and repairs to sluices	Desilt the supply channel

11	Keelakulam	58.30	IWRM - PHASE II (2006-07)	17.35	Earthwork for tank bund and repairs to sluices	Reconstruct of sluice -1 No, Desilt the supply channel
12	Pothikulam	181.26	IWRM - PHASE II (2006-07)	17.10	Earthwork for tank bund and repairs to sluices no 1	Strengthen the tank bund as per IAMWARM Standard, Repair to sluice - 6 Nos and Desilt the supply channel
13	Appanur	303.26	IWRM - PHASE I (2004-05)	16.95	Earthwork for tank bund, Desilt the supply channel and repairs to sluices	Reconstruct of sluice -5 Nos and Weir Repair
		1387.47		182.55		


1.5.5.ABSTRACT ON THE DETAILS OF IRRIGATION INFRASTRUCTURE AVAILABLE AND WORKS TAKEUP UNDER IAMWARM PROJECT

NAME OF THE SUB BASIN: PARALAIYAR

			ANICUT	Г		SYSTEM T	ANK	N	ON- SYSTEM	TANK	ANY O ⁻ SUPPLY C		REMARKS
SI.NO	DETAILS	NOS	SUPP LY CHAN NEL IN KM	DIRECT AYACU T	NOS	SUPPLY CHANNEL IN KM	AYACUT	NOS	SUPPLY CHANNEL IN KM	AYACUT	LENGTH	DIRECT AYACU T	
1	Available Infrastructure in sub basin	1	21.00		18	66.250	4755.42	71	122.545	6128.72			
2	Infrastructure excluded in iamwarm project since works carried out under various schemes from 2000												
3	Infrastructures that does not require any rehabilitation works		21.00			12.955			54.125				
4	Works taken up in iamwarm project i)Works taken up under WRCP and Other schemes but also in IAMWARM							13		1387.47			Though the 13 Nos. of tanks were taken up in other scheme these are included in this scheme also to rehabilitate the left
	ii)Work proposed in IAMWARM	1			18	53.295	4755.42	58	68.420	4741.25			out components.

1. Certified that the Panchayat Union Tanks are not considered in this project.

2. Certified that the components executed in the tanks under various schemes (Viz, WRCP I, NABARD, PART II and other schemes etc.,) were not proposed in this project.

1.6. REHABILITATION OFIRRIGATION INFRASTRUCTUREOF THE PARALAIYAR SUB-BASIN

1.6.1 STRUCTURAL STATUS & DEFICIENCIES IN THE SYSTEM

The following is the present structural condition of the Paralaiyar sub basin system.

- 1. This system is an old system existing for more than 100 Years and as such requires Rehabilitation of tanks and their supply channels.
- 2. The tank bunds require raising and Strengthen to design sections and their supply channels require Desilt.
- The damaged (or) dilapidated condition of the Sluices, Weirs of tanks and Head Sluices of Supply Channels need Repairs.

In order to improve the conveyance and Operational Efficiency in Irriagtion, it is now proposed to improve and modernize the Irrigation Infrastructures in Paralaiyar Sub basin.

- 1. Strengthening of tank bunds by eartfill placement duly compacted.
- 2. Desilting of supply channels by earthwork excavation using machinery
- 3. Providing Bed bars to maintain the bed level and inner slopes of the supply channels
- 4. Repairing, Restoring the traditional water bodies (i.e. tanks)
 - Restoring the capacity of the tanks by Strengthen and of supply channels by Desilt
 - b. Strengthening the tank bunds with free board of 1.50m with consolidation by power roller for effective storing the water and conveying it to the entire command area and also for conveying agriculture inputs to the field.
 - c. Reconstruction of Collapsed weirs
 - d. Repairs to the damaged weirs
 - e. Reconstruction of Collapsed Sluices
 - f. Repairs to the damaged Sluices
 - g. Providing Model Sections in selective locations of the tanks
 - h. Providing S.G. Shutter / Plug arrangements to Sluices, Head sluices, Scour vents etc.,
 - i. Fixing Boundary Stones in the tanks to prevent encroachment
 - j. Removing, Repairing and refixing in position of the existing S.G. shuttering arrangements and providing locking arrangements etc.,
 - k. Provision for turfing the rear side slopes of the tank bund.

- I. Provision for lining of irrigation channels in specified length immediately downstream of Tank Sluices.
- m. Provision of flow measuring devices (V-Notches/ Cut Throat Flumes) in downstream of Tank Sluices.
- n. Provision of concrete bed bars/model sections in de-silted/re-sectioned supply channels at specified spacing (200m spacings).

Desilting of Supply channels:

There are 89 tanks situated within Paralaiyar Sub Basin .Of these ,the supply channels of 18 nos of system tanks are found to be heavily silted up, which results adequate quantum of water is not carried out through these channels to the tanks and find its way through adjacent cultivated fields. Lesser quantum of water flows to the tanks and balance water is over flanked and flows into agricultural lands.

By restoring these supply channels to the original section to carry adequate discharge to the tanks without over flanking, the Desilt of supply channel is proposed in this project, with necessary Bed bars at 200m interval.

1.6.2 Outcome of the Project

1. Increase in conveyance efficiency from 53% to 60%

- 2. The present Gap area of 2310.11 ha (ie., 1359.95 ha is Permanent gap and 950.16 ha is Temporary gap) is to be reduced as 1359.95 ha (ie., Permanent Gap only and Temporary gap to be bridged) and Partially irrigated area of 3753.23 ha is converted as fully irrigated area.
- **3.** The following irrigation infrastructure development works are proposed in the sub basin

Rehabilitation works for 89 tanks (13 Nos of Tanks were taken up during the year 2002-2007 in Nabard, Part II scheme, IWRM (PHASE I&II) and other schemes, for which balance components of work only proposed, which were not done in those Schemes.

- 4. Rehabilitation of supply channel is 121.175 KM.
- 5. One number of anicut to be rehabilitated.

1.6.3 TANK DETAILS WITH FREE BOARD PROVIDED

SI. No		Maximum	Free B	bard	Length of
	Name of the Tank	Height of Bund	Provided previously	Provided now	Bund(M)
1	2	3	4	5	6
	SIVAGANGAI DISTRICT				
1	Vagudi Tank	3.45	1.00	1.50	3414
2	Vidathakulam Tank	4.6	1.00	1.50	2408
3	Muthanendal Tank	3.1	1.00	1.50	1799
4	Kattikulam Tank	5.15	1.00	1.50	5822
5	Thuthikulam Tank	3.45	1.00	1.50	1105
6	Kalpiravu Tank	3.3	1.00	1.50	1170
7	Keelamelkudi Tank	3.8	1.00	1.50	2987
8	Manamadurai Tank	4	1.00	1.50	3170
9	Milaganur Tank	4.6	1.00	1.50	5395
10	Kuvalaiveli Tank	5.6	1.00	1.50	4420
11	Sangamangalam Tank	4.2	1.00	1.50	2835
12	Melapasalai Tank	4.3	1.00	1.50	3871
13	Pallayiramadai Tank	3.65	1.00	1.50	1494
14	Killukudi Tank	3.4	1.00	1.50	1845
15	Rajakambeeram Tank	4.15	1.00	1.50	1820
16	Melamelkudi Tank	3.1	1.00	1.50	2498
17	Narattai Tank	4.1	1.00	1.50	2286
18	Arimandapam Tank	4	1.00	1.50	3857
19	Thamaraikudi Tank	3.15	1.00	1.50	3170
20	Karuvaikudi Tank	3.5	1.00	1.50	2741
21	Mullaikulam Tank	3.9	1.00	1.50	1798
22	Kaliyanendal Tank	4.4	1.00	1.50	2384
23	M.Pudukulam Tank	3	1.00	1.50	4185
24	Meenakshipuram Tank	3.8	1.00	1.50	1260
25	Manankathan Tank	4.1	1.00	1.50	3871
26	Annavasal Tank	3.9	1.00	1.50	4115
27	S.Karisalkulam Tank	3.5	1.00	1.50	1984
28	Kilankattur Tank	4.1	1.00	1.50	2515

NAME OF THE SUB BASIN: PARALAIYAR SUB BASIN

29	Nachodai Tank	4.25	1.00	1.50	1615
30	Arasakulam Tank	3.2	1.00	1.50	2377
31	Chinnakannanur Tank	3.1	1.00	1.50	3171
32	Pulavaimarichan Tank	3.1	1.00	1.50	2256
33	M.Karisalkulam Tank	3.2	1.00	1.50	3292
34	Somathur Tank	4.1	1.00	1.50	2920
	RAMANATHAPURAM DISTRICT				
35	Melakodumalur Big Tank	3.7	1.00	1.50	3040
36	Pudukudi Tank	3.8	1.00	1.50	2100
37	Arunkulam Tank	3.5	1.00	1.50	3560
38	Kamini Tank	3.2	1.00	1.50	2250
39	Perunkarai Tank	4.1	1.00	1.50	2895
40	Parthibanur Tank	4	1.00	1.50	3566
41	Pidariseri Tank	3.4	1.00	1.50	2225
42	P.Puthur Tank	3.5	1.00	1.50	1620
43	Kallikudi Tank	3.1	1.00	1.50	3084
44	Konakulam Tank	3.2	1.00	1.50	5120
45	Nelmadur Tank	3.4	1.00	1.50	1950
46	Maraneri Tank	3.4	1.00	1.50	3490
47	Veppankulam Tank	3.1	1.00	1.50	2745
48	Idayathur Tank	3.2	1.00	1.50	2286
49	Mosukudi Tank	3.8	1.00	1.50	3900
50	Keelasivankulam Tank	3.1	1.00	1.50	1600
51	Kothankulam Tank	3.1	1.00	1.50	2743
52	Kattu Emaneswaram Tank	3.3	1.00	1.50	2130
53	Seyyamangalam Tank	3.25	1.00	1.50	2550
54	Anaiyur Tank	3.05	1.00	1.50	2250
55	Peraiyur Tank	3.5	1.00	1.50	3900
56	Navalkiniyan tank	3.2	1.00	1.50	1560
57	Virathakulam Tank	3.5	1.00	1.50	2130
58	Melakulam Tank	2.61	1.00	1.25	2100
59	Keelakulam Tank	3.05	1.00	1.50	1882
60	Kannathan Tank	3.81	1.00	1.50	1980
61	Manalur Tank	3.6	1.00	1.50	2430

62	Melavidathakulam Tank	3.275	1.00	1.50	1341
63	Keeranur Tank	3.04	1.00	1.50	3414
64	Athikulam tank	2.74	1.00	1.25	1951
65	Pulvoikulam Tank	3.15	1.00	1.50	1860
66	Keelakanjirankulam Tank	4.73	1.00	1.50	1768
67	Chittirankudi Tank	3.73	1.00	1.50	3962
68	Sonaipriyankottai Tank	3.32	1.00	1.50	4938
69	Kondulavi Tank	3.66	1.00	1.50	1524
70	Enathi Tank	3.6	1.00	1.50	3688
71	Koovarkuttam Tank	3.4	1.00	1.50	1463
72	Kidathirukkai Tank	3.74	1.00	1.50	2652
73	Pothikulam Tank	3.27	1.00	1.50	4462
74	P.Kadambankulam Tank	3.12	1.00	1.50	1615
75	Therakurichi Tank	2.94	1.00	1.25	1097
76	Appanur Tank	3.44	1.00	1.50	4175
	VIRUTHUNAGAR DISTRICT				
77	Alangulam	3.6	1.00	1.50	1830
78	T. Velangudi	3.645	1.00	1.50	2255
79	Andiyendal	3.59	1.00	1.50	1616
80	Sathiseri	3.59	1.00	1.50	2640
81	Mullikudi	4.735	1.25	1.5	1975
82	Keelakondrai kulam	2.925	1.00	1.25	2310
83	Sorikulam	3.47	1.00	1.50	1525
84	Velaneri	3.21	1.00	1.50	1525
85	T. Kadambankulam	2.585	1.00	1.25	2030
86	Kanayamurichan	3.87	1.00	1.50	2130
87	Kottakachiyendal	4.04	1.00	1.50	3995
88	Theli	2.525	1.00	1.25	2010
89	Dharmam	3.715	1.00	1.50	3240

NOTE:

For height of bund up to 3.00m - Free board is 1.25m
 For height of bund More than 3.00m - Free board is 1.50m

NAM	NE OF THE S	UB BAS	IN: PAR		YAR SL	JB B	ASIN															
SI. No	Name of Tank	Standardisation of Bund, Turfing and Boundard,	, running and poundary Stone		Consur.or Protection wail in supply channel		Sluice to be Repaired		Sluice to be Reconstruction		Weir to be Repaired	Wair Beconstruction			Construction of Head Sluice in open offtake	Desilt ind of Supply	Channel		Device	Lining the Irrigation	Channel	Total Amount
		Length 'm'	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Length 'm'	Amt	in Lakhs
	SIVAGANG	AI DISTI	RICT						Pack	age	<u>No. 0</u>	<u>1</u>										
1	Vagudi	3414	27.2	50	4.99	3	4.29							1	23.28	1000	4.75	5	0.49	173	6.30	71.34
2	Vidathakulam	2408	19.13	50	4.86	2	2.84							1	11.67	1000	4.20	3	0.30	103	3.80	46.80
3	Mullaikulam	1798	14.33	50	4.73	2	2.62	2	5.44							2500	9.80	5	0.49	172	6.30	43.74
4	Kuvalaiveli	4420	35.21	50	4.92	3	4.17	2	5.5					1	12.36	7900	31.10	6	0.59	207	7.60	101.43
5	Milaganoor	5395	42.99	50	5.12	3	6.19	4	17.01	1	6.46			1	16.55	9500	37.90	7	0.69	242	8.90	142.50
6	Kattikulam	5822	49.39	50	5.23	2	7.47	6	25.12							8800	35.65	8	0.79	276	10.20	134.63
7	Muthanendal	1799	14.33	50	4.99	2	7.77	2	8.67					1	12.13	2900	11.90	5	0.49	173	6.30	67.08
8	Thuthikulam	1105	8.76	50	4.73	1	1.36	1	2.7					1	13.31	3200	12.87	2	0.2	69	2.51	46.65
	Total	26161	211.34	400	39.57	18	36.71	17	64.44	1	6.46	0	0	6	89.3	36800	148.17	41	4.04	1415	51.91	654.17

SI. No	Name of Tank	Standardisation of Bund, , Turfing	and Boundary Stone	Constn.of Protection wall	in supply channel	Shrifte to be	Repaired		Sluice to be Reconstruction	Weir to be	Repaired	Moir	Reconstruction	Construction of	open offtake	Desilt ng of Supply	Channels	Measuring	Devices	Lining the	Irrigation Channel	Total Amount
		Length 'm'	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Length 'm'	Amt	in Lakhs
	SIVAGANGAI	DISTRI	ст						Packa	ae N	lo. 02)	-									
1	Chinnakannanoor	3171	19.86					2	5.26	1	1.56					1500	1.48	3	0.29	100	3.80	32.25
2	Manangathan	3871	24.46					2	4.18	1	1.50					1020	0.80	2	0.25	60	2.56	32.20
3	Somathur	2920	17.98					3	6.88	1	1.44					1530	1.30	3	0.29	120	3.80	31.69
4	Annavasal	4115	26.46			2	2.82	3	6.22	1	1.44	1	4.95			2510	2.45	5	0.29	150	6.30	49.69
5	Keelamelkudi	2987	16.24			2	2.02	3	6.36			1	4.26			4190	4.15	3	0.43	150	3.80	35.10
6	Manamadurai	3170	17.94			1	1.61	1	2.54				4.20			3520	3.40	4	0.39	120	5.10	30.98
7	M. Karisalkulam	3292	21.32				1.01	3	7.09			1	6.01			2230	2.10	3	0.29	120	3.80	40.60
8	Melapasalai	3885	23.69					3	7.36			1	7.51			3815	4.10	4	0.39	200	5.10	48.15
9	Arimandapam	3857	23.16					2	4.29			1	6.56			2100	1.75	4	0.39	120	5.10	41.25
10	Sangamangalam	2835	17.09			1	1.43	-	1.20				0.00			1000	0.85	2	0.2	100	2.50	22.06
11	Kilangattoor	2515	18.1			1	1.45	1	2.2							1800	1.60	4	0.39	120	5.10	28.84
12	Arasakulam	2377	10			1	1.39	3	6.49	1	1.52					2110	2.30	4	0.39	120	5.10	27.19
13	M.Pudukulam	4185	18.15			1	1.29	1	2.1			1	4.8			1800	1.90	2	0.2	80	2.50	30.94
14	Paluvamaraichan	2256	10.99			1	1.39	1	2.04									2	0.2	60	2.50	17.12
15	Kaliyanendal	2384	11.5			1	1.46	1	2.25			1	6.3			1600	1.95	2	0.2	60	2.50	26.16
16	Pallayeramadai	1494	9.22			1	1.28	2	4.01									3	0.29	90	3.80	18.60
17	Melamelkudi	2498	14.28			2	2.77	3	6.01									7	0.68	210	8.90	32.64
18	Kalipiravu	1170	5.79			1	1.3	1	1.97							2500	2.00	2	0.2	60	2.50	13.76
19	Rajakamberam	1820	10.85			2	2.73	1	2.1							1200	1.20	3	0.29	90	3.80	20.97
20	S. Karisalkulam	1974	9.49			1	1.52	1	2.04									2	0.2	60	2.50	15.75
21	Meenakshipuram	1260	7.49			1	1.37	1	2.16							1200	1.25	2	0.2	60	2.50	14.97
22	Narattai	2286	13.08			1	1.53	1	1.97									3	0.29	90	3.80	20.67
23	Thamaraikudi	3170	17.35			1	1.37	2	4.02							1000	1.10	3	0.29	90	3.80	27.93
24	Killukudi	1845	9.66					2	4.05			1	3.79			1000	1.00	2	0.2	60	2.50	21.20
25	Karuvaikudi	2741	15.01			1	1.28	3	6.15			1	6.07			1210	1.10	4	0.39	120	5.10	35.10
26	Nachodai	1615	9.49			2	2.63	1	2.08									3	0.29	90	3.80	18.29
	Grand Total	69693	398.65			22	30.62	47	101.82	3	4.52	9	50.25			38835	37.78	81	7.92	2700	102.56	734.10

SI.	Name of Tank				Constn.of Protection wall in supply channel Sluice to be Repaired			Sluice to be Reconstruction		Weir to be Repaired		Weir Reconstruction		Construction of Head Sluice in open offtake		Desilt ng of Supply Channels		Measuring Device		Lining the	Channel	Total Amount
		Length 'm'	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Length 'm'	Amt	in Lakhs
	VIRUDHUNAGAR DIS	TRICT							Pack	age	No. 0	3										
1	Alangulam																	3	0.15	90	3.82	3.97
2	T.Velankudi	2255	7.90			2	2.1	1	2.66									7	0.25	210	8.92	21.83
3	Andiyendal	800	2.78			1	1.35	1	2.83	1	1.73							5	0.16	150	6.37	15.22
4	Sathiseri	2640	8.94			1	1.37	2	5.6									4	0.31	120	4.89	21.11
5	Mullikudi	1975	8.09					3	10.33									3	0.3	90	3.82	22.54
6	Keelakondraikulam	2310	8.02			1	1.05	2	4.88	1	1.29							4	0.3	120	4.89	20.43
7	Sorikulam					1	1.05											2	0.2	60	2.56	3.81
8	Velaneri							3	8.07									3	0.3	90	3.82	12.19
9	T.Kadambankulam	2030	8.08					3	5.76			1	3.63			2000	2.7	3	0.3	90	3.82	24.29
10	Kaniyamurichan	2130	9.11					3	8.07									5	0.4	150	6.37	23.95
11	Kottakachiyendal	2000	15.73			1	1.35	3	7.22	1	0.8							6	0.5	180	7.65	33.25
12	Theli	2010	7.45			1	1.05	1	2.14	1	1.58					1360	1.75	3	0.3	90	3.82	18.09
13	Dharmam	3000	9.15					2	5.75	1	1.31							3	0.3	90	3.82	20.33
	Total	21150	85.25			8	9.32	24	63.31	5	6.71	1	3.63			3360	4.45	51	3.77	1530	64.57	241.01

SI. No	Name of Tank	Standardisation of Bund, , Turfing	and Boundary Stone	Constn.of	in supply channel	Sluice to be	Repaired		Suice to be Reconstruction		Protection wall	-i / W	Reconstruction	Construction of	open offake	Desilt ion of	Supply Channel		Measuring Device	Lining the	Channel	Total Amount
		Length 'm'	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Length 'm'	Amt	in Lakhs
				о т					Deele													
	RAMANATHAP									age I	<u>No. 04</u>	•										05.04
1	Pudhukudi	2450	19.26					3	5.59			1	6.26					3	0.31	90	3.82	35.24
2	Perungarai	5200	43.54					2	4.8	60	5.46					750	0.95	3	0.31	90	3.47	58.53
3	Parthibanur	5400	45.49					4	10.47							3970	6.79	7	0.72	210	8.72	72.19
4	Melakodumalur	4755	40.51					5	9.95									7	0.72	210	8.92	60.10
5	Arungulam	3962	33.75					3	6.46			1	14.02					4	0.41	120	5.1	59.74
6	Kamini	1403	11.79					2	3.21									3	0.31	90	3.82	19.13
7	Veppankulam	2100	17.54					3	6.31									4	0.41	120	5.1	29.36 38.16
8	P.Puthur Pidariseri	2895 3566	24.36 30.08					3 3	6.92 7.35									5 4	0.51 0.41	150 120	6.37 5.1	42.94
9																			-	60		42.94 32.27
10	Nelmadur Mosukudi	3040 3560	25.93 29.83					2 3	3.58 5.42			2	21.62					2	0.21		2.55 5.1	62.38
11	Maraneri	2250	18.86					1	<u> </u>			2	21.02					4	0.41	120 60	2.55	23.39
12	Kallikudi	2745	23.27					3	4.38									2	0.21	90	3.82	31.78
13	Konakulam	1620	13.56					2	4.38									3	0.31	90	3.82	21.76
14	Kothankulam	2225	18.65					3	5.5									5	0.51	150	6.37	31.03
16	Keelasivankulam	1950	16.5					3	5.79									4	0.31	130	5.1	27.80
17	Idayathur	3900	32.95					3	5.82									5	0.41	120	6.37	45.65
	Total	53021	445.87					48	97.39	60	5.46	4	41.9			4720	7.74	68	6.99	2344	86.10	691.45

SI. No	Name of Tank	Standardisatio	n of bund, ,Turfing and Boundary Stone	Constn.of		Sluice to be	Kepaired	Sluice to be	Reconstructio n	Wair to ha	Repaired	Weir	Reconstructio n	Construction	of Head Sluice	Desilting of Supply	Channel	Measuring	Device	Lining the	Channel	Total Amount
		Length 'm'	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Length 'm'	Amt	in Lakhs
	RAMANATHAPUF	RAM DIS	TRICT						Pack	age	No. C) <u>5</u>										
1	Kattu Emaneswaram Tank	2130	15.66					3	6.25	1	2.76					3000	3.75	4	0.4	120	5.10	33.92
2	Seyyamangalam Tank	2550	17.41					5	10.18		2.10					2000	2.77	8	0.8	240	9.94	41.10
3	Virathakulam Tank	2130	15.7					4	8.28			1	3.03			3490	4.29	4	0.4	120	5.1	36.80
4	Anaiyur Tank	2250	15.44					3	5.26							2290	1.49	3	0.3	90	3.82	26.31
5	Peraiyur Tank	3900	24.5					4	9.47							4500	5.6	5	0.5	150	6.37	46.44
6	Pulvoikulam Tank	1860	12.62					3	6.01							1000	1.25	3	0.3	90	3.82	24.00
7	Navalkiniyan Tank	1560	10.21							1	6.01							4	0.4	120	5.10	21.72
	Total	16380	111.5					22	45.45	2	8.77	1	3.03			16280	19.15	31	3.1	1070	39.25	230.29
		Dama			D - - -	Apro Prote	ction															
	Name of Anicut	кера	irs shutters	Flood I	<u>Sank</u>	Wa	111															
		Nos	Amt	Length 'm'	Amt	Length 'm'	Amt															
1	Paralaiyar Anicut	3	3	4000	8.05		10.56															21.61
	Total	3	3	4000	8		10.56															21.61
	Grand Total																					251.90

SI. No	Name of Tank	Standardisation of Bund, , Turfing	and Boundary Stone	Constn.of	supply channel	Sluice to be	Repaired		Surce to be Reconstruction	Mair to he	Repaired	Weir	Reconstruction	Construction of	open offtake	Desilt ing of	Supply Channel		Measuring Device	l ining the	irrigation Channel	Total Amount
		Length 'm'	Amt	Length 'm'	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Nos	Amt	Length 'm'	Amt	Nos	Amt	Length 'm'	Amt	in Lakhs
	RAMANATHAP	URAM	DISTRI	ст					Pack	age	No. 0	6										
1	Athikulam	1951	12.76					4	9.96									4	0.48	120	5.10	28.30
2	Kelakulam							1	2.7							1000	3	4	0.4	120	4.44	10.54
3	Meelakulam	2100	14.16					4	10.27									4	0.4	120	5.10	29.93
4	Manaloor	2430	15.84					1	2.94									5	0.5	150	6.37	25.65
5	Kannathan															2500	4.04	4	0.4	120	5.10	9.54
6	Melavidathakulam	1341	7.86					5	12.54	1	3.92					3000	2.54	7	0.7	210	8.92	36.48
7	Keeranur	3414	21.91					4	11.52									7	0.7	210	8.92	43.05
8	Kelakanjirankulam	1768	12.12					3	9.05							1400	1.9	3	0.3	90	3.82	27.19
9	Chittrankudi	3962	24.14					4	11.38	1	1.05					3500	5.73	6	0.6	180	7.65	50.55
10	Enathi	3688	23.17					4	11.8							1200	1.65	4	0.4	120	5.10	42.12
11	Sonaiperiyankottai							3	7.86							4250	5.86	5	0.5	150	6.37	20.59
12	Kondulavi	1524	9.49					1	2.66									3	0.3	90	3.82	16.27
13	Kidathirukkai	2652	16.31					4	11.09	1	4.99					1220	1.25	4	0.4	120	5.10	39.14
14	Koovarkuttam	1463	9.23					3	7.59							1600	2.17	3	0.3	90	3.82	23.11
15	Pothikulam	4462	26.08			6	9.32									2050	2.59	6	0.6	180	7.65	46.24
16	P.Kadambankulam	1615	10.38					3	7									3	0.3	90	3.82	21.50
17	Therakuruchi	1097	7.1					3	6.82									3	0.3	90	3.82	18.04
18	Appanur							5	12.62									5	0.5	150	6.37	19.49
	TOTAL	33467	210.55	0	0	6	9.32	52	137.8	3	9.96	0	0	0	0	21720	30.73	80	8.08	2760	101.29	507.73

ABSTRACT

5	4	8	2	Ч		SI.No	
ъ	4	m	2	Ч		Pac. No.	
16380	53021	21150	69693	26161	Length in m	Standardisation of Bund, ,Turfing and	ation of fing and
111.54	445.87	85.25	398.65	211.34	Amt	Boundary Stones	Stones
0	60	0	0	400	Length in m	Constn.of Protection	rotection
0	5.46	0	0	39.57	Amt	wall in supply channel	ly channel
0	0	∞	22	18	Nos		
0	0	9.32	30.6	36.7	Amt	Sluice Repair	epair
22	48	24	47	17	Nos		
45.45	97.39	63.31	101.82	64.44	Amt	Sluice Reconstruction	Istruction
2	0	5	З	Ч	Nos		
8.77	0	6.71	4.52	6.46	Amt	Weir Repair	epair
1	4	1	6	0	Nos		
3.03	41.9	3.63	50.25	0	Amt	Weir Recon	struction
0	0	0	0	9	Nos	Construction	pead fo a
0	0	0	0	89.3	Amt	Sluice in ope	en offtake
16280	4720	3360	38835	36800	Length in m	Docitting of	
19.15	7.74	4.45	37.78	148.17	Amt		
31	68	51	81	41	Nos		
3.10	6.99	3.77	7.898	6.27	Amt	Measuring	Device
1070	2344	1760	2795	1415	Length in m	Lining the I	rrigation
39.25	86.10	64.57	102.56	51.91	Amt	Channel	nel
3	0	0	0	0	Nos		
3.00	0	0	0	0			ollutiers
4000	0	0	0	0	Length in m	Flood hank	
8.05	0	0	0	0	Amt		Anicut
0	0	0	0	0	Length in m	Apron	Repair
10.56	0	0	0	0	Amt	Floor	
251.90	691.45	241.01	734.10	654.17	in Lakhs		Total Amount
	 5 5 16380 16380 16380 16380 111.54 111.54 111.54 122 122 13.03 3.03 3.04		4 4 4 4 53021 53021 53021 53021 60 7.34 97.39 97.34 97.34 97.34 99.334 99.334 99.334 99.334 90 90 90 91.45	4 3 4 3 4 3 53021 21150 53021 21150 53021 21150 53021 21150 445.87 85.25 445.87 85.25 60 0 60 0 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.39 63.31 97.34 1760 97.34 1760 97.34 1760 97.34 1760 98.10 64.57 90 0 91 0 92 0 93.41.01 0 93.41	4 3 2 4 3 2 4 3 2 53021 21150 69693 53021 21150 69693 60 0 0 60 0 0 60 0 0 5.46 85.25 398.65 60 0 0 60 0 0 60 0 0 5.46 0 0 60 0 0 93333 30.65 338.65 9343 3.63 30.6 97.39 53.31 101.82 97.39 3.63 338.35 97.39 53.31 101.82 97.39 3.63 338.35 97.39 3.63 338.35 97.41 4.45 37.78 97.41 4.45 37.78 98 51 84 99 90 90 </td <td>4 3 2 1 4 3 2 1 53021 21150 69693 26161 53021 21150 69693 26161 53021 21150 69693 26161 445.87 85.25 398.65 211.34 660 0 0 400 5 5.46 0 0 39.57 39.57 97.39 85.25 398.65 211.34 9 25.46 0 0 39.57 97.30 85.12 398.65 31.34 97.30 6.71 4.52 6.44 97.30 6.71 4.52 6.46 97.31 101.82 6.444 176 97.32 350.35 0 0 141 141 441 176 843.17 1415 141 141 141 141 141 141 141 1416 1416 1415<td>4 3 2 1 \sim 4 3 2 1 \sim 53021 21150 69693 26161 Lengthium 445.87 85.25 398.65 211.34 Amt 456 0 0 400 Lengthium 546 0 0 400 Lengthium 546 0 0 39.57 Amt 60 0 0 39.57 Amt 546 0 39.57 Amt Mos 933 63.31 101.82 64.4 Amt 1 93.2 13.6 Mos Mos 97.39 63.31 101.82 64.4 Amt 1 9 36.0 Lengthium Mos 97.39 63.31 101.82 64.4 Amt 1 9.53 368.0 Lengthium 1 9.53 368.0 Lengthium 1700 23.43</td></td>	4 3 2 1 4 3 2 1 53021 21150 69693 26161 53021 21150 69693 26161 53021 21150 69693 26161 445.87 85.25 398.65 211.34 660 0 0 400 5 5.46 0 0 39.57 39.57 97.39 85.25 398.65 211.34 9 25.46 0 0 39.57 97.30 85.12 398.65 31.34 97.30 6.71 4.52 6.44 97.30 6.71 4.52 6.46 97.31 101.82 6.444 176 97.32 350.35 0 0 141 141 441 176 843.17 1415 141 141 141 141 141 141 141 1416 1416 1415 <td>4 3 2 1 \sim 4 3 2 1 \sim 53021 21150 69693 26161 Lengthium 445.87 85.25 398.65 211.34 Amt 456 0 0 400 Lengthium 546 0 0 400 Lengthium 546 0 0 39.57 Amt 60 0 0 39.57 Amt 546 0 39.57 Amt Mos 933 63.31 101.82 64.4 Amt 1 93.2 13.6 Mos Mos 97.39 63.31 101.82 64.4 Amt 1 9 36.0 Lengthium Mos 97.39 63.31 101.82 64.4 Amt 1 9.53 368.0 Lengthium 1 9.53 368.0 Lengthium 1700 23.43</td>	4 3 2 1 \sim 4 3 2 1 \sim 53021 21150 69693 26161 Lengthium 445.87 85.25 398.65 211.34 Amt 456 0 0 400 Lengthium 546 0 0 400 Lengthium 546 0 0 39.57 Amt 60 0 0 39.57 Amt 546 0 39.57 Amt Mos 933 63.31 101.82 64.4 Amt 1 93.2 13.6 Mos Mos 97.39 63.31 101.82 64.4 Amt 1 9 36.0 Lengthium Mos 97.39 63.31 101.82 64.4 Amt 1 9.53 368.0 Lengthium 1 9.53 368.0 Lengthium 1700 23.43

Rs in Lakhs

1.6.4. WRD cost table

S. No	DESCRIPTION OF WORK	QUANTITY	AMOUNT IN LAKHS	REMARKS
I T/	ANK COMPONENT			
1	Improvements to tank bund, Turfing and Boundary stone	219872 M	1463.20	
2	Improvements to supply channel	121715 M	248.02	
3	Providing Protection wall	460 M	45.03	
4	Improvements to sluice - Repair – 54 Nos. – 85.97 Reconstruct - 210 Nos. – 510.21	264 Nos	596.18	
5	Improvements to weir - Repair - 14 Nos. – 36.42 Reconstruct - 15 Nos. – 98.81	29 Nos	135.23	
6	Improvements to Head Sluice	6 Nos	89.30	
7	Repairs to Anicut	1 No	21.61	
8	Providing Measuring devices	352 Nos	36.11	
9	Irrigation channel lining (30 metre Length in D/S of each sluice with M10 Grade concrete) (352 sluices X 30 m / sluice + 15% = 12144 m)	12144 m	445.68	
		Sub Total	3080.36	
	L S Provisions Provision for Advertisement charges, Documentation charges, Photographic Charges, Name board Charges, PS Charges and contingences charges @ 2.5%		77.00	
	Provision for Labour welfare @ 0.3%		9.24	
	TOTAL		3166.60	
	Environment cell		20.00	
	Ground water		Nil	
		TOTAL	3186.60	

PHYSICAL AND FINANCIAL PROGRAMME II (FOR WORKS AND L.S NAME OF THE SUB BASIN : - PARALAIYAR SUB BASIN

PROVISIONS)

				DAUNIN FA			11 1		
		l Year(20	010-2011)	llYear(201	1-2012)	III Year(20	012-2013)	Total	
SI. No	Description	Quantity	Amount in Lakhs	Quantity	Amount in Lakhs	Quantity	Amount in Lakhs	Quantity (Component Wise)	Amount in Lakhs
1	Improvements to Bund			153900 m	1020.00	65972 m	443.20	219872 m	1463.20
2	Improvements to Supply Channel			85200 m	174.00	36515 m	74.02	121715 Km	248.02
3	Providing protection wall			460 m	45.03	0	0	460 m	45.03
4	Improvements to Sluice			176 Nos	397.45	88 Nos	198.73	264 Nos	596.18
5	Improvements to Weir			20 nos	95.00	9 nos	40.23	29 Nos	135.23
6	Head Sluice			4 Nos	59.53	2 Nos	29.77	6 Nos	89.30
7	Improvements to anicut			1No	21.61	0	0	1No	21.61
8	Providing Measuring devices			235 nos	24.07	117 nos	12.04	352 Nos	36.11
9	Field channel lining			8500 m	312.00	3644 m	133.68	12144 m	445.68
10	Advertisement charges, Documentation charges, Photographic Charges, Name board Charges, PS Charges and contingences charges @ 2.5% and Provision for Labour welfare fund 0.3%	_	40.00	-	20.00	_	26.24	-	86.24
	Total		40.00		2098.85		1027.75		3166.60

SI. No.	Name of Tank / Anicut	Amount in Lakhs
а	Rehabilation of System and Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Manamadurai Taluk of Sivaganga District (Part –I).	
1	Vagudi	71.34
2	Vidathakulam	46.80
3	Mullaikulam	43.74
4	Kuvalaiveli	101.43
5	Milaganoor	142.50
6	Kattikulam	134.63
7	Muthanendal	67.08
8	Thuthikulam	46.65
	Total	654.17

1.6.6. PACKAGE DETAILS - PACKAGE - 2 NAME OF THE SUB BASIN: PARALAIYAR

SI. No.	Name of Tank / Anicut	Amount in Lakhs
а	Rehabilation of System and Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Manamadurai Taluk of Sivaganga District (Part –II).	
1	Chinnakannanoor	32.21
2	Manangathan	32.16
3	Somathur	31.69
4	Annavasal	49.73
5	Keelamelkudi	35.11
6	Manamadurai	30.96
7	M. Karisalkulam	40.58
8	Melapasalai	48.10
9	Arimandapam	41.24
10	Sangamangalam	22.10
11	Kilangattoor	28.83
12	Arasakulam	27.17
13	M.Pudukulam	30.90
14	Paluvamaraichan	17.16
15	Kaliyanendal	26.18
16	Pallayeramadai	18.63
17	Melamelkudi	32.66
18	Kalipiravu	13.74
19	Rajakamberam	20.96
20	S. Karisalkulam	15.79
21	Meenakshipuram	15.01
22	Narattai	20.70
23	Thamaraikudi	27.89
24	Killukudi	21.21
25	Karuvaikudi	35.08
26	Nachodai	18.32
	Total	734.10

SI. No.	Name of Tank / Anicut	Amount in Lakhs
a	Rehabilation of Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Thiruchuli Taluk of Virudhunagar District.	
1	Alangulam	3.97
2	T.Velankudi	22.70
3	Andiyendal	16.19
4	Sathiseri	22.28
5	Mullikudi	23.66
6	Keelakondraikulam	21.62
7	Sorikulam	3.60
8	Velaneri	12.34
9	T.Kadambankulam	24.98
10	Kaniyamurichan	23.37
11	Kottakachiyendal	26.00
12	Theli	18.96
13	Dharmam	21.32
	Total	241.01

SI. No.	Name of Tank / Anicut	Amount in Lakhs
a	Rehabilation of System and Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Paramakudi and Mudukulathur Taluk of Ramanathapuram District.	
1	Pudhukudi	35.24
2	Perungarai	58.82
3	Parthibanur	71.88
4	Melakodumalur	60.10
5	Arungulam	59.74
6	Kamini	19.13
7	Veppankulam	29.36
8	P.Puthur	38.16
9	Pidariseri	42.94
10	Nelmadur	32.27
11	Mosukudi	62.38
12	Maraneri	23.39
13	Kallikudi	31.78
14	Konakulam	21.76
15	Kothankulam	31.03
16	Keelasivankulam	27.80
17	Idayathur	45.65
	Total	691.45

SI. No.	Name of Tank / Anicut	Amount in Lakhs
а	Rehabilation of Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Kamuthi Taluk of Ramanathapuram District.	
1	Kattu Emaneswaram Tank	33.92
2	Seyyamangalam Tank	41.10
3	Virathakulam Tank	36.80
4	Anaiyur Tank	26.31
5	Peraiyur Tank	46.44
6	Pulvoikulam Tank	24.00
7	Navalkiniyan Tank	21.72
b	Repairs to Anicut	21.61
	Total	251.90

SI. No.	Name of Tank / Anicut	Amount in Lakhs
a	Rehabilation of Non-system tanks and its Supply Channels under Paralaiyar Sub Basin in Mudhukulathur and Kadaladi Taluk of Ramanathapuram District.	
1	Athikulam	28.30
2	Kelakulam	10.53
3	Meelakulam	29.93
4	Manaloor	25.65
5	Kannathan	9.54
6	Melavidathakulam	36.48
7	Keeranur	43.05
8	Kelakanjirankulam	27.19
9	Chittrankudi	50.55
10	Enathi	42.12
11	Sonaiperiyankottai	20.59
12	Kondulavi	16.27
13	Kidathirukkai	39.14
14	Koovarkuttam	23.11
15	Pothikulam	46.24
16	P.Kadambankulam	21.50
17	Therakuruchi	18.04
18	Appanur	19.49
	Total	507.73

S.No	NAME OF TANK / ANICUT	Package - I	Package - II	Package - III	Package - IV	Package - V	Package - VI	Total
1	Rehabilitation of System and Non system tanks and its supply channels covered under Paralaiyar Sub Basin	654.17	734.1	241.01	691.45	251.90	507.73	3080.36
2	Provision for Advertisement charges, Documentation charges, Photographic Charges, Name board Charges, PS Charges and contingences charges @ 2.5% and Provision for Labour welfare fund 0.3%	18.32	20.55	6.75	19.35	7.05	14.22	86.24
	Total	672.49	754.65	247.76	710.80	258.95	521.95	3166.60

1.6.7. PACKAGE NO. I

BROAD REQUIREMENT OF EXECUTION EQUIPMENT

Based on broad calculations, key equipment requirement is listed below

1. Hydraulic excavators (<u>+</u> 0.30 m ³)	8 Nos
2. Dozzers (D6 or Equivalent)	4 Nos
3. Tippers / Lorries	12 Nos
4. Vibratry Power Rollers including vibratary rollers of \pm 0.90 m width	4 Nos
5. Water tankers (10,000 litres)	4 Nos
6. Concrete mixers (14/10 or 10/7 cft)	4 Nos
7. Concrete mixers (7/5 cft)	4 Nos
8. Plate Vibrators (for compaction of sub grade as well as for compaction of	
Concrete lining of bed bars provided at 200m spacing)	4 Nos
9. Hydraulic Excavator with steel plate attachment for effective compaction of earth	
Fill on slopes of tank bunds)	2 Nos
10. Pneumatic Tampers / Earth Rammers (for compaction of earth fill adjoining	
The new sluice barrels to be reconstructed for achieving effective bond between	
Earthfill & barrels and between new & old earth fill	2 Nos
11. Air compressors (<u>+</u> 300 cfm)	1 Nos

1.6.7. PACKAGE NO. II

BROAD REQUIREMENT OF EXECUTION EQUIPMENT

Based on broad calculations, key equipment requirement is listed below

1. Hydraulic excavators (<u>+</u> 0.30 m ³)	9 Nos
2. Dozzers (D6 or Equivalent)	4 Nos
3. Tippers / Lorries	12 Nos
4. Vibratry Power Rollers including vibratary rollers of \pm 0.90 m width	4 Nos
5. Water tankers (10,000 litres)	8 Nos
6. Concrete mixers (14/10 or 10/7 cft)	6 Nos
7. Concrete mixers (7/5 cft)	4 Nos
8. Plate Vibrators (for compaction of sub grade as well as for compaction of	
Concrete lining of bed bars provided at 200m spacing)	6 Nos
9. Hydraulic Excavator with steel plate attachment for effective compaction of earth	
Fill on slopes of tank bunds)	2 Nos
10. Pneumatic Tampers / Earth Rammers (for compaction of earth fill adjoining	
The new sluice barrels to be reconstructed for achieving effective bond between	
Earthfill & barrels and between new & old earth fill	2 Nos
11. Air compressors (<u>+</u> 300 cfm)	1 Nos

1.6.7. PACKAGE NO. III

BROAD REQUIREMENT OF EXECUTION EQUIPMENT

Based on broad calculations, key equipment requirement is listed below

1. Hydraulic excavators (<u>+</u> 0.30 m ³)	6 Nos
2. Dozzers (D6 or Equivalent)	3 Nos
3. Tippers / Lorries	9 Nos
4. Vibratry Power Rollers including vibratary rollers of \pm 0.90 m width	3 Nos
5. Water tankers (10,000 litres)	6 Nos
6. Concrete mixers (14/10 or 10/7 cft)	4 Nos
7. Concrete mixers (7/5 cft)	4 Nos
8. Plate Vibrators (for compaction of sub grade as well as for compaction of	
Concrete lining of bed bars provided at 200m spacing)	4 Nos
9. Hydraulic Excavator with steel plate attachment for effective compaction of earth	
Fill on slopes of tank bunds)	2 Nos
10. Pneumatic Tampers / Earth Rammers (for compaction of earth fill adjoining	
The new sluice barrels to be reconstructed for achieving effective bond between	
Earthfill & barrels and between new & old earth fill	2 Nos
11. Air compressors (<u>+</u> 300 cfm)	1 Nos

1.6.7. PACKAGE NO. IV

BROAD REQUIREMENT OF EXECUTION EQUIPMENT

Based on broad calculations, key equipment requirement is listed below

1. Hydraulic excavators (<u>+</u> 0.30 m ³)	9 Nos
2. Dozzers (D6 or Equivalent)	4 Nos
3. Tippers / Lorries	12 Nos
4. Vibratry Power Rollers including vibratary rollers of \pm 0.90 m width	4 Nos
5. Water tankers (10,000 litres)	8 Nos
6. Concrete mixers (14/10 or 10/7 cft)	6 Nos
7. Concrete mixers (7/5 cft)	4 Nos
8. Plate Vibrators (for compaction of sub grade as well as for compaction of	
Concrete lining of bed bars provided at 200m spacing)	6 Nos
9. Hydraulic Excavator with steel plate attachment for effective compaction of earth	
Fill on slopes of tank bunds)	2 Nos
10. Pneumatic Tampers / Earth Rammers (for compaction of earth fill adjoining	
The new sluice barrels to be reconstructed for achieving effective bond between	
Earthfill & barrels and between new & old earth fill	2 Nos
11. Air compressors (<u>+</u> 300 cfm)	1 Nos

1.6.7. PACKAGE NO. V

BROAD REQUIREMENT OF EXECUTION EQUIPMENT

Based on broad calculations, key equipment requirement is listed below

1. Hydraulic excavators (<u>+</u> 0.30 m ³)	4 Nos
2. Dozzers (D6 or Equivalent)	2 Nos
3. Tippers / Lorries	6 Nos
4. Vibratry Power Rollers including vibratary rollers of \pm 0.90 m width	2 Nos
5. Water tankers (10,000 litres)	4 Nos
6. Concrete mixers (14/10 or 10/7 cft)	4 Nos
7. Concrete mixers (7/5 cft)	4 Nos
8. Plate Vibrators (for compaction of sub grade as well as for compaction of	
Concrete lining of bed bars provided at 200m spacing)	4 Nos
9. Hydraulic Excavator with steel plate attachment for effective compaction of earth	
Fill on slopes of tank bunds)	2 Nos
10. Pneumatic Tampers / Earth Rammers (for compaction of earth fill adjoining	
The new sluice barrels to be reconstructed for achieving effective bond between	
Earthfill & barrels and between new & old earth fill	2 Nos
11. Air compressors (<u>+</u> 300 cfm)	1 Nos

1.6.7. PACKAGE NO. VI

BROAD REQUIREMENT OF EXECUTION EQUIPMENT

Based on broad calculations, key equipment requirement is listed below

1. Hydraulic excavators (<u>+</u> 0.30 m ³)	8 Nos
2. Dozzers (D6 or Equivalent)	4 Nos
3. Tippers / Lorries	12 Nos
4. Vibratry Power Rollers including vibratary rollers of \pm 0.90 m width	4 Nos
5. Water tankers (10,000 litres)	6 Nos
6. Concrete mixers (14/10 or 10/7 cft)	6 Nos
7. Concrete mixers (7/5 cft)	4 Nos
8. Plate Vibrators (for compaction of sub grade as well as for compaction of	
Concrete lining of bed bars provided at 200m spacing)	6 Nos
9. Hydraulic Excavator with steel plate attachment for effective compaction of earth	
Fill on slopes of tank bunds)	2 Nos
10. Pneumatic Tampers / Earth Rammers (for compaction of earth fill adjoining	
The new sluice barrels to be reconstructed for achieving effective bond between	
Earthfill & barrels and between new & old earth fill	2 Nos
11. Air compressors (<u>+</u> 300 cfm)	1 Nos

	EQUIPMENTS REQUIRED IN NUMBERS														
PACKAGE NUMBER	Hydraulic excavator	Dozzers (d 6 or equivalent	Tipper / lorry	vibratry power rollers	Water tanker	Concrete mixer machine(14/10 cft or 10/7 cft)	concrete mixers (7/5 cft)	Plate vibrators	Hydraulic excavator	Pneumatic tampers / earth rammers	air compressors (+ 300 cfm)				
Package I	8	4	12	4	4	4	4	4	2	2	1				
Package II	9	4	12	4	8	6	4	6	2	2	1				
Package III	6	3	9	3	6	4	4	4	2	2	1				
Package IV	9	4	12	4	8	6	4	6	2	2	1				
Package V	4	2	6	2	4	4	4	4	2	2	1				
Package VI	8	4	12	4	6	6	4	6	2	2	1				

PACKAGE I

1.6.9. Construction Methodology

		Working Months To													Total					
SI No	Description of Item	Apr- 11	May- 11	Jun- 11	Jul- 11	Aug- 11	Sep- 11	Oct- 11	Nov- 11	Dec- 11	Jan- 12	Feb- 12	Mar- 12	Apr- 12	May- 12	Jun- 12	Jul- 12	Aug- 12	Sep- 12	M3
								-												
1	Bund	29700	29700	29700	29700	29700	29700				29700	29700	29700	29700	29700	29700	29810	29700	29700	445610
2	Channel						16700				16700	16700	16700	16700	16700	16700	17000	16700	16700	167300
3	Foundation				540	540	540				540	545	545	540				540	540	4870
	Concrete																			
4	M 7.5 using 40mm				180	180	180					180	180	120				180	180	1560
5	M 10 using 20mm				14	14	14	- Do	iny Sea	son	14	14	14	14	14	14		14	6	146
6	M 10 using 40mm				80	80	80		iny Sea	5011	80	80	80	80	80	80		80	45	845
7	M10 using 60% of 40mm & 40% of 20mm				100	100	100		-		100	100	100	100	100	100		75	50	1025
8	M 15 using 20mm										30	30	30	30	30			25	20	195
9	M 15 using 40mm										110	110	110	110	110			110	90	750
10	M20 grade													10	10	10		10	5	45

PACKAGE II

1.6.9. Construction Methodology

NAME OF THE SUB BASIN: PARALAIYAR

01									Wo	rking N	lonths									Total
SI No	Description of Item	Apr- 11	May- 11	Jun- 11	Jul- 11	Aug- 11	Sep- 11	Oct-11	Nov- 11	Dec- 11	Jan- 12	Feb- 12	Mar- 12	Apr- 12	May- 12	Jun- 12	Jul- 12	Aug- 12	Sep- 12	М3
								Daina												
1	Bund	53000	53000	53000	53000	53000	53000	Rainy Sea	ISON		53000	53000	53500	53500	53500	53500	54000	54500	54970	801470
2	Channel						25700				25700	25700	25700	25700	25700	25700	25775			205675
3	Foundation			640	640	640	640				640	640	640	640	660					5780
	Concrete																			
4	M 7.5 using 40mm		160	160	160	160	160				160	160	160	160	160		160	130		1890
5	M 10 using 20mm		35	35	35	35	35				35	35	35	35	35	35	35	35	35	490
6	M 10 using 40mm		60	60	60	60	60				60	60	60	60	60	60	50	50	35	795
_	M10 using 60% of 40mm & 40% of																			
7	20mm		185	185	185	185	185				185	185	185	185	185	185	185	185	145	2550
8	M 15 using 20mm					45	45				45	45	45	45	45	45	40	30	30	460
9	M 15 using 40mm					75	75				75	75	75	75	75	75	75	60	50	785
10	M20 grade				10	10	10					10	10	10	10	15				85

PACKAGE III 1.6.9.Construction Methodology

NAME OF THE SUB BASIN: PARALAIYAR

									W	orking	Months	S								Total
SI No	Description of Item	Apr- 11	May- 11	Jun- 11	Jul- 11	Aug- 11	Sep- 11	Oct-11	Nov- 11	Dec- 11	Jan- 12	Feb- 12	Mar- 12	Apr- 12	May- 12	Jun- 12	Jul- 12	Aug- 12	Sep- 12	M3
	•																			
1	Bund	20300	20300	20300	20300	20300	20300	Rainy Se	eason		20300	20300	20300	20300	20300	20300	20300	20550	20550	305000
2	Channel		2350	2350	2350	2350	2350				2350	2350	2350	2350	2350					23500
3	Foundation	1800	2000	2200	2100	2000	2000				1900	1800	1800	2000	2200	2200				24000
	Concrete																			
4	M 7.5 using 40mm			90	90	90	90				90	90	90	90	105					825
5	M 10 using 20mm			15	15	15	15				15	15	15	15	10	10	10			150
6	M 10 using 40mm			75	75	75	75				70	70	70	70	70	70	65			785
7	M10 using 60% of 40mm & 40% of 20mm			115	115	115	115				115	115	115	115	115	115	100			1250
8	M 15 using 20mm					15	20				20	20	20	20	20	15	15			165
9	M 15 using 40mm					90	90				90	90	90	90	90	80	75			785
10	M20 grade				18	18	18				18	18	18	21	21					150

PACKAGE IV

1.6.9. Construction Methodology

NAME OF THE SUB BASIN: PARALAIYAR

.

									W	orking	Months	5								Total
SI No	Description of Item	Apr- 11	May- 11	Jun- 11	Jul- 11	Aug- 11	Sep- 11	Oct- 11	Nov- 11	Dec-	Jan- 12	Feb- 12	Mar- 12	Apr- 12	May- 12	Jun- 12	Jul- 12	Aug- 12	Sep- 12	M3
1	Bund	71500	71500	71500	71500	71500	•				71500	71500	71500	71500	73165					716665
2	Channel													5700	5700	2900	2900			17200
3	Foundation			450	450	450					450	550	500	450	250	200				3750
	Concrete							Deim	0											
4	M 7.5 using 40mm				200	200		Rainy	Season		200	200	150	150	150	75				1325
5	M 10 using 20mm				25	25					25	25	25	25	25	25	25			225
6	M 10 using 40mm				110	110					110	110	110	110	110	110	88			968
	M10 using 60% of 40mm & 40% of																			
7	20mm				240	240					240	240	240	240	240	240	192			2112
8	M 15 using 20mm										25	25	20	20	20	20	20			150
9	M 15 using 40mm										90	90	90	90	90	90	90			630
10	M20 grade											20	20	10	10	10	5			75

PACKAGE V

1.6.9. Construction Methodology

NAME OF THE SUB BASIN: PARALAIYAR

								Work	king Mo	nths							Total
SI No	Description of Item	Apr-11	May-11	Jun-11	Jul- 11	Aug-11	Sep-11	Oct- 11	Nov- 11	Dec- 11	Jan-12	Feb-12	Mar- 12	Apr- 12	May- 12	Jun- 12	M3
1	Bund	24600	24600	24600	24600	24600	24600				24600	24700	24600				221500
2	Channel	5700	5600	5600	5600	5600	5600				5600	5600	5600				50500
3	Foundation	2000	2000	2500	2500	2000	1500				500						13000
	Concrete																
4	M 7.5 using 40mm		100	150	100	150	110				175	80	100				965
5	M 10 using 20mm		20	20	20	20	20		ainy Seas	SON	20	20	16				156
6	M 10 using 40mm		90	90	90	90	90				90	90	54				684
	M10 using 60% of 40mm & 40% of																
7	20mm		160	160	160	160	160				160	160	150				1270
8	M 15 using 20mm					25	25	-			20	20	18				108
9	M 15 using 40mm					100	100				100	100	68				468
10	M20 grade			25	25	25	30				25	16	10				156

- 148 -

									I			• •								
									v	Norkin	g Mont	hs								Total
SI No	Description of Item	Apr- 11	May- 11	Jun- 11	Jul- 11	Aug- 11	Sep- 11	Oct- 11	Nov- 11	Dec- 11	Jan- 12	Feb- 12	Mar- 12	Apr- 12	May- 12	Jun- 12	Jul- 12	Aug- 12	Sep- 12	M3
1	Bund	20640	20640	20640	20640	20640	20640				20640	20640	20640	20640	20640	20640	20640	20640	20640	309600
2	Channel		2500	2500	2500	2500	2500				2500	2500	2500	2500	2500					25000
3	Foundation	2200	2200	2200	2200	2200	2200				2200	2200	2200	2200	2200	1800				26000
	Concrete																			
4	M 7.5 using 40mm			150	150	150	150				150	150	150	150	150	175				1525
5	M 10 using 20mm			12	12	12	12	Ка	iny Sea	ison	12	12	12	12	12	12	12	12	12	156
6	M 10 using 40mm			60	60	60	60				60	60	60	60	50	50	50	50	49	729
7	M10 using 60% of 40mm & 40% of 20mm			200	200	200	200				200	200	200	200	200	200	200	200	165	2565
8	M 15 using 20mm			200	200	200	200				40	40	40	40	30	30	30	35	100	285
9	M 15 using 40mm										120	120	120	120	120	120	120	115		955
10	M20 grade				20	20	20				20	20	20	20	20	20	20	20		220

PACKAGE VI

REQUIREMENT OF MATERIALS

SL.No	Description	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	$\frac{RR in}{m^3}$	Gravel in m ³	Steel in Qtl
1	M7.5 using 40mm	1560	m ³	252	702		1403			
2	M10 using 20mm	146	m ³	34	66	131				
3	M10 using 40mm	845	m ³	182	380		761			
4	M10 using 60% of 40mm & 40% of 20mm	1025	m ³	324	461	369	554			
5	M15 using 20mm	195	m ³	25	88	175				
6	M15 using 40mm	750	m ³	242	338		675			
7	M20 using 20mm	45	m ³	20		41				
8	Steel Fabrication	75	Qtl							75
9	Random Rubble		m ³							
10	Rough stone		m ³							
11	Gravel Backing		m ³							
12	Plastering 1:4 in 20mm thick		m ²							
13	R.C.C precast post	600	Nos	4	8	16				
	Total			1083	2043	731	3393			75

REQUIREMENT OF MATERIALS

SL.No	Description	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	$\frac{RR in}{m^3}$	Gravel in m ³	Steel in Qtl
1	M7.5 using 40mm	1890	m ³	306	850		1700			
2	M10 using 20mm	490	m ³	113	222	439				
3	M10 using 40mm	795	m ³	171	358		716			
4	M10 using 60% of 40mm & 40% of 20mm	2550	m ³	806	1148	918	1377			
5	M15 using 20mm	460	m ³	58	208	413				
6	M15 using 40mm	785	m ³	254	354		707			
7	M20 using 20mm	85	m ³	37		77				
8	Steel Fabrication	200	Qtl							200
9	Random Rubble		m ³							
10	Rough stone		m ³							
11	Gravel Backing		m ³							
12	Plastering 1:4 in 20mm thick		m ²							
13	R.C.C precast post	1950	Nos	13	26	52				
	Total			1758	3165	1898	4500			200

REQUIREMENT OF MATERIALS

SL.No	Description	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	RR in m ³	Gravel in m ³	Steel in Qtl
1	M7.5 using 40mm	825	m ³	133	371		742			
2	M10 using 20mm	150	m ³	35	68	134				
3	M10 using 40mm	785	m ³	169	353		707			
4	M10 using 60% of 40mm & 40% of 20mm	1250	m ³	395	563	450	675			
5	M15 using 20mm	165	m ³	21	75	148				
6	M15 using 40mm	785	m ³	254	354		707			
7	M20 using 20mm	150	m ³	66		136				
8	Steel Fabrication	170	Qtl							170
9	Random Rubble		m ³							
10	Rough stone		m ³							
11	Gravel Backing		m ³							
12	Plastering 1:4 in 20mm thick		m ²							
13	R.C.C precast post	975	Nos	7	13	26				
	Total			1079	1796	894	2831			170

REQUIREMENT OF MATERIALS

SL.No	Description	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	$\frac{RR in}{m^3}$	Gravel in m ³	Steel in Qtl
1	M7.5 using 40mm	1325	m ³	214	596		1192			
2	M10 using 20mm	225	m ³	52	102	202				
3	M10 using 40mm	968	m ³	209	436		871			
4	M10 using 60% of 40mm & 40% of 20mm	2112	m ³	667	950	760	1140			
5	M15 using 20mm	150	m ³	19	68	135				
6	M15 using 40mm	630	m ³	204	284		567			
7	M20 using 20mm	75	m ³	33		68				
8	Steel Fabrication	124	Qtl							124
9	Random Rubble		m ³							
10	Rough stone		m ³							
11	Gravel Backing		m ³							
12	Plastering 1:4 in 20mm thick		m ²							
13	R.C.C precast post	1020	Nos	7	14	27				
	Total			1404	2449	1192	3771			124

REQUIREMENT OF MATERIALS

PACKAGE NO:. 05

SL. No	Description	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	$RR in m^3$	Gravel in m ³	Steel in Qtl
1	M7.5 using 40mm	965	m ³	156	434		868			
2	M10 using 20mm	156	m ³	36	71	140				
3	M10 using 40mm	684	m ³	147	308		616			
4	M10 using 60% of 40mm & 40% of 20mm	1270	m ³	401	572	457	686			
5	M15 using 20mm	108	m ³	14	49	97				
6	M15 using 40mm	468	m ³	151	211		422			
7	M20 using 20mm	156	m ³	68		141				
8	Steel Fabrication	119	Qtl							119
9	Random Rubble		m ³							
10	Rough stone		m ³							
11	Gravel Backing		m ³							
12	Plastering 1:4 in 20mm thick		m ²							
13	R.C.C precast post	525	Nos	4	7	14				
	Total			977	1651	849	2591			119

- 154 -

REQUIREMENT OF MATERIALS

SL.No	Description	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	RR in m ³	Gravel in m ³	Steel in Qtl
1	M7.5 using 40mm	1525	m ³	247	686		1372			
2	M10 using 20mm	156	m ³	36	71	140				
3	M10 using 40mm	729	m ³	157	328		656			
4	M10 using 60% of 40mm & 40% of 20mm	2565	m ³	811	1154	923	1385			
5	M15 using 20mm	285	m ³	36	129	256				
6	M15 using 40mm	955	m ³	309	430		860			
7	M20 using 20mm	220	m ³	96		199				
8	Steel Fabrication	162	Qtl							162
9	Random Rubble		m ³							
10	Rough stone		m ³							
11	Gravel Backing		m ³							
12	Plastering 1:4 in 20mm thick		m ²							
13	R.C.C precast post	1270	Nos	8	17	34				
	Total			1700	2814	1552	4273			162

REQUIREMENT OF MATERIALS

PACKAGE ABSTRACT

SL.No	Package No	Qty	Unit	Cement in MT	Sand in cum	20mm jelly in m3	40 mm jelly in m3	RR in m ³	Gravel in m ³	Steel in Qtl
1	Package 01		m ³	1083	2043	731	3393			75
2	Package 02		m ³	1758	3165	1898	4500			200
3	Package 03		m ³	1079	1796	894	2831			170
4	Package 04		m ³	1404	2449	1192	3771			124
5	Package 05		m ³	977	1651	849	2591			119
6	Package 06		m ³	1700	2814	1552	4273			162
	Total			8002	13917	7116	21358			850

- 157 -

DESIGN OF TANK SURPLUS WEIR KARUVAIKUDI TANK

	n.	ARUV					
a) Hydraulic							
Design							
1) Length of Weir							
Maximum inflow into	the tank from the	ne cato	chment				
			=	82	5.00 cuse	ecs	
For weir, with crest v Discharge per metre			ow crested weir				
h(2gh) ^{1/2}		4					
(-9)	where Cd = Co	-efficie	ent of discharge =	= 0 625			
	h = Head over		-	0.020			
	$= 2/3 \times 0.625 \times 10^{-10}$						
		11X (2.2	x9.01XII)				
	$=1.85 \text{ x h}^{3/2}$	2			3.		
	=1.85 x (0.60) ^{3/}			0.86	M ³ /sec		
	= 30.37 Cusecs						
For existing weirs, w	hich is having 28	3.00 m	length of body v	vall			
Discharge capacity of	of weir =		28.00	Х	30.37		
		=	850.36	cusec	>825.00 0	cusec (Her	nce safe)
Crest level of weir =	FTL of tank =		33.00				
Body wall height = C level	rest level - low v	vater					
		=	33.00	-	32.10		
		=	0.90				
2) Scour depth							
	tro width		~ -	0.00	M ³ /sec		
Discharge per me			q =	0.00	W /Sec		
Normal scour, R =	= 1.35 (q ⁻ / f)						
			where f =silt fa	ctor = 1.0	00	2,	
		_	4.05	V (0.00	/ 1) ^{1/3}	
		=	1.35	Х(0.86	1)	
		=	1.22	М			
Maximum scour in U	/S and D/S side	_					
		R=	1.22		1.5		
		=	1.83	Μ			
Front scour level		=	FMFL - 1.5 R				
		=	33.600	-	1.5	Х	1.83
		=	30.850				
Rear scour level		=	RMFL - 1.5 R				
		=	33.400	-	1.5	Х	1.83
		=	30.650				
Taking top level of c	ut-off wall as		32.100	М			
cut-off wall level		=	32.100	-	30.650		
			1.450				
Cut-off level depth		=	1.500	М			
b) Structural							
Design							
Height of body wall							
Hb =		0.90	Μ				
Provide top width		0.45	Μ				
Bottom width		0.90	Μ				
Total length of U/S a	pron W1 =		1.50 X Hb				
5		=	1.5	Х	0.9		
		=	1.35				
Provide Minimum of	2.00 M lenath of	U/Sa		red cree	D		
length	5	-	. 5 1-	-1			
Total length of D/S ir	nperious apron (solid a	pron) W2				
0			. ,				

		-158 - = 4C(Hb/35) ^{1/2}				
		= 4	х	6	х	(0.9/35) ^{1/2}
Provide 4.10 M in I	D/S solid apron	= 3.85	Μ			
Check for exit gra	dient					
	$\alpha = b/d$					
		th of solid apron				
	d = Bottom widt	•				
		= 7.00/0.9				
		= 7.78				
		$\lambda = (1 + (1 + \alpha^2)^{1/2})^{1/2}$	_			
		2				
		$\lambda = \frac{1+}{(1+7.78^2)^{1/2}}$				
		$\lambda = (1+7.78^2)^{1/2}$	_			
		λ = 4.42				
Exit gradient	G.E =	Hb	х	1		
	0.L -	d	_ ^ _	Π(λ) ^{1/2}		
		= 0.90	х	1		
		- 0.90		3.14 X		
		0.90		$(4.42)^{1/2}$		
		= 1		()		
		6.60				
			Hence			
G.E for block co	tton soil 1/5 to 1/7		safe			
Check for creep length						
Total creep length	required = C Hb					
		$= 6 \times 0.9$				
Total groop longth	provided = (1 E V2	0.40		2)		
rotal creep length	provided – (1.5 X2) + 0.90 + 2.00 + 4.10 = 13.00	+(1.50 × /	2)		
Check for uplift						
Creep length upto						
the toe		= 1.50 + 2.00 + 0	0.90			
		4.4				
Residual head		=0.9	X	4.4		
		13.00	_			
		= 0.30				
		= 0.30/1.25		0.375		
	factor, provide 45	cm thick of base cond	crete to with	nstand an	у	
variation	wooring cost is M	120 with nominal rainfo	*** * *** * ***			

Provide 10cm thick wearing coat in M20 with nominal reinforcement

Stability of body wall

condition 1 Front water level upto the crest level

Hb = Height of body wall =0.90M Taking moment about O

		Specific gravity			
Section	Area of section		Weight	Lever arm	Moment
1	0.45X0.90 = 0.41	2.4	0.97	0.23	0.22
	1/2 X 0.45 X 0.9				
2	=0.20	2.4	0.203	0.6	0.12
			1.173	0.83	0.34

Moment due to water

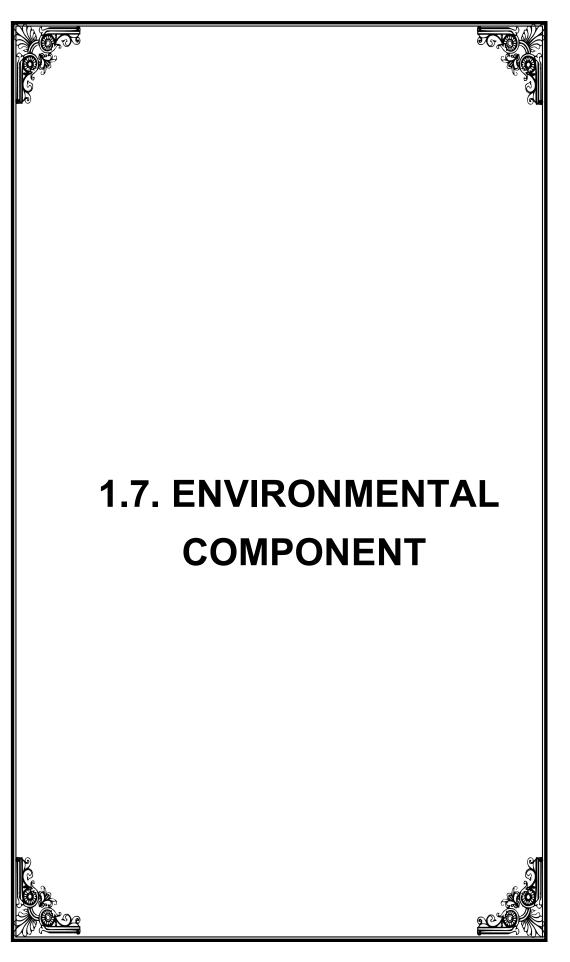
pressure = $H^3/6$

 $= 0.90^{2}/6$

= 0.14 t-m Total Moment =(0.34 + 0.14)= 0.48 t-m Lever arm of resultant = 0.48/1.173 = 0.41m Resultant fall within the middle third condition 2 when the rear water level is at crest level ie., when the weir is discharging full Depth of D/S water = RMFL - low water 33.400 -32.100 1.3 M = Submergence ration K =d/D = 0.6/1.3 0.46 = when the D/S water in at crest level D = 0.9 0.46 X d = KXD = 0.9 0.42

Taking moment about O

Section	Area of section	Specific gravity	Weight	Lever arm	Moment
1	0.45X0.90 = 0.41	1.4	0.57	0.23	0.13
	1/2 X 0.45 X 0.9				
2	=0.20	1.4	0.28	0.6	0.17
			0.85		0.30


Horizontal moment due to water

Pressure	=	1/2 X H ² X h		
		1/2 X 0.90 ² X 0.42		
		0.17 t-m		
Total moment	=	0.30 + 0.17	0.47	t-m
Lever arm of resultant = 0.47/0.85 =				
0.55m				
Deputtent fell within the middle third				

Resultant fall within the middle third

As per coulombs theory, the side structures are designed as below

			Тор	
SL.No	Side Structures	Height	width	Bottom width
1	Abutment wall	3.00	0.45	1.5
2	U/S wing wall	3.00 - 1.80	0.45	1.50 - 0.90
3	D/S wing wall	3.00 - 1.50	0.45	1.50 - 0.75
4	U/S return wall	1.80	0.45	0.9
5	D/S return wall	1.50	0.45	0.75

Environmental Monitoring on water and soil quality and creating awareness & updating of "Environmental and Social Assessment report" for PARALAYAR sub basin

Estimate cost Rs. 20.00 Lakhs.

INTRODUCTION

Under TNWRCP, with World Bank assistance, special emphasis was given to WRO, to assess the environmental status and degradation caused for all River basins in Tamilnadu.

The Environmental cell of WRO assessed Soil and Water samples in this River basin. The assessment includes environmental impact on the quality of surface water, pesticide water pollution water and soil by collecting water & soil samples and testing them. Moreover, "preparation of Micro Level Environmental Status Reports" all the River Basins has also prepared. These works have been carried out with the World Bank Assistance.

Also few Awareness programs & Workshops were conducted to create awareness on the Environmental issues & remedies among the public, farmers, Govt. officials and NGOs. Seminars were conducted to find out new techniques and methods developed recently to solve Environmental problems.

Now under IAMWARM project, focus is at each sub basin level to identify and prioritize the requirements for improvements to storage structures, rehabilitation, new schemes for water harvest, and diversification of crops. Any new schemes or rehabilitation of existing one, consideration of the environment issues pertaining to that area and remedial action to overcome the problems is must.

ABOUT THE SUB BASIN:

The Gundar Basin has been divided into 9 sub basins and paralaiyar is one of the sub basins. A river paralaiyar originates from Melepasalai village in Manamadurai and it is named as Somathur odai and fed by surplus of many Vaigai fed tanks in Manamadurai taluk. The divided water from river vaigai through parthibanoor regulator also joins the odai and becomes paralaiyar. The river runs into two arms upto mosakudi where it joints together and runs through Manamadurai, Paramakudi and Kamuthi Taluks. The major tributaries Gridhumal and Paralaiyar after crossing the Raghunatha Cauvery channel through surplus weir runs independently for about 2 kms and joins as a single river. Then the combined tributary falls into the Malatar river (Gundar River) in kilavalasai village. The length of tributary is about 40 km. There is one anicut namely Paralai anicut across paralaiyar.

The Paralaiyar sub basin is Located between latitude 9° 15'00"N to 9⁰46'50" N and longitude 78⁰18'50"E to 78⁰26'00' E and is surrounded by Vaigai River on North and Lower Gundar sub basins on south. The Paralaiyar sub basin area is 398.283. sq.km with a plain area. The taluk covered in the sub basin are Manamadurai, Tiruchuli, Paramakudi, Kamuthi and Mudhukalathur taluks of Sivagangai, Virudhunagar and Ramanathapuram district respectively.

ENVIRONMENTAL PROBLEMS IN THIS SUB BASIN

INDUSTRIAL POLLUTION

There are no major industries situated in this sub basin. Only small-scale industries are there in this sub Basin. The effluent discharge is minimum and meager.

However, the effluents discharged from the industries are closely monitored by TNPCB. Any further activity to minimize the effect of pollution on water bodies will be dealt by the TNPCB.

CATCHMENT DEGRADATION

In this sub basin there is No reservoirs and only one Anicut named paralaiyar Anicut. Soil erosion is there in the riverbeds of this sub basin. In respect of prevention of soil erosion, the Agricultural Engineering Department took up effective measures. However Agricultural Engineering Department will give proposals to prevent further soil erosion.

Other major environmental issues polluting Water resources pertaining this sub basin are listed below

SOLID WASTE DISPOSAL

Dumping of solid wastes by the villagers is very limited. Usually they are being dumped near the toe of the tank bunds. Only in urban areas solid wastes are dumped near the roadside drains, nearby irrigation channels and low – lying areas. Even the civic bodies are recklessly dumping the solid waste into water bodies.

There is no organized scientific method of disposal in all the Municipalities, town and Village Panchayats. The garbage is dumped in the basin area and hence the harmful chemical substances of the landfill seep through and reach the ground water reservoirs and contaminate these sources.

Scheme for Solid waste Management plans is under implementation by Rural Development Department. Under this scheme, collection tanks for disposable and indisputable garbage have been constructed. In most of the Panchayats, recycling the waste and converting the solid waste into manure and production of energy is yet to come up. Hence motivating the local bodies for proper implementation of solid waste management project is must.

Sold waste if allowed to accumulate is health hazard and there is a correlation between improper disposal of solid waste and incidence of vector- borne diseases. Hence motivating the local bodies for proper implementation of solid waste management in IAMWARM project is must, to protect the water bodies from the accumulation of wastes.

SEWAGE DISPOSAL LET INTO WATER BODIES

Treatment of sewage and arrangements for safe disposal arrangements has not been provided in most of the Villages. Underground drainage arrangements have not been provided even in municipalities and town panchayats. This sewage is washed away and got pounded in the backwaters and unhealthy conditions exit.

So, creating awareness among the presidents of the local bodies is must and to motivate them to adapt Solid waste management and Sewage management, wherever required, workshop including field visits, exclusively for them is to be conducted under the IAMWARM project.

WATER WEEDS

In the recent decades, on account of the rapid industrial development, numerous obnoxious and deleterious chemical compounds are released into the water bodies. Agricultural drainage, discharge of domestic sewage and industrial effluents trigger the growth of waterweeds.

Indiscriminate uses of fertilizers have led to the increase in nutrients into natural water system causing nitrification and eutrophiction. Aquatic weeds may be emergent, submerged or free floating. Submerged weeds can survive only if there is optimum sunlight. Floating debris favours the development of aquatic weeds.

"Prosopis Juliflora" plants are multi-stemmed shrubby bushes growing from 3m to 15m tall. Juliflora has been known to send its roots 10, 20 or even 30m to catch water. The roots lift water much higher than it can be lifted by capillary action of the soil. The draft on water supply is greatest during a long, hot growing season, with scanty precipitation and low humidity.

Juliflora and Ipomea have invaded the cultivable lands in lower reaches and water bodies' ie.tanks, channels and rivers. In most of the palar sub basin tanks are severely affected by Juliflora and Ipomea, in some places water Hyacinth, Eichornia.

Hence these plants need to be eliminated totally for the conserving precious water resources. But on the contrary, in some villages' local people desire to grow this plant in the water-spread area of the tanks. Once in 4 or 5 years they get cutting order from the revenue authorities, sale the Juliflora or coal produced from it and keep the money for the common expenses like court case for the litigation with the nearby villages, temple repair and Local festivals etc. This is on account of lack of guidance and ignorance of its ill effects. Hence, this problem has to be addressed in all forms, wherever possible Bio gas plant has to be promoted.

Juliflora has invaded in the water bodies' ie.river, tanks, and channels. The area of coverage in the water bodies is about 40% of cultivable area in the Palar river basin. Most of the tank bed in the basin is heavily choked with silt and infested with Juliflora and Ipomea growth. Mudukulathur tank water spread area covered by Juliflora is 338 Ha..

Ipomea cornea is the major bank and shore weed. Severe blockage of water by Ipomea cornea has to the formation of mini silt islands (Isles) in the rivers, which now grow several weedy bushes and cause floods. Water hyacinth also disseminates in some places and causes severe disturbance in the River. Ipomea cornea present in majority of tanks in, Edambadal tank, Ervadi tank, Sikkal tank are some of the tank for example. Hence all these plants need to be eliminating totally for the conserving precious water resources.

GROUND WATER QUALITY

From the chemical composition data for the observation wells, the ground water in the lower reaches of sedimentary formation is of moderate quality. Net annual ground water availability in Mudukulathur taluk is 40.7082 Mm3, and Kadaladi taluk is 31.4321 Mm3. Irrigation portion of Ramanathapuram, Kadaladi, Mudukulathur, Kamuthi and Paramakudi taluks, the quality of ground water is poor with total dissolved solids above 2000 mg/l.

The recharge of ground water has become very poor added to this misery the wide spread growth of prosopis Juliflora has also consumed much of the recharge if any.

ACTIVITIES PROPOSED

To monitor the quality of water and soil and create database regarding the Environmental Status for each sub basin, this proposal has now been included with the following activities at sub basin level.

I. COLLECTION AND TESTING OF WATER SAMPLES

Water samples were collected and testing of water samples is essential, as good and long range data will enable to understand the problems more precisely. So far, No Water samples were collected and tested in this sub basin. Now it is proposed to collect and test water samples at Three points for a period of three years to assess the environmental impact on the quality of surface water of this sub basin. Water samples at the following location will be collected once in 3 months.

In addition to the above, identified locations, water samples will also be collected twice in a year for the period of 3 years, near by tanks channels and oorani where sewage is directly let into it, and pesticide water samples also collected & tested to assess the quality.

Soil samples are to be collected –from selected locations to assess the impact of the quality of soil due to various environmental problems like use of chemical, fertilizers and using the polluted water. From these locations soil samples at regular one-year interval have be collected and tested to determine preciously the impact on the degration of the quality of the soil. Therefore testing soil samples are essential. Soil samples will be collected and tested once in a year.

II. ENVIRONMENTAL AND SOCIAL KNOWLEDGE BASE:

Micro Level Environmental Status Report has been prepared for the entire sub basin. To prepare an Environmental Action Plan of a River basin data regarding environmental issues in sub basin wise is necessary. Hence, provision for collecting the environmental and social issues in village wise and analysing them and preparing development report has also made in this proposal.

III. TRANSFER OF TECHNICAL KNOWS HOW FOR SOLID WASTE MANAGEMENT SYSTEM (INCLUDING SOURCE)

SEGREGATION RECYCLES OF DRY WASTE AND LINKAGE WITH USER AGENCIES:

Now, a new scheme for Solid Waste Management plan is under implementation in all Municipalities and major panchayats. Under this scheme, collection tank for disposable and nondisposable garbage have been constructed in most of the Panchayats. But, recycling the waste and converting the solid waste into manure and production of energy from them are yet to come up. Hence Demonstration and action programs are planned with user agencies and necessary field visits exclusively for officials of local body and Panchayat presidents & members are programmed to transfer of Technical Know How for Solid Waste Management.

III. CONDUCTING AWARENESS PROGRAMS

Awareness Programs are necessary to create awareness among the public about Environmental aspects and the action to be taken by them to remove or reduce the impacts due to the Environmental problems. So far No awareness Programs were conducted in this basin.

Hence, to create and motivate the people, Awareness programmes are to be conducted in the villages. It is proposed to conduct Awareness Meeting in School/ Institutions and Awareness programs in villages during the study period of three years covering the following subjects. In addition to this, Formation Herbal garden in schools/Institution or suitable places, and Placing Stickers, Bit notice, Tin sheets, Pamphlets and Placing banner containing messages about, the following Environmental problems.

- Sanitation
- Solid waste treatment.
- Sewage treatment and converting the same into gas
- Organic farming.
- Conversion of aquatic weeds into manure etc

MODE OF EXECUTION:

All the works are proposed tobe carried out by outsourcing through an Educational Institute/NGO.

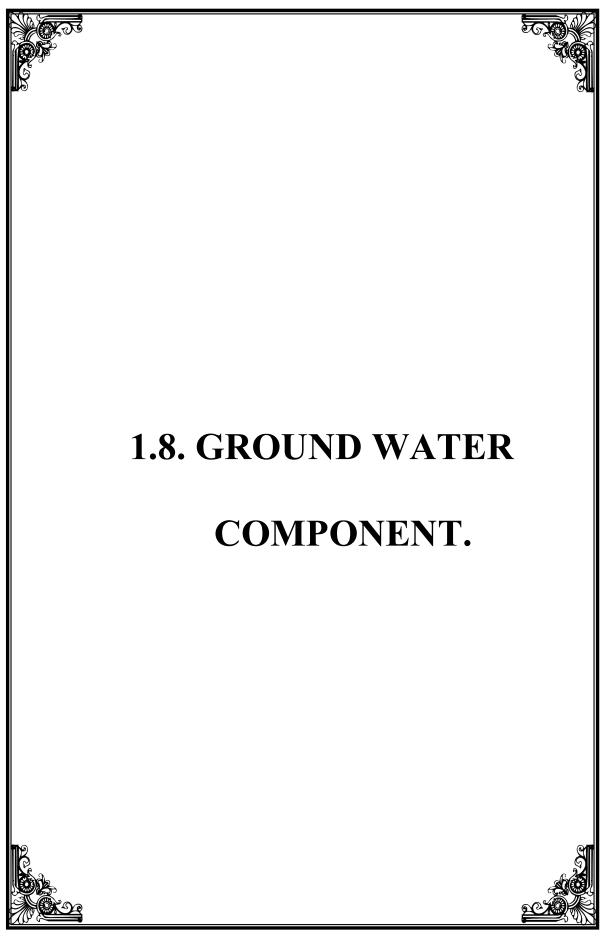
TOTAL COST.

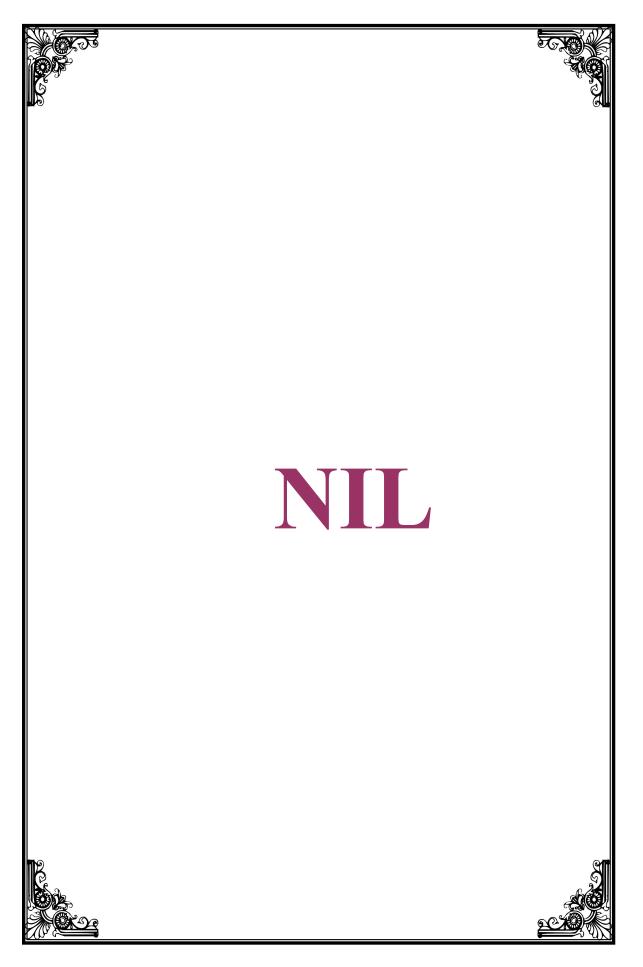
The total cost works out to Rs:20.00 Lakhs (Rupees TWENTY Lakhs only)

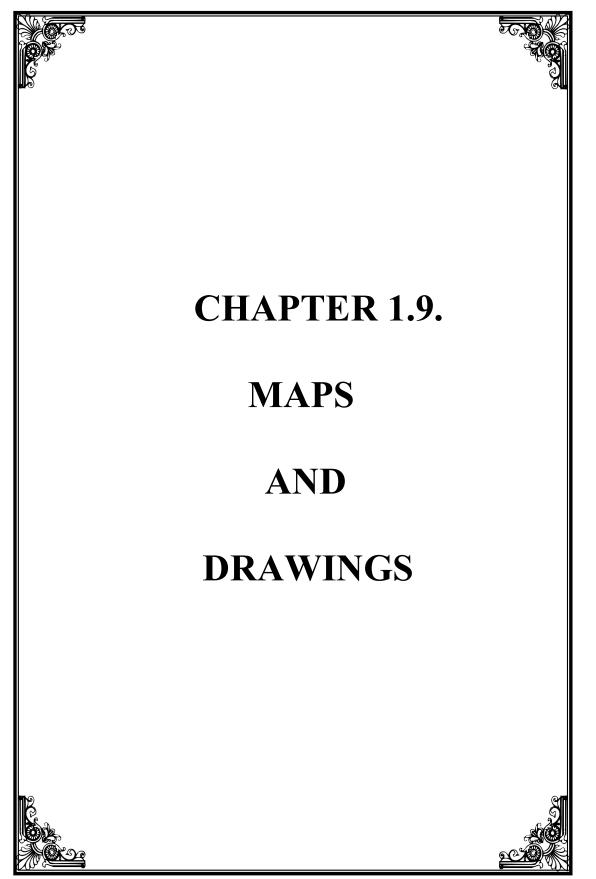
N.W: Environmental Monitoring on Water and Soil quality and Creating Awareness, updating of "Environmental & Social assessment report" for PARALAYAR SUB BASIN

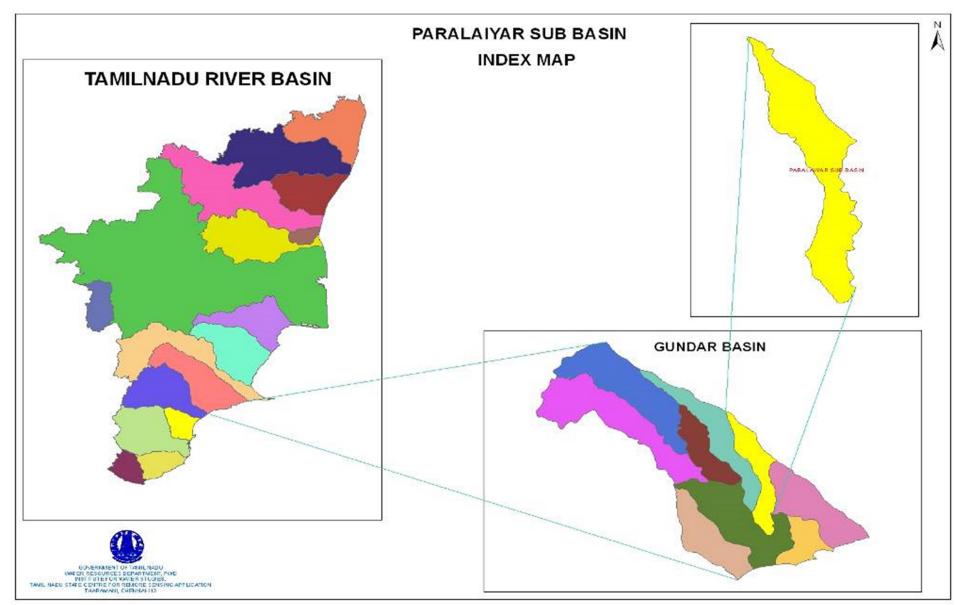
SI no	Description of work	No	Me	asure	Contents	
110			L	В	D	
Ι.V	Vater & Soil Quality Monitoring			·		
i)	Water samples from rivers in 3 locations collected once in three months in a year for a period of Three years $3X 4 X 3 = 36$ Nos.					
ii)	Water samples collected from tanks and Oorani 5 nos, twice in a year for a period of three years $5 \times 2 \times 3 = 30$ Nos.					
a)	Testing charges for Water samples	36	Nos.	+ 30 N	los.	66 Nos
b)	Testing Charges for Pesticides water samples 3x3 =9 Nos		3 x 3		9 Nos	
c)	Testing charges for soil samples collected from polluted site		3 X 3			9 Nos
d)	Hiring Jeep driver	1No		4 Mont er year year	Х3	12 Man months
e)	Conveyance, Purchases of Cans, Bottles, Chemicals hire Purchase of Still camera, Documentation of Water quality data and Engaging of labour, etc.,	LS	-	-	-	LS
f)	f) Provisions for field visit for environmental monitoring of project activities with respect to environmental safeguards		1X3	years.	<u> </u>	3years
	nvironmetal, Social Knowledge base by fixing itution)	noda	l age	ncy(a	ny edu	cational
a)	Village Level Data collection on Environmental And social state.		65 m	an mo	nths	65 Man months

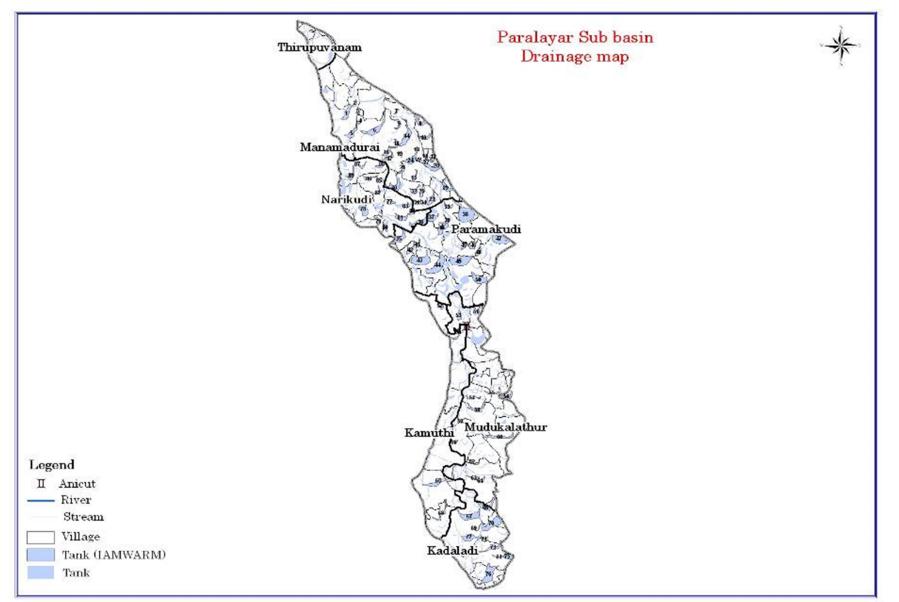
DETAILED ESTIMATE

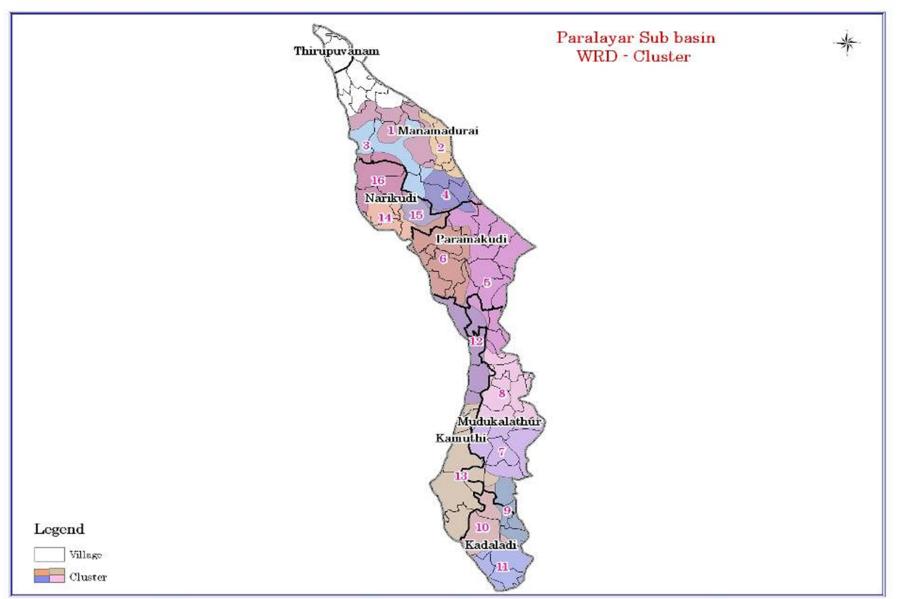

	- 108 -		
b)	Expert Analysis and development Reporting	LS	LS
c)	Impact Studies due to project investments	40 man months	40 Man months
d)	Expert Analysis and Development Reporting (After Project)	LS	LS
	Fransfer of technical know how for solid waste al agency (any educational Institution)	e & weed management	t by fixing
a)	Motivating office bearers of local bodies for solid waste & Sewage treatment to prevent pollution of Water Sources through Demo, technical Visit.	1 No x 3 years	3 Nos
b)	Formation of Herbal Garden in Institutions	1 No x 3 years	3 Nos
c)	Demonstration and consultative meeting for eradication of weed and making manure.	1 No x 3 years	3 Nos
IV. I	Environmental Social Awareness Creation by	fixing nodal Agency	1
a)	Propagation through Stickers, Tin Sheets, pamphlets,Banners,	LS	LS
a)	Awareness Programs for Public	1 No /year / 3 Years	3 Nos.
b)	Awareness Meeting for Offcials	2 No in 3 Years	2 nos
c)	Awareness Meeting in school/Institutions	2 Nos /year/ 3 Year	6 Nos
d)	Annual Workshop at Sub basin level	1 Nos in 3 Years	1 No
e)	Exposure Field Visit to Eco friendly practices	1 no in 3 year	1 no
f)	Environmental fair/ Exbition, Green Awards	1 no in 3 year	1 No
g)	Preparing and Publishing Environmental Atlas for the Sub Basin for the use of Line departments /Institutions for better Management of Sub basin	LS	LS
h)	Environmental Related Books/Journal, Publishing Annual report for the Sub- basin	LS	LS
V)	Documentation of the entire activities, and HirePurchase of LCD , Up gradation of Computer and Accessories, Video films and Web site development, engaging of computer operator	LS	LS
		1	

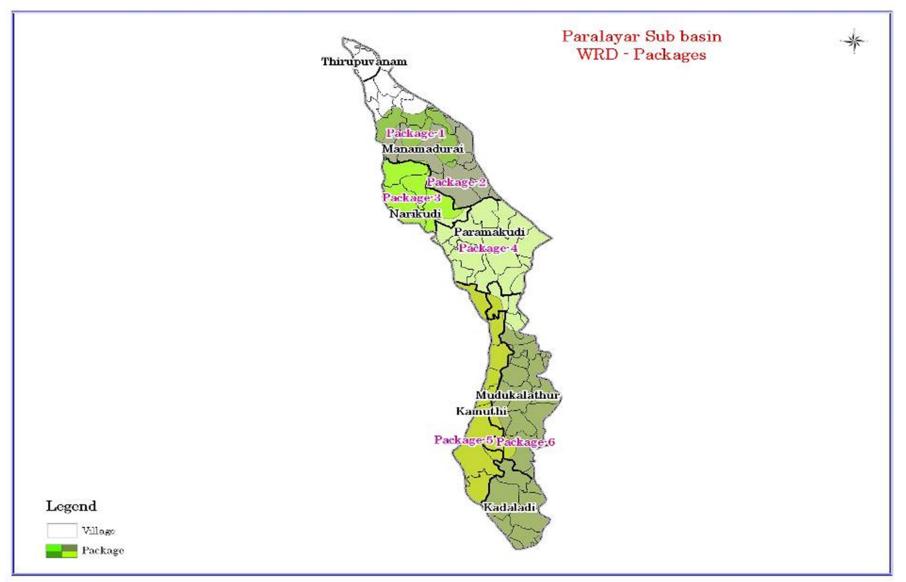

N.W.: Environmental Monitoring on Water and Soil quality and Creating awareness, updating of "Environmental and Social Assessment report" for PARALAYAR SUB-BASIN.

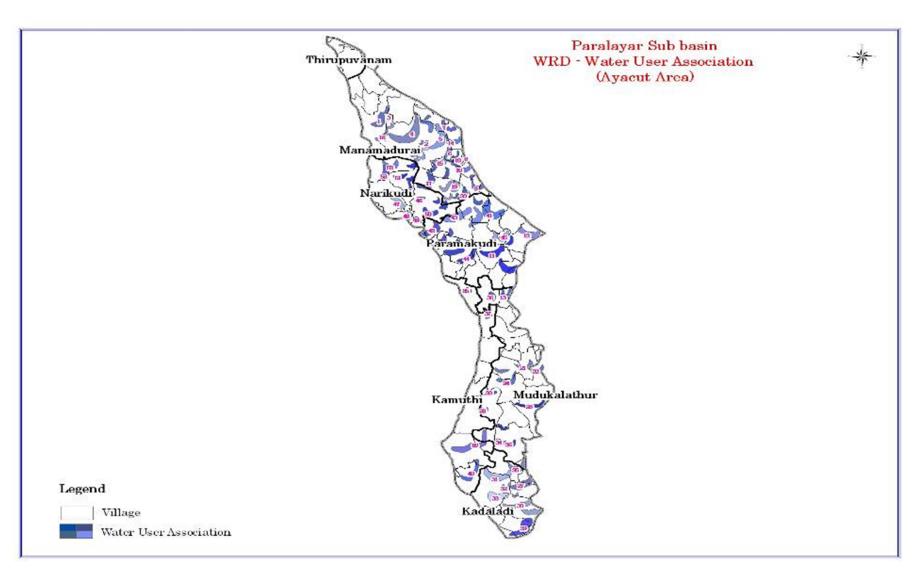

ABSTRACT ESTIMATE

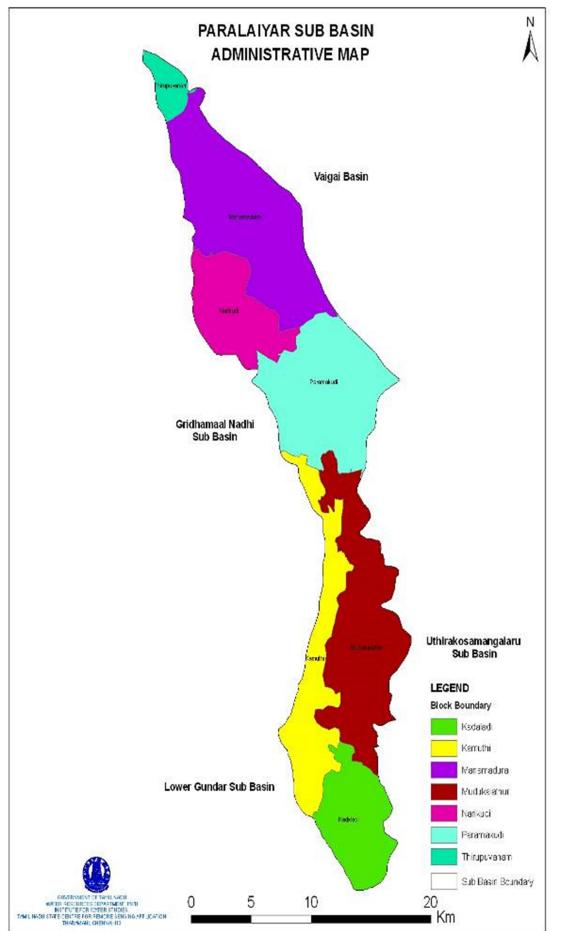

SI.No.	Qty.	Description of Work	Rate	Per	Amount
I.Water	& Soil Qu	ality Monitoring			
a)	66	Water Samples Testing charges			
	Nos.		1400	each	92,400
b)	9 Nos.	Pesticides water samples testing			
		charges	12000	each	108,000
c)	9 Nos.	Soil Sample Testing charges	7350	L.S	66,150
d)	12 Man	Hiring Jeep Driver		1 Man	
	months		3500	month	42,000
e)	L.S	Conveyance, Purchases of Cans, Bottles, Chemicals hire Purchase of Still camera, Documentation of Water quality data and Engaging of labour, etc.,			
			L.S	L.S	45,000
f)	3 Years	Provisions for field visit for environmental monitoring of project activities with respect to environmental safeguards			
			10000	Per year	30,000
		Social Knowledge Base, Analysis any educational institutions) Village Level Data collection on Environmental And social state.	6000	Per month	390,000
b)	L.S	Expert Analysis and development	0000	monur	000,000
·		Reporting	l	S	100,000
c)	40 Man months	Impact Studies due to project investments	6000	Per month	240,000
d)	L.S	Expert Analysis and Development Reporting (After Project)			
			l	S	50,000

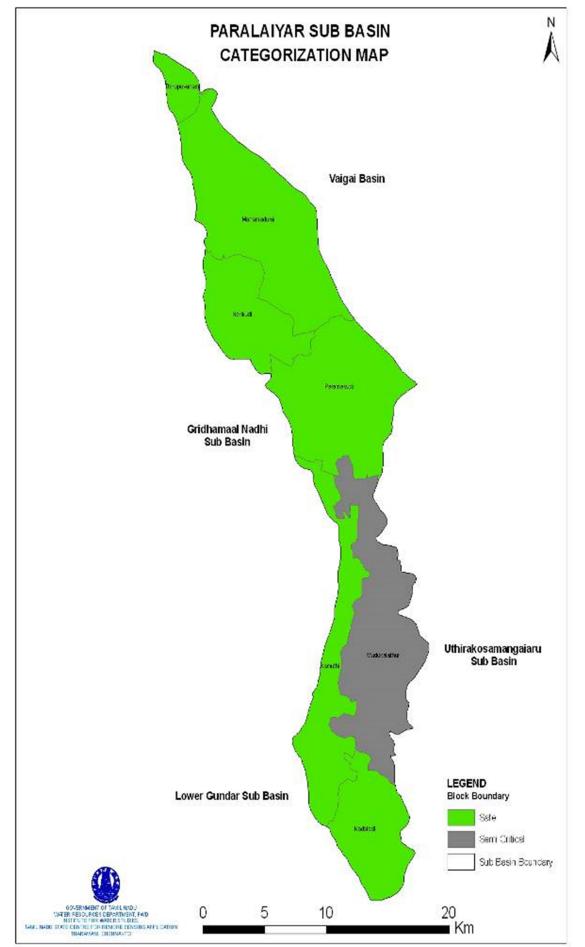

i.varia	uon in ra	tes and unforeseen items.			5,450 2,000,000
			L	.S	40,000
		gradation of Computer and Accessories, Video films and Web site development,and engaging of computer operator			
V)	LS	Documentation of the entire activities, HirePurchase of LCD, Up	L		6,000
i)	3Year	Environmental Related Books/Journal, Publishing Annual report for the Sub- basin		.S	6 00
:\	21/257	Management of Sub basin	L	.S	50,000
h)	LS	Preparing and Publishing Environmental Atlas for the Sub Basin for the use of Line departments /Institutions for better			
g)	1 No	Environmental fair/ Exbition, green awards	30000	each	30,00
f)	1 No	Exposure Field Visit to Eco friendly practices	25000	each	25,000
,			100000	each	100,000
e)	1 No	Institution Annual Workshop at Sub basin level	25000	each	200,000
d)	6 Nos	Awareness Meetings in School/	20000		
c)	2 Nos	Awareness Meetings for Official	25000	each	5000
b)	3 Nos.	Sheets, pamphlets, banners. Awareness Program for Public	L 25000	.S each	6000
/. ⊏∩v i a)	LS	Propagation through stickers, Tin	y noual A	gency	
<u>/ Envi</u>	ronmont	meeting for eradication of weed and making manure. al Social Awareness Creation by fixin	20000	each	60,000
c)	3 Nos	Demonstration and consultative	23000	each	73000
b)	3 Nos	bodies for solid waste & Sewage treatment to prevent pollution of Water Sources through Demo, technical Visit. Herbal Gardens in Institutions	25000	each	75000
а	3 Nos.	Motivating office bearers of local	20,000	each	60,000

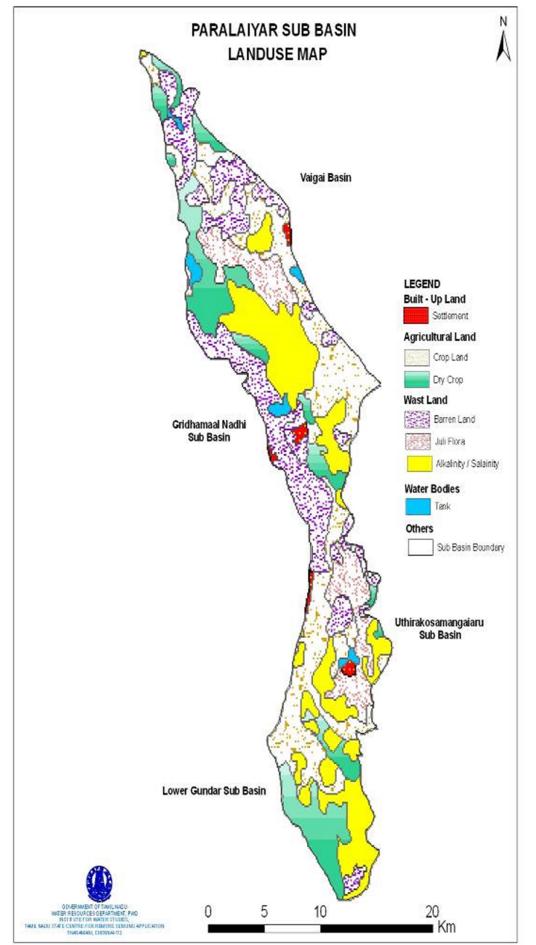


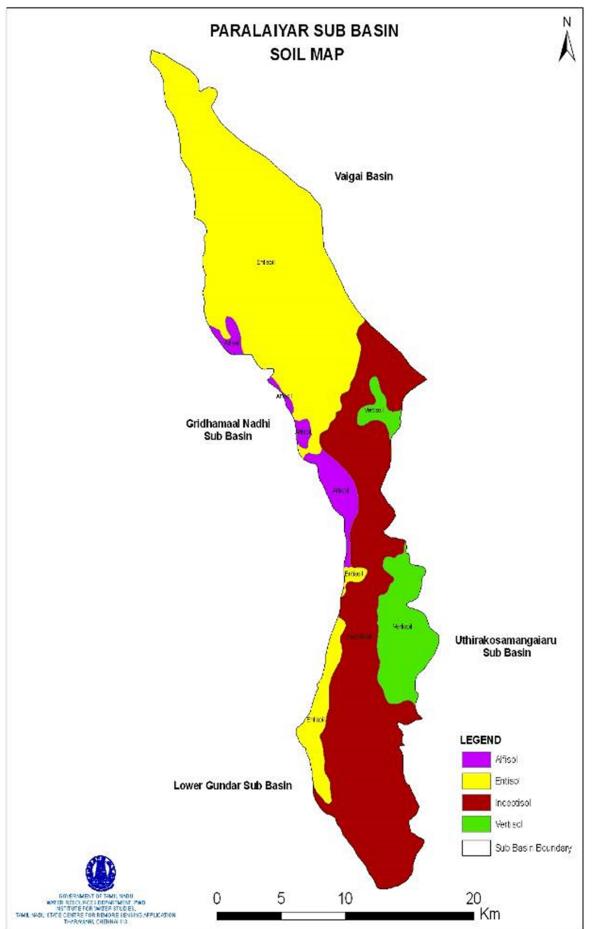


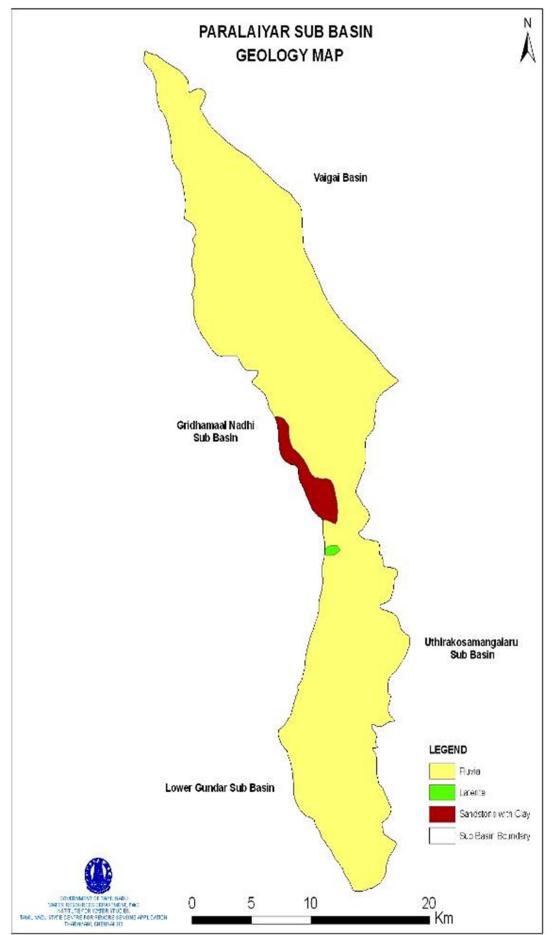


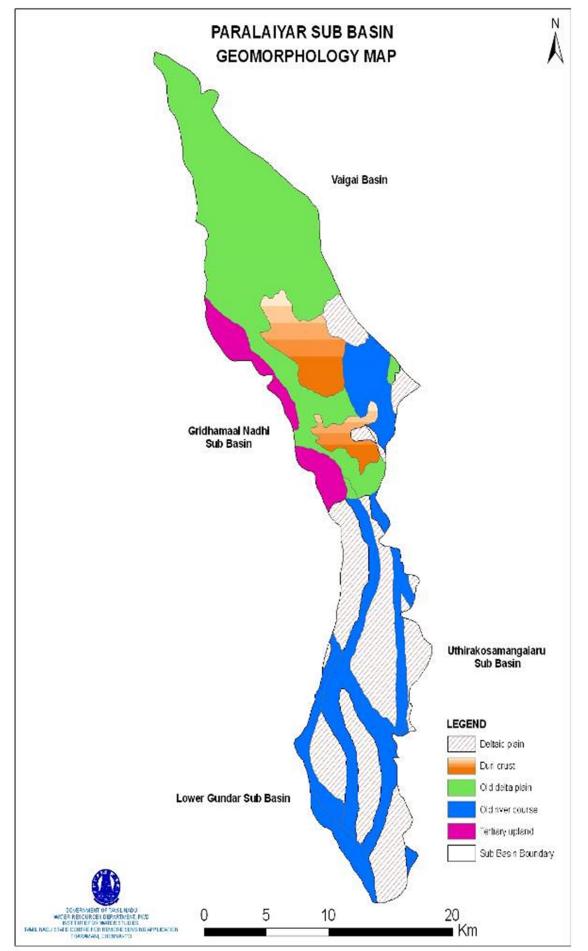


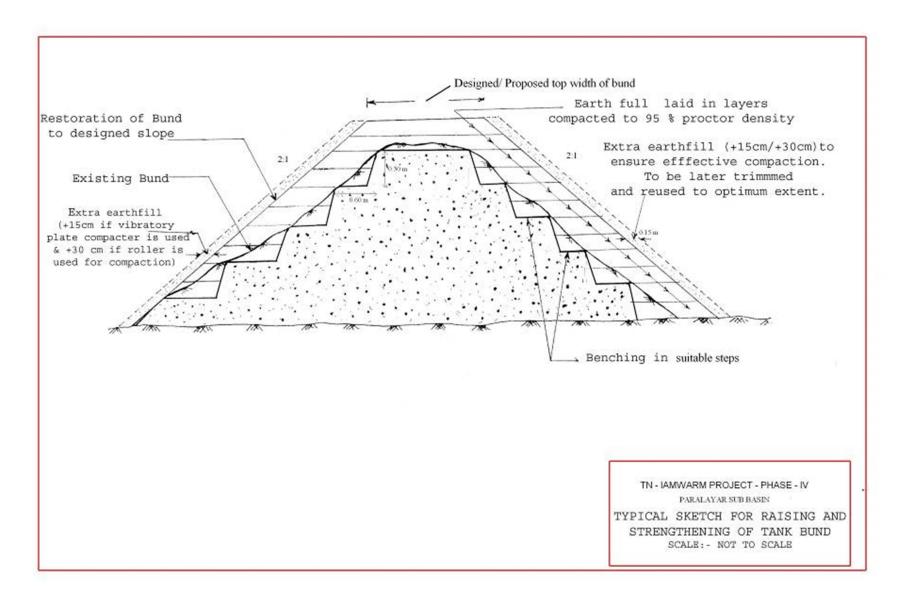


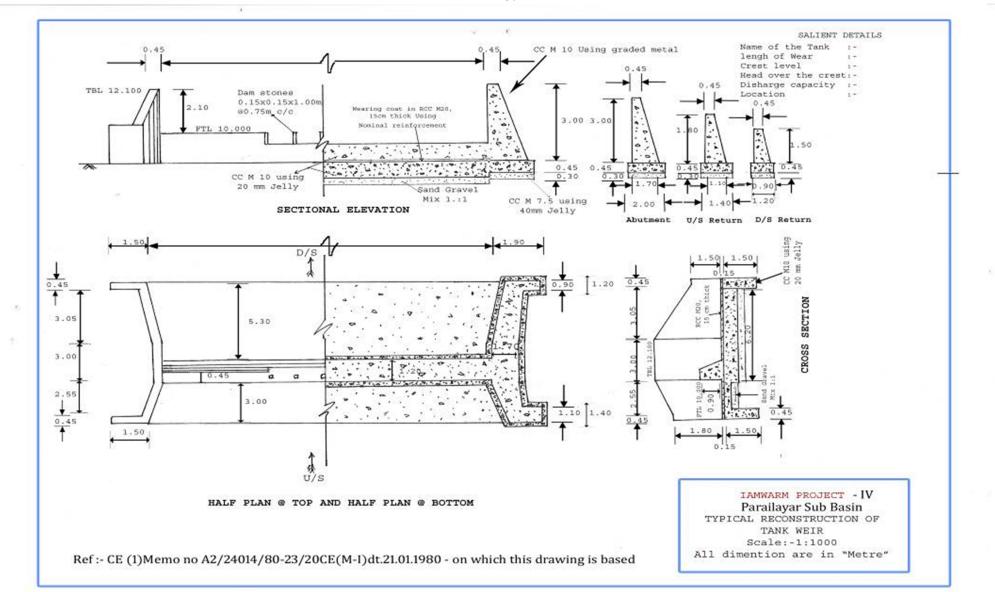


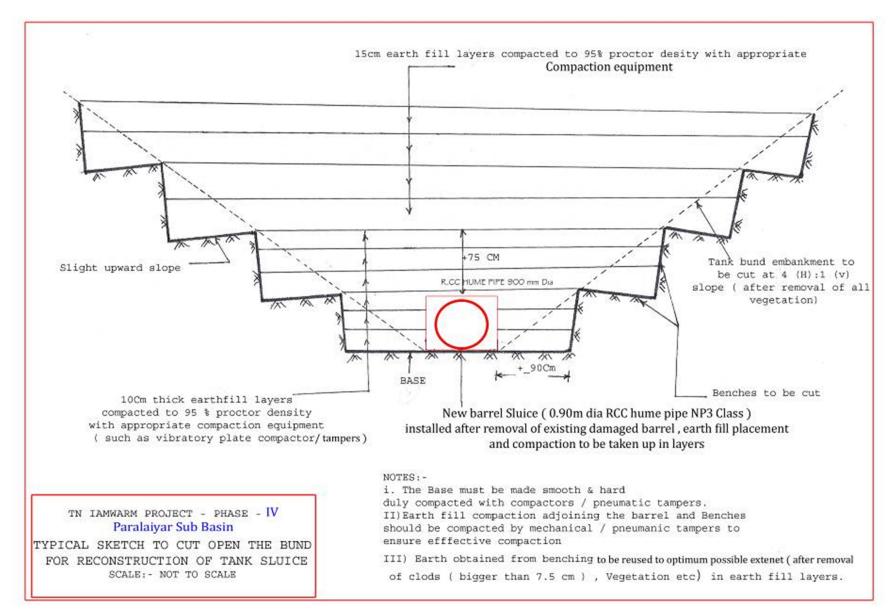


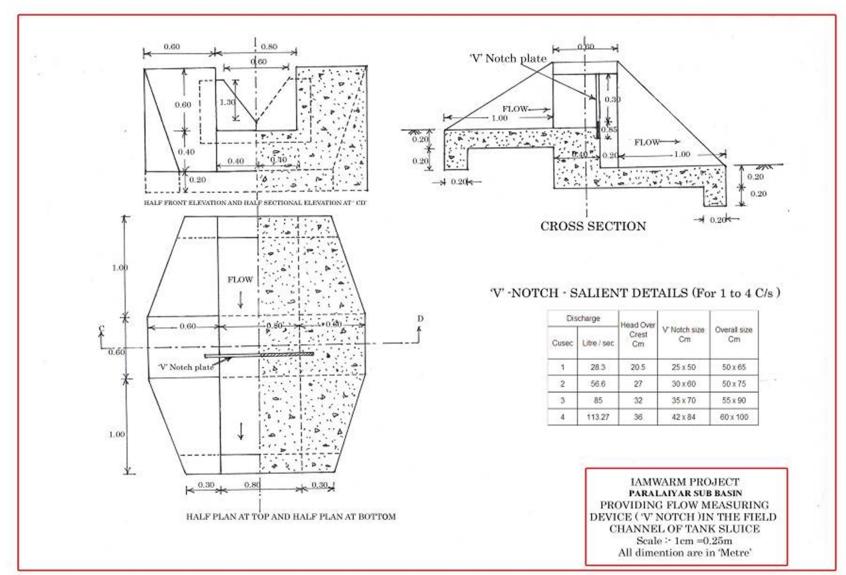


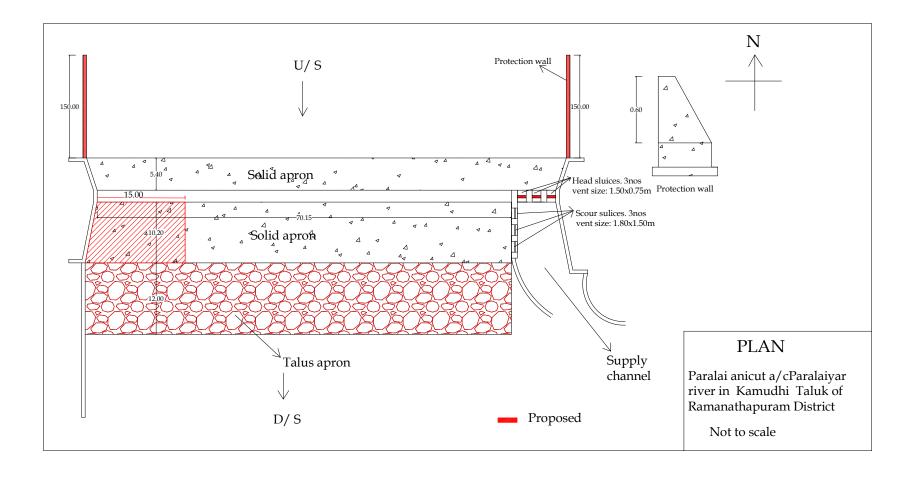


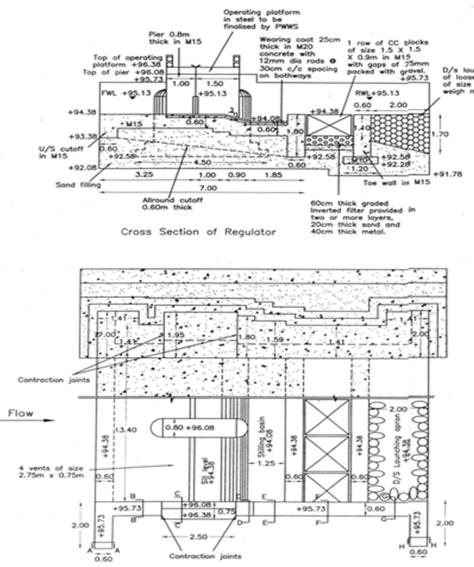




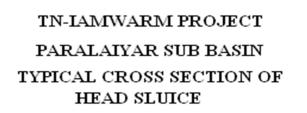


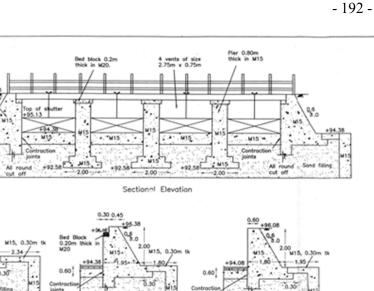






- 187 -





Half Plan at Top and Half plan at Bottom D/s launching opron of loose boulders each of size > 300mm and weigh more than 40kg. 2. Sill lev 3. FWL 2. Sill lev 4. RWL 5. U/s b 91.78 6. D/s B 7. No. of 8. Size o 9. Stilling 10. Top of

HYDRAULIC PARTICULARS	
1. Maximum Flood Discharge	8.10 curnecs 286.05 c/s
2. Sill level	+94.38m
3. FWL	+95.13m
4. RWL	+95.13m
5. U/s bed level	+94.38m
6. D/s Bed level	+94.38m
7. No. of vents	4 Nos
8. Size of vents	2.75m x 0.75m
9. Stilling Basin Level.	+94.08m
10. Top of operating platform	+96.38m
11. Top of pier	+96.08m
12. Thickness of pier	0.80m
13. Length of pier	2.50m
14. Width of operating platform	2.50m
15. Top of shutter	+95.13m

All dimension are in "m" unless or otherwise specified.

Top of OP +96.3

M15, 0.30m tk

+92.08

+94.38

0.60

+92.08

joints

+94.08

+92.08

0.60

ÂI

cut_off

Section EE

1.35 M15

+94.38 -1.41

+92.08

1.0

Sond filling

95,73

nd fred

ut off

Section BB

Cross section of

0.60+95,73

1.59

Sand filling

Cross section of D/S End cutoff wing wall at basin wall

0.60+95.73

Sand filling

Section AA Cross section

U/S return

80

14

U/S wing woll

round

-2.34

0.60

End outoff

M15, 0.30v

0.60

-2.16

6.36

cut

1.35 115 1.0

2.34

+92.08

+94.38

92.28

0.60

M15

Sand filling

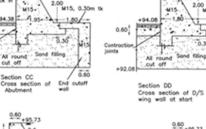
Section HH Cross section of

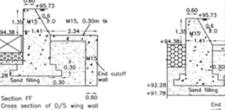
D/S return

+91.78

+91.78

Sand fi


Section FF


+95.73

80

1.41-+94.38

at CC block portion

wol Section GG Cross section of D/S of lounching opron

0.60

wol

M15, 0.30m tk

0.60

-2.34

Note : M15 grade of Concrete using graded metal with surface reinforcement for all the sections.

NOTES

6-2000.

the drawing.

apron.

the site conditions.

width of the regulator.

walls to form a box like arrangement.

concrete 0.3m thick to prevent entry of water.

wall portion at the locations specified in the drawing.

This Drawing should be read along with the series 196 /2009 to 201 / 2009 All dimensions are in 'm' unless or otherwise specified.

PARALAIYAR SUB BASIN

TYPICAL CROSS SECTION OF HEAD SLUICE

TN-IAMWARM PROJECT

to be finalised by P.W.W.S. 21. The top of the operating platform has been tentatively fixed as +96.38m assuming

20. The design for the operating platform and the structural details of the shutters are

that the depth of beam and the thickness of chequered plates over the bed block is

0.30m. However it may vary as per the design obtained from P.W.W.S.

22. Smooth transitions in the banks of the canal with necessary revetment at the u/s and d/s sides of the regulator shall be made to negotiate the width of the canal and

of the river bank at both sides of the regulator.

functioning of the regulator.

23. The shutters should be in fully opened condition when canal flows full.

18. Suitable flood banks allowing a free board of 0.60m over the FSL shall be formed

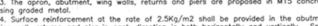
for the channel at the u/s side of the regulator atleast for a distance of 500m.

19. Suitable bank connections with necessary revetments shall be made at the u/s slope

17. The downstream protection works should be maintained periodically for effective

16. Minimum cover for reinforcement in the wearing coat shall be provided as 10cm.

and downstream winawalls above the FSL of channel.


15. Weep holes with necessary filter arrangements should be provided in the upstream

12. The proposed lengths of upstream returns are tentative and may be modified to suit 13. The opron, abutment, wing walls, returns and piers are proposed in M15 concrete

using graded metal.

14. Surface reinforcement at the rate of 2.5Kg/m2 shall be provided in the abutment, wing wall, returns and pier in each direction ie both horizontally and vertically. Spacing

of such bars shall not exceed 200mm.

1. The analysis has been made based on IS 6966- 1989, IS 1893 - 1984 and IRC

3. The regulator has been designed for a discharge of 9.58 curnecs, as stated by the

4. Uniform sand filling by replacing the existing soil should be provided as specified in

6. An all round cutoff shall be provided taking the cutoff around the abutment and wing

8. If the sand filling in this portion is exposed at the surface it shall be covered by M15

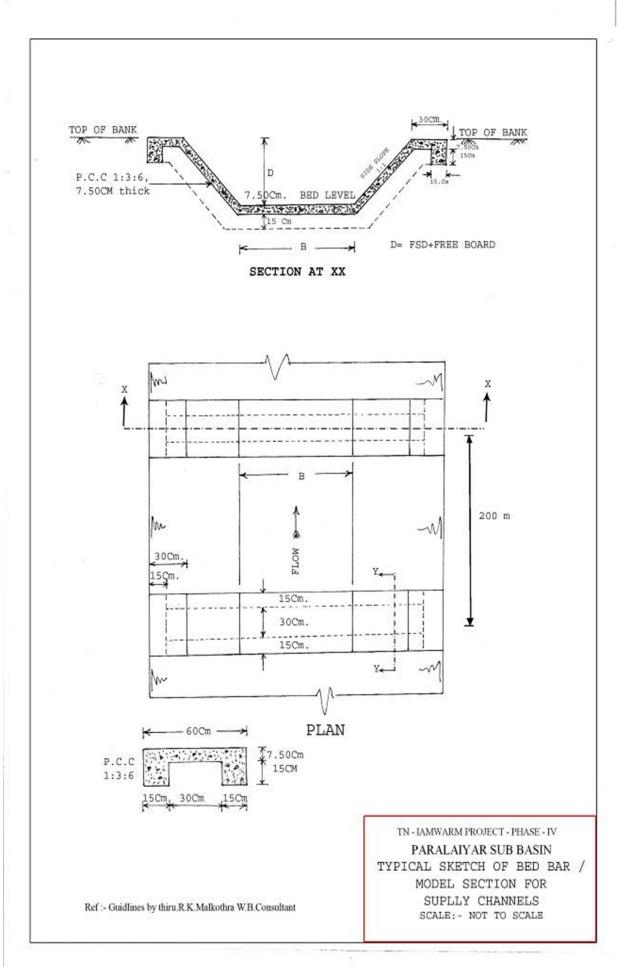
9. The pier shall be constructed independant of the apron floor and necessary contraction

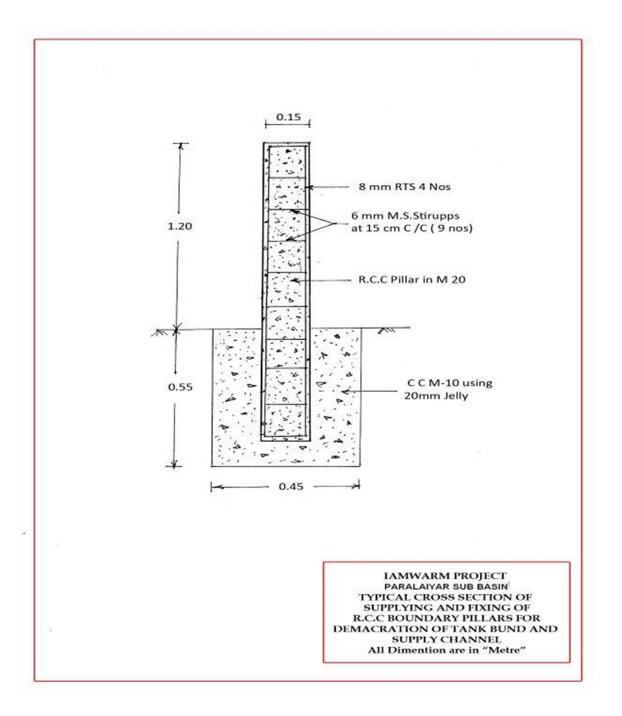
joints with PVC waterstops shall be provided around the pier separating the pier from the

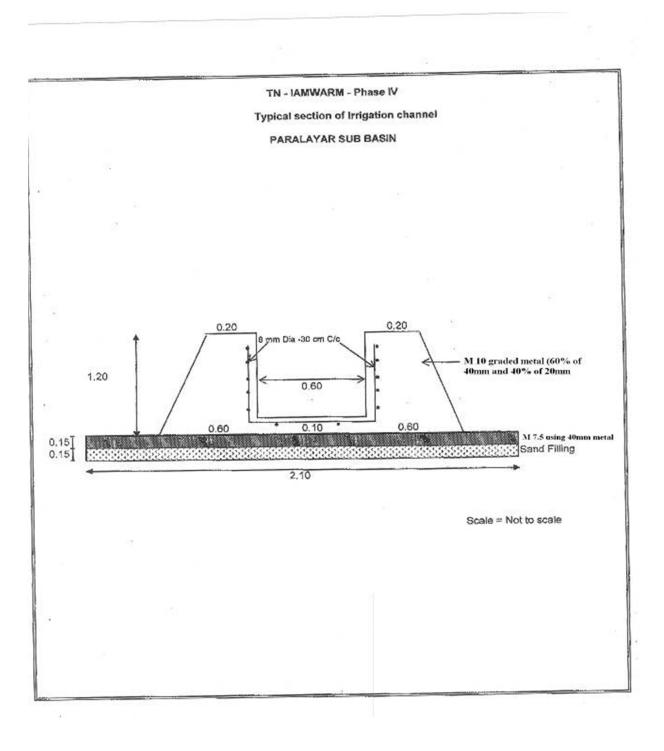
10. Contraction joints with PVC waterstops shall be provided in the abutment and wing

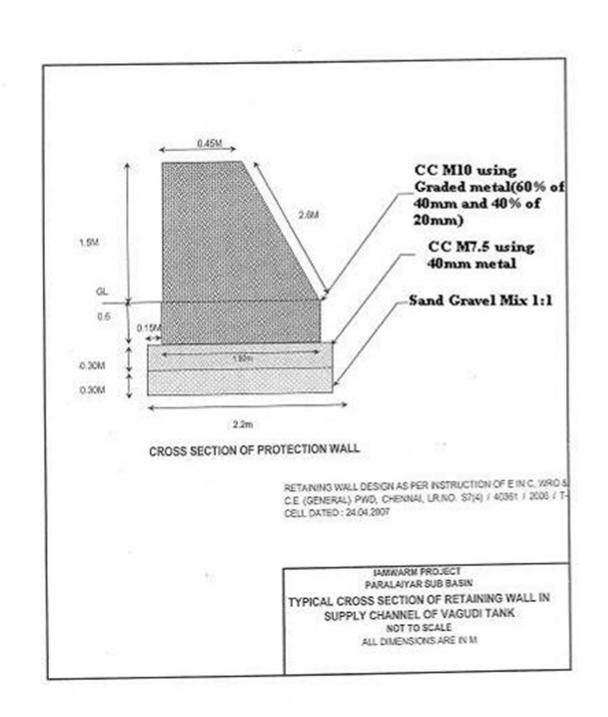
11. The parameters of backfill material such as saturated unit weight and angle of

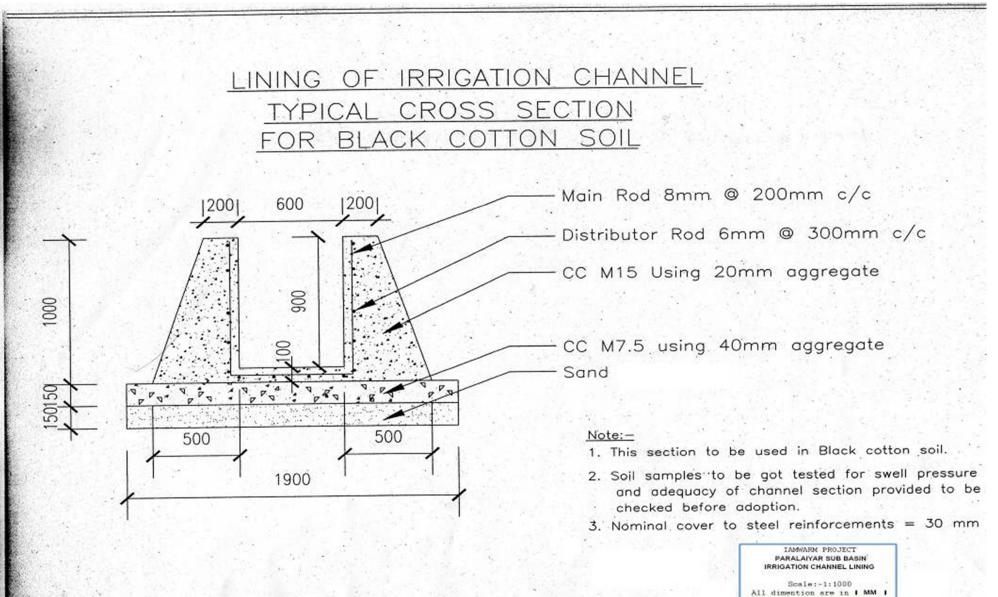
2. The design has been formulated based on the particulars furnished by the CE,

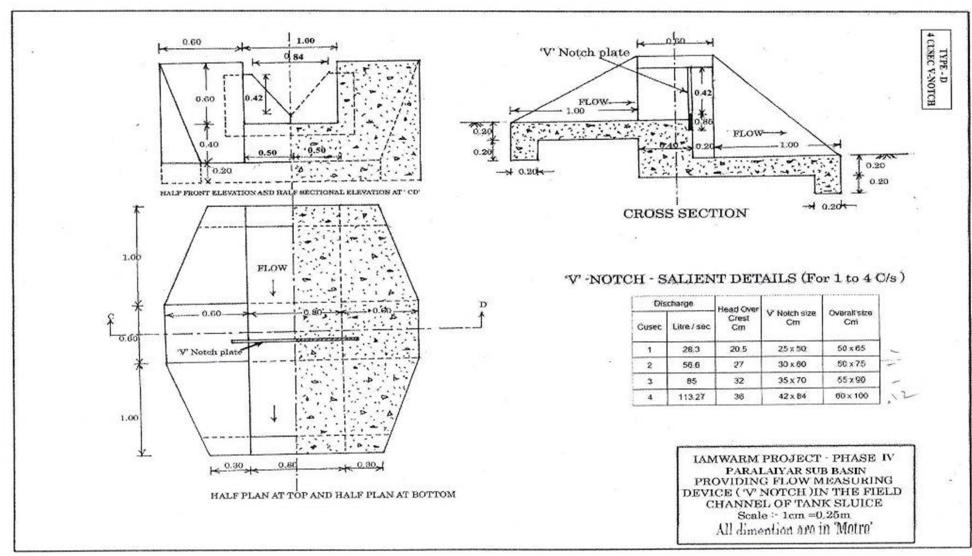

5. The sand shall be placed in layers of 0.3m thickness and well compacted.

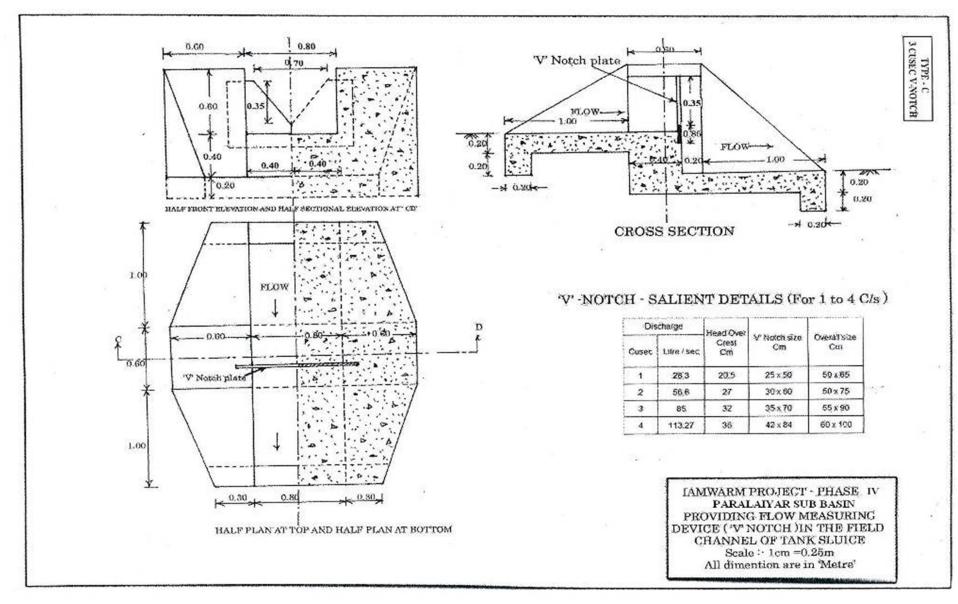

7. The portion between the cutoff and the structure shall also be filled with sand.


PWD, Madurai Region, in Lr. No.0T2/AE4/19992/IAMWARM/dt.21.10.09.

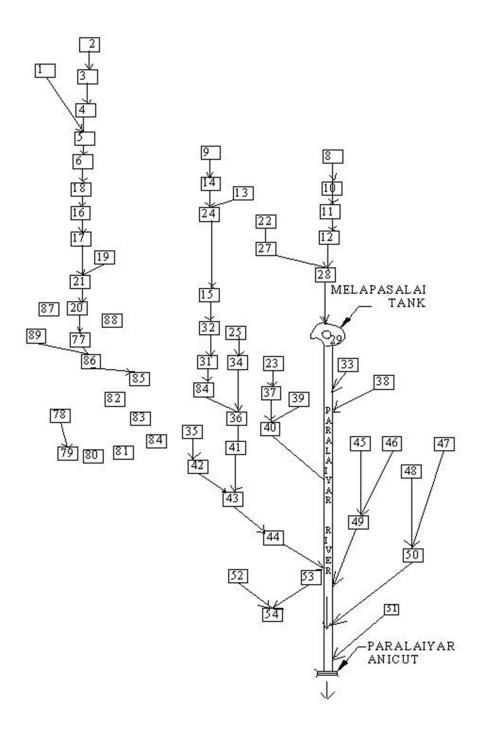

CE, PWD, Madurai Region, in Lr. No.OT2/AE4/19992/IAMWARM/dt.21.10.09.

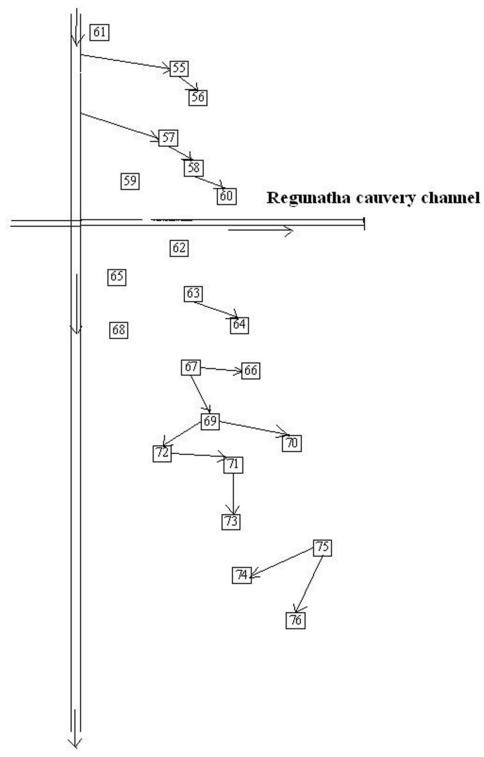

internal friction have been assumed as 2t/cum and 22' respectively.





Package wise Abstract of Notches/ Flumes Proposed


Sub Basin: Paralaiyar Sub Basin


Total No. of Packages: 6

Total No. of Notches Proposed: 352

SL.No.	Type of Notch	Discharge Capacity in Cusec	Numbers
Package No.1			
1	V- Notches	3	26
2	V- Notches	4	15
		Total	41
Package No.2			
1	V- Notches	3	46
2	V- Notches	4	35
		Total	81
Package No.3			
1	V- Notches	4	51
		Total	51
Package No.4			
1	V- Notches	3	18
2	V- Notches	4	50
		Total	68
Package No.5			
1	V- Notches	3	14
2	V- Notches	4	17
		Total	31
Package No.6			
1	V- Notches	3	45
2	V- Notches	4	35
		Total	80
		Grand Total	352

FLOW DIAGRAM

Falls in to Malattar River