IRRIGATED AGRICULTURE MODERNISATION & WATER BODIES RESTORATION MANAGEMENT PROJECT

(IAMWARM)

GADILAM SUB BASIN

VILLUPURAM & CUDDALORE DISTRICTS

PUBLIC WORKS DEPARTMENT WATER RESOURCES ORGANISATION

VELLAR BASIN DIVISION VIRDHACHALAM VELLAR BASIN CIRCLE CUDDALORE

TN IAMWARM PROJECT

GADILAM SUB BASIN

	INDEX	
Sl. No.	Description	Page No.
I.	Overview	
II.	Scope of the Project	
III	project Proposals	
1.	Water Resources Department	
1.1	Introduction	
1.2	Hydrology	
1.3	Hydraulics of the Component	
1.4	Participatory Irrigation Management (PIM)	
1.5	Irrigation Infrastructure	
1.6	Rehabilitation of Irrigation Infrastructures	
1.7	Environmental Cell	
1.8	Ground Water	
1.9	Design and Drawing	
2	Department of Agriculture	
3.	Department of Horticulture and Plantation Crops	
4.	Agricultural Engineering Department	
5.	TamilNadu Agricultural University	
6.	Department of Agricultural Marketing & Agribusiness	
7.	Department of Animal Husbandry and Veterinary Services	
8.	Fisheries Department	
IV	Project Cost	
V	Economic Analysis	
VI	Thematic Maps	
1	Index Map	
2	Administrative Map	
3	Village Map	
4	Drainage Map	
5	Irrigation Map	
6	Categorization Map	
7	Land use Map	
8	Soil Map	
9	Geology Map	
10	Geomorphology Map	
11	Drainage Map (Anicuts and Tanks)	
12	Cluster Map	
13	WUA Map	
14	Package Map	
15	Walk Through Survey Photos	

GADILAM SUB BASIN AN OVERVIEW

GADILAM SUB BASIN – AN OVER VIEW

1. Introduction :

Gadilam river is a major flood carrier originating from the tank surplus of Mariyanur Tank and the drainage from Melaphazhengoor Reserve forest in Kallakurichi Taluk of Villupuram District. The Gadilam River sub basin is located between Latitude 79^0 10'25" - 79^0 50'30" and Longitude 11^0 43'30" - 11^0 55'45" and its surrounded by Vellar river basin on the South side, Varahanadhi basin on the North side and Bay of Bengal on the east.

The Taluks covered in this Gadilam Sub basin are Sankarapuram, Thirukoilur and Ulundurpet taluks in Villupuram district, Panruti & Cuddalore Taluks in Cuddalore District. The Gadilam Sub Basin area receives an average annual rainfall of 920.79mm.

2. Details of Ayacut

There is no system tank in this basin and consists mainly non-system tanks which are rainfed. The Gadilam sub basin is having 91 Nos. of non-system tanks and 14 Nos. of Anaicuts which is having a total ayacut 9356.95Ha, being maintained by PWD.

The total Ayacut area under the sub-basin : 9356.95 Ha.

The total registered ayacut under PWD control is 9356.95 Ha with a gap of 1400.02Ha.

3. Soil Type and Crops Grown

The soil types found in this Sub Basin are combination of Inceptisol, Alfisol, Entisol and Vertisol.

Crops grown in this sub basin area are Paddy, Chillies, Cotton, Vegetables, Pulses, Fodder, Cholam, Ragi, Maize during first season and no Second Season crop in this sub basin.

4. Water Potential

	-			
	Surface water	potential	227.22	Mcum
	Ground Wate	r potential	473.36	Mcum
	Total Water	Potential	700.58	Mcum
4.1. Present Wat	er Demand.			
		27.20	27.20	14

Domestic	27.30	27.30	Mcum
Live Stock	24.85	24.85	Mcum
Industrial	50.26	50.26	Mcum
Irrigation	119.18	119.18	Mcum
WRO & PU	-	103.20	Mcum
	Total	324.70	Mcum

Therefore 700.58 Meum (700.58-103.20) is higher than the Current Demand

In spite of the surplus scenario, the reasons for substantial gap area are.

- i) This system is a very old system having 91 Nos. of PWD tanks and 3 Nos. of Anicut for which no major works were carried out for more than 50 years. Therefore requires wide spread rehabilitation.
- ii) The tanks and its supply channel are heavily silted up with thick vegetation growth obstructing free flow of water, bunds are eroded at many places which needs improvement.
- iii) Fixing of boundary stones is necessary to prevent encroachment.
- iv) The sluices and weirs of tanks need repairs.
- v) Micro irrigation needs are to be propagated in the application of water to the fields.
- vi) Most of the lands are in fragmented condition, consequently there is a lot of water loss in field to field irrigation.
- vii) Farmers are not aware of modern techniques of irrigation and hybrid varieties of crops.

viii) Lack of efficient farm management.

5. Water Users Association (WUA)

It is proposed to form 99Nos. WUA's Covering an area for 9356.95Ha.

5.1. Stakeholders Consultations

In order to improve the system efficiency and productivity of irrigated agriculture, a multi disciplinary approach involving the following departments is envisaged.

- i. Water Resources Department (WRD)
- ii. Agriculture
- iii. Agriculture Engineering (AED)
- v. Agricultural Marketing and Agribusiness
- vi. Tamil Nadu Agricultural University (TNAU)
- vii. Fisheries
- viii. Animal Husbandry and Veterinary Services.

WRD officials with the officials of the above line departments have conducted meetings with the stakeholders in the sub basin and also had "Joint Walkthrough Surveys" and the following table shows the constraints and countermeasures which emerged during these consultations.

5.2 Overview

Components	Constraints	Counter Measures
WRD.	The Tank feeder canals and tanks are silted up and it is required to be desilted and distribution system is to be rehabilitated	 i) A holistic approach to be adopted to include all the PWD Tanks in the sub basin and improve their bunds & desilting to the minimum extent required to harvest rainwater. ii) WUAs are to be formed and further maintenance would be with their involvement. iii) Surplus weirs, tanks, sluice, are to be improved etc., iv) The rehabilitation of distribution system network is also proposed.
	Post irrigation management, over drawal by upper reaches, no water to lower reaches.	Proposed WUA shall take care of this with members from lower reaches in the WUA and regulatory systems shall be developed as bye laws of the WUA.
Agriculture	Traditional old practice being adopted.	 i) Productivity linked demonstration by TNAU and by Agriculture Development is proposed. ii) Capacity Building of farmers and officials is proposed. iii) Extension of new Agricultural technology on application of optimum fertilizers, IPM measures are proposed through Agriculture, Horticulture Departments and TNAU Departments. iv) Supply of quality seeds to be ensured.

Agriculture Marketing, Horticulture, Agricultural Engineering	 i) Farmers failed to adopt new technologies, and diversification mainly due to absence of correct market information. ii) For diversification of crops no proper extension advice is available. iii) Modern technologies like micro irrigation, to save water, are costly and require lot of frequent training etc., iv) The value addition technologies observed are absent. 	 i) Agri. Marketing Department and TNAU to assess the market trend and advise the WUA through Agribusiness Cell, Kiosks & Discussion meetings. ii) For value addition to products, grading arrangements, thrashing flood, could storages etc are proposed. iii) Adequate trainings are proposed. iv) Fisheries Department in consultation with the AED, and WUA propose inland fishing with the farm ponds etc., with provision for Kiosks for improved marketability.
		v) Deepening on the horticulture crops proposed, AED proposes to link installation of micro irrigation system netwok and wherever required pilot cases for buried pipe conveyance is also proposed.
Animal Husbandry and Fisheries	 (i). Livestock population need health improvements schemes ii).Quality fodder is needed ii).Infrastructure development in existing veterinary sub centers is needed. iv).In service training to veterinarians are needed. (v).Good fish fingerlings are required to promote inland fishery through farm ponds in the farmers' lands. 	

6. Details of Activities of Line Departments.

6.1. Water Resources Department (WRD)

- 6.1.1. Approach: To rehabilitate the irrigation system and service delivery.
- a. Thematic Maps on land use, soils, crops, water bodies, and other agricultural and demographic attributes are prepared by IWS.
- b. The crop water requirements for the crops during without and with Project situation are prepared by IWS. The crops proposed by Agriculture and Horticulture Departments will be tailored in consultation with Agriculture marketing Department and the Water Users Association.
- c. The adequacy and status of the canal system, feeder channels to tanks, distribution system etc., have been assessed by the WRO (Both regional and Plan Formulation wing) as follows.
 - Strengthening of tank bund by earthwork excavation using machineries.
 - > Desilting the supply channels by earthwork excavation using machineries.
 - > Providing retaining walls at vulnerable points in the tank bund.
 - Providing Model Sections to maintain the TBL in the tanks.
 - Reconstruction of Collapsed weirs.
 - Repairs to the damaged weirs.
 - Reconstruction of Collapsed Sluices
 - Repairs to the damaged Sluices
 - > Providing S.G. Shutter/ Plug arrangements to Sluices, head Sluices Scour vents etc.,
 - Removing, Repairing and refixing in position of the existing S.G. shuttering arrangements and providing locking arrangements etc.,
 - Fixed boundary stones in the tanks to prevent encroachment.

Accordingly the following packages are proposed.

PACKAGE DETAILS

Sl. No.	Package Nos.	Name of the package	Package Amount in Lakhs.
1.	IWAMWARM/WRO, Gadilam/ Package No.1	Rehabilitation of Non System Tank and its supply channels from Yal tank to Pinnalvadi tank Gadilam sub basin under Gadilam Sub Basin in Sankarapuram, Tirukoilur and Ulundurpet Taluk of Villupuram District.	541.80
2.	IWAMWARM/WRO, Gadilam/ Package No.2	Rehabilitation of Non System Tank and its supply channels Form Arunkurukai tank to mathiyanur tank under Gadilam Sub Basin in Tirukoilur and Ulundurpet Taluk of Villupuram District.	499.05
3.	IWAMWARM/WRO, Gadilam/ Package No.3	Rehabilitation of Non System Tank 13 Nos and its supply channels under Gadilam Sub Basin in Ulundurpet Taluk of Villupuram District.	204.81
4.	IWAMWARM/WRO, Gadilam/ Package No.4	Rehabilitation of Non System Tank 8 Nos and its supply channels under Gadilam Sub Basin in Taluk of Villupuram District.	168.20
5.	IWAMWARM/WRO, Gadilam/ Package No.5	Rehabilitation of Non System Tank 6 Nos and its supply channels under Gadilam Sub Basin in Panruti Taluk of Cuddalore District.	192.46
6	IWAMWARM/WRO, Gadilam/ Package No.6	Rehabilitation of Non System Tank 4 Nos and its supply channels under Gadilam Sub Basin in Panruti Taluk of Cuddalore District.	249.82
7.	IWAMWARM/WRO, Gadilam/ Package No.7	Rehabilitation of 9Nos. of Non System Tank and Thiruvandhipuram Anicut under Gadilam Sub Basin in Cuddalore Taluk of Cuddalore District.	359.45
8.	IWAMWARM/WRO, Gadilam/ Package No.8	Rehabilitation of supply channel and Thiruvandhipuram Anicut under Gadilam Sub Basin in Cuddalore Taluk of Cuddalore District.	387.25
9.	IWAMWARM/WRO, Gadilam/ Package No.9	Rehabilitation of supply channel under Thiruvathigai Anicut and Vanamadevi Anicut under Gadilam sub basin in Cuddalore Taluk of Cuddalore District.	115.34
10.	Environmental Cell		16.70
11.	Ground water		
		TOTAL	2734.88

6.1.2 Outcome indicators.

The indicators for evaluating the performance of WRO are as follows.

- The conveyance efficiency is expected to be improved from the present 81 % to 100%
- > The present gap area of 1400.02 Ha will be bridged totally in the project
- ▶ Rehabilitation/ Reconstruction of Irrigation Infrastructure.

Besides this, the WRO is actively engaged in formation of WUAs as per TNFMIS Act 2000 and Rules by preparing the relevant documents such as maps showing the hydraulic boundary of WUA, land owners voters list etc. To help in the above collection of data involving social and field activities, it is proposed to enlist the services of NGOs, Agricultural Extension Officers, SHG's, etc. It is estimated that about 99 WUA shall have to be formed in this sub basin.

6.1.3. Tank components.

The practice of tank irrigation has been prevalent for time immemorial. Tanks help to store water for lean season and have played a significant role in the irrigation sector. They not only provide a source for irrigation but also help in recharging ground water under suitable conditions. There are 91 Non System tanks with an ayacut of 7672.75Ha and direct ayacut from 3 Nos. of anicut having an ayacut of 1684.20Ha. These tanks are quite old and are in urgent need of repair and rehabilitation. The irrigation potential of these tanks have been declined with siltation, poor maintenance of sluices, bund erosion and failure of the distribution system.

Under the IAMWARM project, the following investments are proposed to rehabilitate the PWD Tanks. Provisions has been made for turfing in the rear side slope of the entire tank bund length.

For improving the supply channels, desilting to restore capacity, improvements to bund, weirs and sluices in 91 PWD tanks, a sum of Rs. 15.32 Crores has been proposed.

6.1.4. Field Channel Lining

Provision of lining in the field channels for length of 50M immediately D/S of Irrigation Sluices has been made.

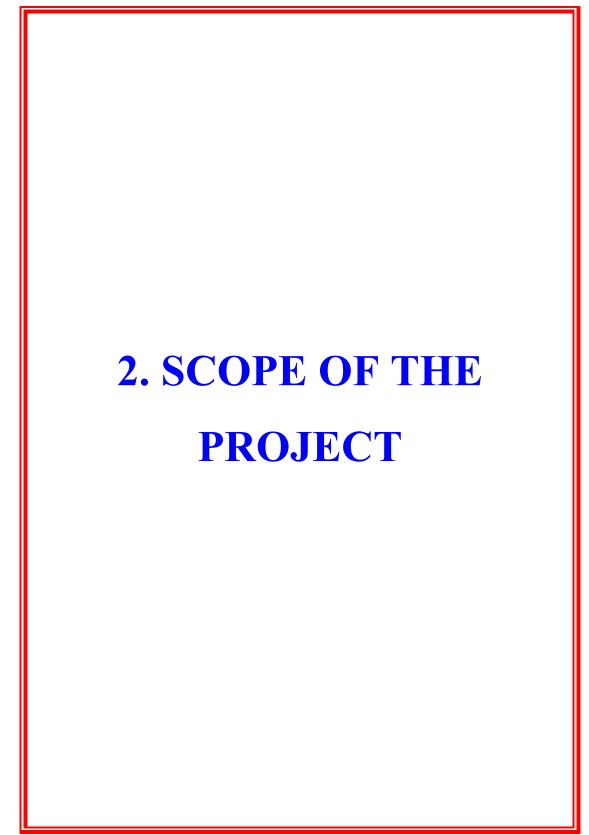
BRIEF NARRATION:

- Restoring the capacity of the irrigation Storage Structures like tanks by means of desilting and strengthening the tank bund.
- Restoring the original carrying capacity of supply channels from rain fed odai, from its own catchment, odai to feed the non system tanks.
- Reconstruction and Repairs of weirs and sluices of tanks. Operational arrangements by means of providing and replacing screw gearing arrangements.
- Fixing boundary stones in the tanks to prevent encroachment of tanks.
- Forming New Water Users Associations for Participatory Irrigation Management (PIM)
- Rehabilitation works of all irrigation structures to improve the conveyance Efficiency.

5

Vellar uddlore

ALE Resources Organisation Vellar Basin Division


CHIEF ENGINEER, PWD., WRO.

CIMPER V P

REASIN CIRCLE PWD

ORE - 607 001.

11

PRESENT STATUS OF THE SYSTEM

2.1 GENERAL

The Deficiencies in the structure and functions of Irrigation Network causes the inefficient functioning of the Gadilam Sub - Basin and creates hardship to the farming community.

2.2 SYSTEM DEFICIENCY

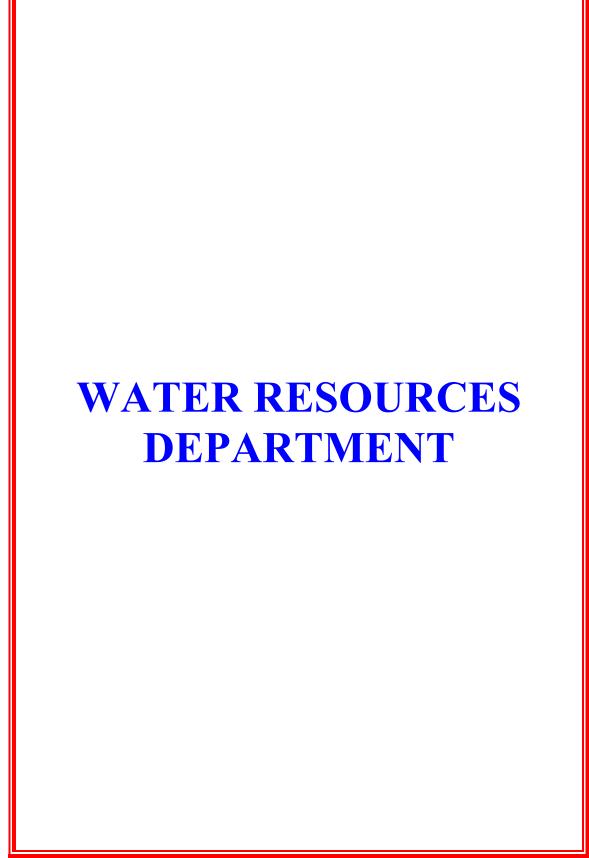
In Most of the command areas of the channels, tanks, irrigation channels etc., distribution are taken up to a certain limit only beyond this the water is left to be conveyed by the farmers themselves to the fields for irrigation. No technical attention is paid on the application of water to the fields. The farmers with out the proper awareness of irrigation leave most of the fields with zigzag boundaries and the field bunds are abnormal is in size which reduces the cultivatable area considerably.

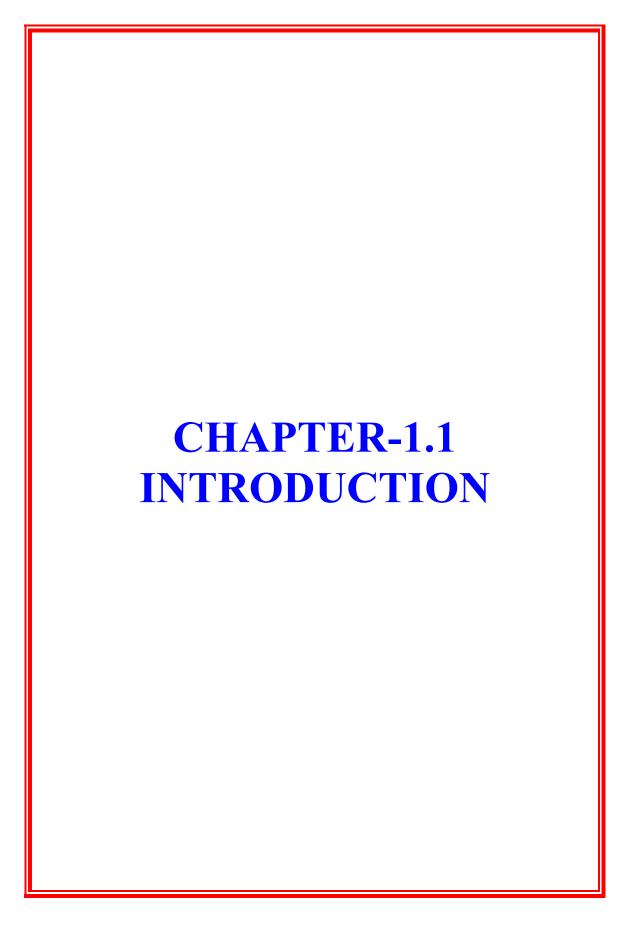
The major problems being experienced in the Gadilam sub basin are as follows.

- Lack of efficient farm water management.
- Poor infrastructure facilities.
- Non adoption of modern micro irrigation methods and new agricultural practices.
- Inadequate coordination among rural agencies, Government departments and other financial institution etc.,
- Lower crop yield.
- Low field application efficiency.
- Traditional method of farming.
- Excess use of chemical fertilizers and pesticides.
- Inadequate post harvest management facilities.

2.3 SCOPE OF THE PROJECT

The water resources Department in coordination with the following line department have proposed to improve the irrigation service delivery and productivity of irrigated agriculture with effective integrated water resources management in this sub basin. The line departments are


- 1. Agriculture Department
- 2. Department of Horticulture and plantation crops.
- 3. Agriculture Engineering Department
- 4. Tamil Nadu Agricultural University.
- 5. Department of Agricultural marketing and Agribusiness services.
- 6. Animal Husbandry and Veterinary Services.
- 7. Fisheries Department
- 8. Environmental cell of water Resources Organization.


2.4 Water Resources Department.

In order to improve the conveyance and operational efficiency, it is now proposed to improve and modernize the structural components in Gadilam Sub basin.

- Desilting the supply channels by earth work excavation using Machineries.
- Strengthening the tank bund by desilting the tank using Machineries
- Repairs to Head sluices
- Reconstruction of collapsed weirs
- Repairs to the damaged weirs
- Reconstruction of Collapsed sluices
- Repairs to the damaged sluices
- Providing Bathing Ghats, Retaining walls and Model section in selective area of the tanks
- Providing S.G shutters / Plug arrangements to sluices, Head Sluices, scour vent etc.,
- Removing, Repairing and refixing in position of the existing S.G shuttering arrangements to the sluices and providing locking arrangements etc.,
- Fixing Boundary stones in the tank bund and water spread area.

INTRODUCTION

1.1.1 GENERAL

Agriculture is the dominant sector in the Indian economy. Tamil Nadu, depends largely on the surface water irrigation as well as ground water irrigation. The state has used the surface and ground water potentials to the maximum limit and hence the future development and expansion depends only on the efficient and economical use of water potential and resources.

To achieve higher water use efficiency it is necessary to improve and upgrade the existing conveyance system and also to introduce modern irrigation methods.

With the above objective, a comprehensive programme has been proposed with a Multi Disciplinary approach.

1.1.2 Description of the Gadilam Basin.

Gadilam River is a major flood carrier originating from the tank surplus of Marianur tank and the drainage from Melapazhangoor Reserve forest in Kallakurichi Taluk of Villupuram district.

The river runs about 120Km and finally confluences into Bay of Bengal near Devenampattinam Village in Cuddalore District. Sesha Nadhi and Malattar are the tributaries of Gadilam River.

There are fourteen anicuts across river Gadilam Eleven anicuts of located in Villupuram District irrigating direct ayacut of 18.61 Ha and through tank ayacut of 4401.03 Ha. and three anicuts are located in Cuddalore District irrigating direct ayacut of 1665.59 Ha and through tank ayacut of 3271.72 Ha.

There are 91 Tanks situated within the Gadilam Sub Basin.

91 Tanks are non system Tanks having an ayacut of 7672.75Ha and a direct ayacut of 1684.20 Ha.

1.1.1 CLUSTER CONVERGENCE TABLE -III RD PHASE SUB BASINS.

Name of Sub Basin : GADALIM SUB BASIN

District : Villupuram

Cluster	SI.No.	Name of the cluster / Insfrastr ucture/ village	block	Name of the cluster revenue village	Total FI	Ayacut PI	(Ha) Gap	Tota	l area (l	Ha) Ga P	WRO Acti vities	Nos & Len gth	Agr cultu Activ ities	re N o. ∕ H	TN/ Ac ti vit ies	N o. / H		orti ture No. /Ha	mar	gri ketin g No. /Ha	AED Ac ti vit ies	No. / Ha	Fisheri Acti viti es	ies No. ∕Ha	Anir Husba Activ ities	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	a 15	16	а 17	18	19	20	21	22	23	24	25	26	27
					PA	SAR CL	USTER																			
1	1	Yal	Rishi vanthiya m	Yal	32.6 4	19.5 8	13. 06	52.2 2	65.28	-	Strength ening the Tank Bund	154 0														
											Reconstr uction of sluices	2														
											Reconstr uction of weir	1														
											Supply Channel	290 0														
	2	Melapang ur	н	Melapan gur	28.2 5	16.9 5	11. 30	45.2 0	56.50	-	Strength ening the Tank Bund	115 0														
											Reconstr uction of sluice	1														

										Supply Channel	500							
3	Peral		Peral	27.3 3	16.3 3	11. 00	43.6 6	54.66	-	Strength ening the Tank Bund	136 0							
										Reconstr uction of sluices	1							
										Supply Channel	290 0							
4	Sathaputh ur	п	Sathaput hur	21.5 6	12.9 3	8.6 3	34.4 9	43.12	-	Strength ening the Tank Bund	100 0							
										Reconstr uction of sluice	1							
										Reconstr uction of weir	1							
										Supply Channel	200 0							
5	Pavandur		Pavandu r	22.6 4	13.5 8	9.0 7	36.2 2	45.29	-	Strength ening the Tank Bund	112 0							

										Reconstr uction of sluice	1							
										Reconstr uction of weir	1							
										Supply Channel	200 0							
										-19-			 					
6	Pasar		Pasar	62.4 8	37.4 9	25. 00	99.9 7	124.9 7	-	Strength ening the Tank Bund	100 0							
										Reconstr uction of sluices	1							
										Supply Channel	200 0							
		Total		194. 90	116. 86	78. 06	311. 76	389. 82		Strengt hening the Tank Bund	717 0							
										Reconst ruction of sluices	7							

											Reconst ruction of Weir	3							
											Weir Repair	-							
											Supply Channel	123 00							
				F	RISHIV	ANTHIY	AM CLU	ISTER											
2	7	Rishi vanthiya m	п	Rishi vanthiya m	36.9 9	22.1 9	14. 79	59.1 8	69.97	4.0 0	Strength ening the Tank Bund	122 0							
											Reconstr uction of sluices	2							
											Supply Channel	305 0							
	8	Vengalam	'n	Vengala m	22.5 7	13.5 4	9.0 3	36.1 1	45.14		Strength ening the Tank Bund	100 0							
											Reconstr uction of sluices	1							
											Supply Channel	200 0							
	9	Munivazh ai	u	Munivaz hai	26.0 0	15.6 0	10. 39	41.6 0	51.99		Strength ening the Tank Bund	100 0							

										Reconstr uction of sluices	1							
										Supply Channel	230 0							
1 0	Kunniyur		Kunniyur	24.5 5	14.7 3	9.8 2	39.2 8	49.10		Strength ening the Tank Bund	850							
										Reconstr uction of sluices	1							
										Reconstr uction of weir	1							
										Supply Channel	170 0							
										-20-								
1 1	Thimmalai	Thiyagad urugam	Thimmal ai	34.5 0	20.7 0	13. 79	55.2 0	68.99		Strength ening the Tank Bund	145 0							
										Reconstr uction of weir	1							
										Supply Channel	150 0							
		Total		144. 61	86.7 6	57. 82	231. 37	285. 19	4.0 0	Strengt hening the Tank Bund	552 0							

										Recons ruction of sluices Recons ruction	5 t 2							
										of weir Supply Channe								
					ΚΑΤΤυ	EDAIYA	R CLUS	STER										
3	1 2	Panapadi	Thirugovi lur	Panapadi	29.3 1	17.5 9	11. 72	46.9 0	58.62	NO ACTIVIT ES								
	1 3	Kattuedai yur	Ulundurp et	Kattueda iyur	77.0 3	46.2 2	30. 81	123. 25	154.0 6	Strength ening th Tank Bund	1 e 139 0							
										Reconst uction o sluices	r f 3							
										Reconst uction o weir								
										Anicut repair	1							
										Supply Channe	270 0							
	1 4	Memalur	Thirugovi lur	Memalur	31.9 1	19.1 5	12. 76	51.0 6	63.82	Strength ening th Tank Bund	n e 176 0							
										Reconst uction o sluices								
										Reconst uction o weir	r f 1							
										Repair te anicut	^D 1							
										Supply Channe	400 0							

1 5	Kattusellu r	Ulundurp et	Kattusell ur	39.6 2	23.7 7	15. 85	63.3 9	79.24	Strength ening the Tank Bund	138 0							
									Reconstr uction of sluices	1							
									Reconstr uction of weir	1							
									Supply Channel	200 0							
1 6	Alur	Thirugovi lur	Alur	35.0 7	21.0 4	14. 02	56.1 1	70.13	Strength ening the Tank Bund	163 0							
									Reconstr uction of sluices	2							
									Reconstr uction of weir	1							
									Repair to anicut	1							
									Supply Channel	200 0							
									-21-								
1 7	Periyakur ukkai	Ulundurp et	Periyaku rukkai	23.8 5	14.3 1	9.5 4	38.1 6	47.70	Strength ening the Tank Bund	115 0							
									Reconstr uction of sluices	2							
									Reconstr uction of weir	1							
									Supply Channel	200 0							

	1 8	Mohalar	Thirugovi lur	Mohalar	30.9 2	18.5 5	12. 36	49.4 7	61.83	Strength ening the Tank Bund Reconstr	900							
										uction of sluices	2							
										Reconstr uction of weir	1							
										Repair to anicut	1							
										Supply Channel	150 0							
			Total		267. 71	160. 63	107 .06	428. 34	535. 40	Strengt hening the Tank Bund	821 0							
										Reconst ruction of sluices	12							
										Repair to sluice	-							
										Reconst ruction of weir	6							
										Repair to weir	-							
										Supply Channel	142 00							
										shutter	-							
										Repair to anicuts	3							
					KUN	JARAM	CLUSTI	ER										
4	1 9	Sikkadu	Ulundurp et	Sikkadu	22.3 6	13.4 2	8.9 4	35.7 8	44.72	Strength ening the Tank Bund	960							

									Reconstr uction of sluices	1							
									Reconstr uction of weir	1							
									Supply Channel	200 0							
2 0	Adhaiyur	 Adhaiyur	22.8 6	13.7 2	9.1 4	36.5 8	45.72		Strength ening the Tank Bund	123 0							
									Reconstr uction of sluices	1							
									Reconstr uction of weir	1							
									Supply Channel	200 0							
2 1	Kunjaram	 Kunjara m	58.1 0	34.8 6	23. 23	92.9 6	116.1 9		Strength ening the Tank Bund	129 5							
									Reconstr uction of sluices	3							
									Reconstr uction of weir	1							
									Supply Channel	200 0							
i		1	1					1	-22-		 	 			1		
2 2	Eraiyur	 Eraiyur	27.1 4	16.2 8	10. 86	43.4 2	52.78	1.5 0	Strength ening the Tank Bund	125 0							

								Reconstr uction of sluices	1							
								Reconstr uction of weir	1							
								Supply Channel	200 0							
2 3	Veeraman galam	 Veerama ngalam	20.8 2	12.4 9	8.3 2	33.3 1	41.63	Strength ening the Tank Bund	101 0							
								Reconstr uction of weir	1							
								Supply Channel	150 0							
2 4	Vadukuru mbur	 Vadukur umbur	43.3 2	25.9 9	17. 33	69.3 1	86.64	Strength ening the Tank Bund	175 0							
								Reconstr uction of sluice	2							
								Reconstr uction of weir	1							
								Supply Channel	150 0							

2 5	S.Malaiya nur	u	S.Malaiy anur	29.0 2	17.4 2	11. 60	46.4 5	58.05	Strengt ening th Tank Bund	h ne 229 8							
									Reconst uction of sluice	of 2							
									Reconst uction o weir	tr of 1							
									repair t anicut	⁰ 1							
									Supply Channe	110 1 0							
2 6	Koovadu		Koovadu	45.5 5	27.3 3	18. 21	72.8 8	91.09	Strengt ening th Tank Bund	h ne 124 0							
									Reconst uction of sluice	of 3							
									Reconst uction o weir								
									Supply Channe	200 1 0							
2 7	Naivanai		Naivanai	30.7 9	18.4 7	12. 31	49.2 6	61.57	Strengt ening th Tank Bund	h ne 129 0							
									Reconst uction of sluice	of 2							
									Reconst uction o weir	tr of 1							
									Supply Channe	200 200 200							

2 8	Pinnalava di	n	Pinnalav adi	31.5 1	18.9 1	12. 6	50.4 2	63.02		Strength ening the Tank Bund	112 4							
										Reconstr uction of sluice	1							
										Supply Channel	200 0							
																		1
		Total		331. 47	198. 89	132 .54	530. 37	661. 41	1.5 0	Strengt hening the Tank Bund	134 47							1
										Reconst ruction of sluice	16							1
										Repair to sluice	-							1
										shutter	-							1
										Reconst ruction of weir	9							1
										Repair to anicut	1							1
										Supply Channel	181 00							

5	2 9	Arukurykk ai	Thiruven nai nallur	Arukuryk kai	39.0 3	23.4 2	15. 61	62.4 5	78.06		Strength ening the Tank Bund	162 0							
											Reconstr uction of sluice	2							
											Repair to weir	1							
											Repair to anicut	1							
											Supply Channel	200 0							
	3 0	Dhamal	Ulundurp et	Dhamal	25.5 1	15.3 1	10. 2	40.8 2	51.02		Strength ening the Tank Bund	160 0							
											Reconstr uction of sluice	1							
											Repair to weir	1							
											Repair to anicut	1							

1					I	I				I	I			l	I		I	l	I	I	I	I	I	1
											Supply Channel	300 0												
											24													
	3 1	Kiliyur	u	Kiliyur	25.0 6	15.0 4	10. 02	40.1	50.12		Strength ening the Tank Bund	125 0												
											Reconstr uction of sluice	3												
											Repair to weir	1												
											Supply Channel	150 0												
	3 2	M.Kunnat hur		M.Kunna thur	32.0 5	19.2 3	12. 82	51.2 8	64.10		Strength ening the Tank Bund	120 0												
											Reconstr uction of sluice	1												
											Weir repair	1												

									Supply Channel	200 0							
3 3	Puthanant hal	u	Puthana nthal	25.5	15.3	10. 2	40.8	51.00	Strength ening the Tank Bund	151 0							
									Reconstr uction of sluice	2							
									Weir repair	1							
									Repair to anicut	1							
									Supply Channel	200 0							
3 4	Nathamoo r	u	Nathamo or	41.2 1	24.7 3	16. 49	65.9 4	82.43	Strength ening the Tank Bund	125 0							
									Reconstr uction of sluice	2							

										Repair to weir Supply	200							
										Channel 25	0							
3 5	Athur	Thirunval aur	Athur	21.7 7	13.0 6	8.7	34.8 3	43.53	-	Strength ening the Tank Bund	675							
										Reconstr uction of sluice	1							
										Repair to weir	1							
				210.	126.	84.	336.	420		Supply Channel Repair to	360 0							
		Total		13	09	04	22	420. 26		to anicut Strengt hening the Tank	3 910 5							

										Reconst ruction of sluice	12							
										Repair to sluice	-							
										Shutter	-							
										Reconst ruction of weir	-							
										Repair to weir	7							
										Supply Channel	161 00							
					KALAM	ARUTHI	JR CLU	STER										
6	3 6	Adhanur	Thirunav alur	Adhanur	26.7	16.0 2	10. 68	42.7 2	53.4	Strength ening the Tank Bund	180 0							
										Reconstr uction of sluice	2							
										Repair to weir	1							
										Supply Channel	200 0							

3 7	Kalamarut hur	u	Kalamar uthur	71.2 6	42.7 5	28. 5	114. 01	142.5 1	Strength ening the Tank Bund	270 0								
									Reconstr uction of sluice	2								
									Repair to weir	1								
									Supply Channel	360 0								
_			_						26			_	_					
3 8	Orathur	n	Orathur	54.6 6	32.7 9	21. 86	87.4 5	109.3 1	Strength ening the Tank Bund	250 0								
									Reconstr uction of sluice	2								
									Supply Channel	500 0								
3 9	Pa.killanu r		Pa.killan ur	22.3 6	13.4 2	8.9 4	35.7 8	44.72	Strength ening the Tank Bund	270 0								

									Reconstr uction of sluice	3							
									Supply Channel	200 0							
4 0	Pachapala yam	n	Pachapal ayam	20.9 2	12.5 5	8.3 6	33.4 7	41.83	Strength ening the Tank Bund	200 0							
									Reconstr uction of sluice	2							
									Reconstr uction of weir	1							
									Repair to anicut	1							
									Supply Channel	270 0							

4 1	U.Sellur	п	U.Sellur	21.4 6	12.8 8	8.5 8	34.3 4	42.92	-	Strength ening the Tank Bund	230 0							
										Reconstr uction of sluice	2							
										Repair to weir	1							
										Supply Channel	150 0							

27

ī	i.	1	 1	i 1	1	1	1		1				I	 i		1	1	 	 	ı ı
	4 2	Pandur	 Pandur	41.2 2	24.7 3	16. 48	65.9 5	82.43		Strength ening the Tank Bund	120 0									
										Reconstr uction of sluice	2									
										Supply Channel	300 0									

4 3	Arali	I	Arali	29.0 2	17.4 1	11. 61	46.4 3	58.04	Strength ening the Tank Bund	955							
									Reconstr uction of sluice	2							
									Supply Channel	200 0							
		Total		287. 60	172. 55	115 .01	460. 15	575. 16	Repair to anicut	1							
									Strengt hening the Tank Bund	161 55							
									Reconst ruction of sluice	17							
									Reconst ruction of weir	1							
									Repair to weir	3							

											Shutter	-								
											Supply Channel	218 00								
					PA	DUR CL	USTER													
7	4 4	Semmang ur	Thirunav alur	Semman gur	35.4 0	21.2 4	14. 15	56.6 4	70.79		Strength ening the Tank Bund	124 2								
											Reconstr uction of sluice	2								
											Repair to weir	1								
											Supply Channel	150 0								
											28			I		L			I	
	4 5	Nagar		Nagar	23.5 0	14.1	9.4	37.6	45.50	1.5	Strength ening the Tank Bund	149 2								
											Reconstr uction of sluice	1								
											Repair to weir	1								

									Supply Channel	100 0							
4 6	Sengurich i		Senguric hi	26.8 8	16.1 3	10. 74	43.0 1	53.75	Strength ening the Tank Bund	130 0							
									Reconstr uction of sluice	1							
									Supply Channel	200 0							
4 7	Padur	U	Padur	122. 88	73.7 2	49. 15	196. 6	245.7 5	NO ACTIVITI ES								
4 8	Mathiyanu r	u	Mathiyan ur	23.3 1	13.9 9	9.3 2	37.3	46.62	Strength ening the Tank Bund	137 0							
									Rec onstructi on of sluice	2							
									Repair to weir	1							
									Supply Channel	300 0							

	Total	231. 97	139. 18	92. 76	371. 15	462. 41	1.5 0	Strengt hening the Tank Bund	540 4							
								Rec onstruct ion of sluice	6							
								Repair to sluice	-							
								shutter	-							
								Repair to weir	3							
								Supply Channel	750 0							
	 							29								
		KAL	ATHUR	CLUSTE	R											

8	4 9	Koo.Kalla kurichi	Thirunav alur	Koo.Kall akurichi	26.9 5	16.1 7	10. 77	43.1 2	53.89	Strength ening the Tank Bund	132 5							
										Rec onstructi on of sluice	2							
										Weir repair	1							
										Supply Channel	200 0							
	5 0	Mattigai	"	Mattigai	23.1	13.8 6	9.2 4	36.9 6	46.2	Strength ening the Tank Bund	160 0							
										Rec onstructi on of sluice	2							
										Repair to weir	1							
										Supply Channel	200 0							
	5 1	Senthana du	u	Senthan adu	39.1 2	23.4 7	15. 64	62.5 9	78.23	Strength ening the Tank Bund	106 0							
										Rec onstructi on of sluice	1							
										Repair to weir	1							
										Supply Channel	200 0							

5 2	Manalur	п	Manalur	59.3 2	35.5 8	23. 72	94.9	118.6 2	NO ACTIVITI ES								
5 3	T. Kalattur		Kalattur	65.7 7	39.4 6	26. 3	105. 23	131.5 3	Strength ening the Tank Bund	260 0							1
									Rec onstructi on of sluice	2							1
									Repair to weir	1							I
									Repair to anicut	1							I
									Supply Channel	150 0							I
		Total		214. 26	128. 54	85. 67	342. 8	428. 47	Strengt hening the Tank Bund	658 5							1
									Rec onstruct ion of sluice	7							l
									Repair to sluice	-							I
									Repair to anicut	1							I
									Shutter	-							I
									Rec onstruct ion of weir	-							1
									repair of weir	4							I
									Supply Channel	750 0							I
									30								

					VELL	AIYUR	CLUST	ER										
9	5 4	Anganur	Ulundurp et	Anganur	39.8 5	23.9 1	15. 94	63.7 6	79.70	NO ACTIVITI ES								
	5 5	Emam	n	Emam	21.5 9	12.9 5	8.6 4	34.5 4	43.18	Strength ening the Tank Bund	106 0							
										Rec onstructi on of sluice	1							
										Repair to weir	1							
										Supply Channel	200 0							
	5 6	Vellaiyur	u	Vellaiyur	61.5 4	36.9 2	24. 62	98.4 6	123.0 8	NO ACTIVITI ES								
	5 7	Pu.Konan avadi	u	Pu.Kona navadi	23.2	13.9 2	9.2 8	37.1 2	46.40	Strength ening the Tank Bund	114 0							
										Rec onstructi on of sluice	1							

										Repair to weir	1							
										Supply Channel	200 0							
5 8	U.Keeran ur	u	U.Keera nur	28.0 9	16.8 5	11. 24	44.9 4	56.18		Strength ening the Tank Bund	115 0							
										Rec onstructi on of sluice	2							
										Repair to weir	1							
										Supply Channel	150 0							
5 9	Ulundur	u	Ulundur	27.5 2	16.5 1	11. 01	44.0 3	50.21	4.8 3	Strength ening the Tank Bund	120 0							
										Rec onstructi on of sluice	1							
										Supply Channel	200 0							

					31							

6 0	Sirupakka m	u	Sirupakk am	24.3 5	14.6 1	9.7 4	38.9 6	48.70		Strength ening the Tank Bund	630							
										Rec onstructi on of sluice	1							
										Repair to weir	1							
										Supply Channel	200 0							
		Total		226. 14	135. 67	90. 47	361. 81	447. 45	4.8 3	Strengt hening the Tank Bund	518 0							
										Reconst ruction of sluice	6							
										Repair to sluice	-							
										Shutter	-							

										Repair to weir	4							
										Supply Channel	950 0							
					A. PI	UTHUR	CLUSTE	ĒR										
1 0	6 1	Sembiyad evi	Ulundurp et	Sembiya devi	23.9 5	14.3 7	9.5 8	38.3 2	47.9	Strength ening the Tank Bund	582							
										Rec onstructi on of sluice	1							
										Supply Channel	150 0							
	6 2	Alangiri		Alangiri	26.7 2	16.0 3	10. 68	42.7 5	53.43	Strength ening the Tank Bund	870							
										Rec onstructi on of sluice	1							
										Repair to weir	1							
										Supply Channel	200 0							

6 3	Salapakka m	п	Salapakk am	20.5 6	12.3 3	8.2 2	32.8 9	41.11	Strength ening th Tank Bund	920							
									Rec onstruct on of sluice	ⁱ 1							
									Repair to weir) 1							
									Supply Channe	150 0							
									32								
6 4	A.Puthur		A.Puthur	29.9	17.9 4	11. 96	47.8 4	59.8	Strength ening th Tank Bund	9 700							
									Rec onstruct on of sluice	ⁱ 1							
									Supply Channe	150 0							
		Total		101. 13	60.6 7	40. 44	161. 8	202. 24	Strengt hening the Tank Bund	307 2							
									Rec onstruc ion of sluice	4							
									Repair to sluic	-							

								Shutter	-							
								Repair to weir	2							
								Supply Channel	650 0							
	Grand T Tanks in V Dist	'illupuram	220 9.92	883 .87	353 5.77	### ###	11. 83									

CHAPTER-1.2 HYDROLOGY

1.2.1. General

Gadilam Sub Basin forms part of Pennaiyar Basin.

1.2.2. Location :

Gadilam river originates from the tank surplus of Mariyanur Tank and the drainage from Melaphazhangoor reserve forest in Kallakurichi Taluk of Villupuram District. The river after traversing in Villupuram and Cuddalore District confluences into Bay of Bengal near Devanampattinam near Cuddalore Town.

1.2.3. Catchement area of Gadilam Sub Basin

The catchments area of Gadilam Sub Basin lies almost plain Terrain and the river meanders about 120Km before confluences into Bay of Bengal.

1.2.4. HYDRO METEOROLOGY

The Hydro Meteorology parameters include rainfall, temperature, humidity, wind velocity, evaporation and duration of sub shine which determine the climate of the basin.

1.2.4. RAIN FALL

Average annual rainfall of gauging stations influencing this sub basin is 1315.8mm

Sl. No.	North East Monsoon	Summer	South west monsoon	Winter	Annual.
1.	773.7	95.7	392.4	54.1	1315.3 mm

a. <u>CLIMATE :-</u>

The Gadilam sub basin lies in coastal belt having an annual average rainfall of 964mm. This basin receives a major share of its rainfall during NE Monsoon. This monsoon helps to build up storage in the non system tanks. For the measurement of Hydro Meteorological parameters in the basin area, there is one weather station at Cuddalore, its data is taken for the study.

b. SOIL CLASSIFICATION :-

In this sub basin, due to different stages, Weathering and parent material, the soil types are met with in combination of inceptisol, Alfisol and Vertisol. More prominent type is inceptisol.

Inceptisol	Red or brown or grey soil with surface horizon more developed than sub surface. They are developing soils, moderately deep, coarse loamy to loam moderately drained to well drained.	
Alfisol	The red or brown soils having accumulation of alleviated clay in sub surface horizon it well drained, poor water and nutrient holding capacity	
Vertisols	Block soil	Suitable for cotton Pulses etc.,

1.2.6. DEMOGRAPHY

Name of Sub	Total No.	Total No. of		Population	
Basin	of Blocks	Villages	2004	2010	2025
Gadilam Sub Basin	12	138			

<u>1.2.7. WATER POTENTIAL</u>

Surface Water potential	: 227.22 Mcum.
Ground water yield	: 473.36 Mcum
Total	: 700.58 Mcum

1.2.8. WATER DEMAND

			WITHOUT PROJECT	WITH PROJECT
i)	Domestic	:	27.30 Mcum	27.30 Mcum
ii)	Live Stock	:	24.85 Mcum	24.85 Mcum
iii)	Industrial	:	50.26 Mcum	50.26 Mcum
iv)	Irrigation(PWD Tanks)	:	119.18 Mcum	119.78 Mcum
v)	P.U. Tanks	:	103.20 Mcum	103.20 Mcum
	Total	:	324.79 Mcum	328.39 Mcum

1.2.9. WATER BALANCE

Surplus :

375.79 Mcum.

375.19 Mcum

			CR	OPPING	PATTER	N				
Nam		Gadila				Fully			2203.82	Ha
Distr		Villupur				Partially			1322.29	Ha
Regi		4419.6				Gap			893.53	Ha
						Total			4419.64	На
S.No	•		Without	Proiect			With F	Project		
	Стор	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	Increase
I	Perennial crop									
1	Coconut	0.00	61.00	0.00	61.00	61.00	0.00	0.00	61.00	0
2	Fodder	3.00	1.00	0.00	4.00	10.00	0.00	0.00	10.00	6.00
3	Casuarina	0.00	160.00	0.00	160.00	200.00	0.00	0.00	200.00	40.00
4	Oilpalm	11.00	0.00	0.00	11.00	20.00	0.00	0.00	20.00	9.00
5	Cashew	0.00	20.00	0.00	20.00	30.00	0.00	0.00	30.00	10.00
6	Guava	16.00	16.00	0.00	32.00	40.00	0.00	0.00	40.00	8.00
	Sub Total	30.00	258.00	0	288.00	361.00	0	0	361.00	73.00
II	Annual crop									
1	Sugar Cane	687.06	0.00	0.00	687.06	687.06	0.00	0.00	687.06	0
2	Banana	12.00	0.00	0.00	12.00	20.00	0.00	0.00	20.00	8.00
3	Tapioca	0.00	90.00	75.00	165.00	223.00	0.00	0.00	223.00	58.00
4	Tuermeric	200.00	190.00	50.00	440.00	500.00			500.00	60.00
5	Water melon	20.00	0.00	0.00	20.00	25.00	0.00	0.00	25.00	5.00
	Sub Total	919.06	280.00	125.00	1324.06	1455.06	0	0	1455.06	131.00
III	1st crop									
1. a	Paddy	938.11	0.00	0.00	938.11	0.00	0.00	0.00	0	-938.11
b	Paddy - SRI		0.00	0.00	0	780.00	0.00	0.00	780.00	780.00
2	Blackgram	0.00	220.00	250.00	470.00	500.00	0.00	0.00	500.00	30.00
3	Maize	150.00	190.00	59.17	399.17	400.00	0.00	0.00	400.00	0.83
4	Groundnut	79.65	194.99	275.36	550.00	550.00	0.00	0.00	550.00	0
5	Gingely	0.00	105.00	0.00	105.00	50.75	0.00	0.00	50.75	-54.25
6	Cumbu	0.00	74.30	161.17	235.47	200.00	0.00	0.00	200.00	-35.47
7	Brinjal	30.00	0.00	10.00	40.00	45.00	0.00	0.00	45.00	5.00
8	Crossandra	12.00	0.00	0.00	12.00	15.00	0.00	0.00	15.00	3.00
9	Gourds	45.00	0.00	0.00	45.00	50.00	0.00	0.00	50.00	5.00
10	Buildings/others	0.00	0.00	12.83	12.83	0.00	0.00	12.83	12.83	0
	Sub Total	1254.76	784.29	768.53	2807.58	2590.75	0	12.83	2603.58	-204.00
	Grand Total (I+II+III)	2203.82	1322.29	893.53	4419.64	4406.81	0	12.83	4419.64	0
IV	2 nd Crop									
1. a	Paddy	-	600.00	0.00	600.00	0.00	0.00	0.00	0	-600.00
b	Paddy - SRI	-	0.00	0.00	0	600.00	0.00	0.00	600.00	600.00
2	Groundnut	-	50.00	0.00	50.00	475.00	0.00	0.00	475.00	425.00
3	Maize	-	0.00	0.00	0	650.00	0.00	0.00	650.00	650.00
4	Blackgram	-	40.00	0.00	40.00	550.00	0.00	0.00	550.00	510.00
5	Bhendi	-	10.00	0.00	10.00	25.00	0.00	0.00	25.00	15.00
6	Brinjal	-	10.00	0.00	10.00	20.00	0.00	0.00	20.00	10.00
7	Crossandra	-	20.00	0.00	20.00	25.00	0.00	0.00	25.00	5.00
8	Chillies	-	10.00	0.00	10.00	25.00	0.00	0.00	25.00	15.00
	Total	0	740.00	0	740.00	2370.00	0	0	2370.00	1630.00
V	3rd Crop									
	Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Great Grand Total	2203.82	2062.29	893.53	5159.64	6776.81	0	12.83	6789.64	1630.00
	Cropping Intensity				116.45%				153.33%	

EE (WRD)

JD (AH) TNAU DD

JD(Agri)

			CR	OPPING	PATTER	RN				
Na		Gadila				Fully			2645.33	На
Distr		Cuddal				Partially			1772.66	На
Regi		4937.3				Gap			519.32	Ha
						Total			4937.31	Ha
S.No	0		Without	Project		,	With F	Project		
	Сгор	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	Increase
-	Perennial crop									
1	Coconut		73.45	0.00	73.45	73.45	0.00	0.00	73.45	0
2	Mango			0.00	0	5.00	0.00	0.00	5.00	5.00
3	Sapota	2.00		0.00	2.00	12.00	0.00	0.00	12.00	10.00
4	Guava	198.00		0.00	198.00	303.00	0.00	0.00	303.00	105.00
5	Moringa	16.00		0.00	16.00	16.00	0.00	0.00	16.00	0
6	Casuarina			0.00	0	10.00	0.00	0.00	10.00	10.00
7	Oilpalm		17.00	0.00	17.00	17.00	0.00	0.00	17.00	0
	Sub Total	216.00	90.45	0	306.45	436.45	0	0	436.45	130.00
II	Annual crop									
1	Sugar Cane	326.00	850.26		1176.26	850.00	0.00	0.00	850.00	-326.26
2	Banana	218.00			218.00	343.00	0.00	0.00	343.00	125.00
3	Jasmine	52.00			52.00	77.00	0.00	0.00	77.00	25.00
4	Tapioca	134.00			134.00	134.00			134.00	0
5	Fodder				0	50.00	0.00	0.00	50.00	50.00
	Sub Total	730.00	850.26	0	1580.26	1454.00	0	0	1454.00	-126.26
III	1st crop									
1. a	Paddy	1593.33	696.95	0.00	2290.28	0.00	0.00	0.00	0	-2290.28
b	Paddy - SRI	0.00	0.00	0.00	0	1977.92	0.00	0.00	1977.92	1977.92
2	Pulses		6.00	0.00	6.00	360.00	0.00	0.00	360.00	354.00
3	Cumbu		69.00	0.00	69.00	50.00	0.00	0.00	50.00	-19.00
4	Ragi		60.00	0.00	60.00	70.00	0.00	0.00	70.00	10.00
5	Maize		0.00	0.00	0	251.00	0.00	0.00	251.00	251.00
6	Brinjal	43.00	0.00	0.00	43.00	158.00	0.00	0.00	158.00	115.00
7	Bhendi	31.00	0.00	0.00	31.00	121.00	0.00	0.00	121.00	90.00
8	Chillies	12.00	0.00	0.00	12.00	22.00	0.00	0.00	22.00	10.00
9	Gourds	20.00	0.00	0.00	20.00	30.00	0.00	0.00	30.00	10.00
10	Crossandra		0.00	0.00	0	0.00	0.00	0.00	0	0
11	Fallow		0.00	512.38	512.38		0.00	0.00	0	-512.38
12	Uncultivated/Buildin		0.00	6.94	6.94		0.00	0.00	6.94	6.94
	Sub Total	1699.33	831.95	519.32	3050.60	3039.92	0	0	3046.86	3.20
	Grand Total (I+II+III)	2645.33	1772.66	519.32	4937.31	4930.37	0	0	4937.31	6.94
IV	2 nd Crop									
1. a	Paddy	200.00	649.00	0.00	849.00	0.00	0.00	0.00	0	-849.00
b	Paddy - SRI	0.00	0.00	0.00	0	849.00	0.00	0.00	849.00	849.00
2	Groundnut	0.00	80.00	0.00	80.00	100.00	0.00	0.00	100.00	20.00
3	Maize	0.00		0.00	0	200.00	0.00	0.00	200.00	200.00
4	Pulses	0.00	60.00	0.00	60.00	300.00	0.00	0.00	300.00	240.00
5	Gingely	0.00	10.00	0.00	10.00	50.00	0.00	0.00	50.00	40.00
6	Brinjal	30.00	0.00	0.00	30.00	30.00	0.00	0.00	30.00	0
7	Bhendi	11.00	0.00	0.00	11.00	21.00	0.00	0.00	21.00	10.00
8	Chillies	18.00	0.00	0.00	18.00	48.00	0.00	0.00	48.00	30.00
	Total	259.00	799.00	0	1058.00	1598.00	0	0	1598.00	540.00
	Great Grand Total	2904.33	2571.66	519.32	5995.31	6528.37	0	0	6535.31	546.94
	Cropping Intensity				110.91%				132.37%	

EE (WRD)

JD (AH) TNAU DD JD(Agri)

Page 47 Gadilam Sub Basin - Pennaiyar Basin

Crop Water Requirement Without Project

SI. No	Name of Crop	Area in Ha	Crop water requiremen t in mm	water	Irrigation water requirement at source Eff = 53%	Total Irrigation requirem ent in Mcm
Ι	Perennial crop					
1	Coconut	134.45	1063	1.429	2.70	2.70
2	Mango	0.00	592	0.000	0.00	0
3	Sapota	2.00	292	0.006	0.01	0.01
4	Guava	230.00	256	0.589	1.11	1.11
5	Moringa	16.00	256	0.041	0.08	0.08
6	Casurina	160.00	290	0.464	0.88	0.88
7	Oilpalm	28.00	290	0.081	0.15	0.15
8	Fodder cross	4.00	438	0.018	0.03	0.03
9	Cashew	20.00	644	0.129	0.24	0.24
	Sub Total	594.45		2.76	5.20	5.20
Ш	Annual Crop					
1	Sugarcane	1863.32	951	17.720	33.43	33.43
2	Banana	230.00	1024	2.355	4.44	4.44
3	Jasmine	52.00	509	0.265	0.50	0.50
4	Tapioca	224.00	538	1.205	2.27	2.27
5	Fodder	0.00	138	0.000	0.00	0
6	Turmeric	390.00	448	1.747	3.30	3.30
7	Watermelon	20.00		0.050	0.09	0.09
	Sub Total	2779.32		23.34	44.03	44.03
III	l crop					
1.a	Paddy	3228.39	786	25.375	47.88	47.88
1.b	Paddy - SRI	0.00	550	0.000	0.00	0
2	Maize	340.00	550	1.870	3.53	3.53
3	Pulses	226.00	302	0.683	1.29	1.29
4	Groundnut	274.64	635	1.744	3.29	3.29
5	Cumbu	143.30	357	0.512	0.97	0.97
6	Ragi	60.00	308	0.185	0.35	0.35
7	Brinjal	73.00	464	0.339	0.64	0.64
8	Bhendi	31.00	315	0.098	0.18	0.18
9	Chilies	12.00	1017	0.122	0.23	0.23
10	Gingelly	105.00	342	0.359	0.68	0.68
11	Gourds	65.00	268	0.174	0.33	0.33
12	Crossandra	12.00	350	0.042	0.08	0.08
13	Fallow	0.00	0	0.000	0	0
14	Buildings/others	0.00	0	0.000	0	0
	Sub Total	4570.33		31.50	59.45	59.45
	Grand Total (I+II+III)	7944.10		57.60	108.68	108.68
			Page 48			

IV II crop					
	IV	II Crod			

	Great Grand Total	9742.10		63.16	119.18	119.18
	Total	1798.00		5.56	10.50	10.50
9	Crossandra	20	350	0.070	0.13	0.13
8	Chilies	28	812	0.227	0.43	0.43
7	Bhendi	21	315	0.066	0.12	0.12
6	Brinjal	40	464	0.186	0.35	0.35
5	Gingelly	10	342	0.034	0.06	0.06
4	Groundnut	130	211	0.274	0.52	0.52
3	Pulses	100	300	0.300	0.57	0.57
2	Maize	0	550	0.000	0	0
b	Paddy - SRI	0	213	0.000	0	0
1.a	Paddy	1449	304	4.405	8.32	8.32

Gadilam Sub Basin - Pennaiyar Basin

SI. No	Name of Crop		Crop water	Total Crop water requirement	Irrigation	Total Irrigation requirem ent in
				in Mcm	Eff = 56%	Mcm
	Perennial crop					
1	Coconut	134.45	1063	1.429	2.55	2.55
2	Mango	5.00	592	0.030	0.05	0.05
3	Sapota	12.00	292	0.035	0.06	0.06
4	Guava	343.00	256	0.878	1.57	1.57
5	Moringa	16.00	256	0.041	0.07	0.07
6	Casurina	210.00	290	0.609	1.09	1.09
7	Oilpalm	37.00	290	0.107	0.19	0.19
8	Fodder cross	10.00	438	0.044	0.08	0.08
9	Cashew	30.00	644	0.193	0.35	0.35
	Sub Total	797.45		3.37	6.01	6.01
Ш	Annual Crop					
1	Sugarcane	1537.06	951	14.617	26.10	26.10
2	Banana	363.00	1024	3.717	6.64	6.64
3	Jasmine	77.00	509	0.392	0.70	0.70
4	Tapioca	357.00	538	1.921	3.43	3.43
5	Fodder	50.00	138	0.069	0.12	0.12
6	Turmeric	500.00	448	2.240	4.00	4.00
7	Watermelon	25.00	250	0.063	0.11	0.11
	Sub Total	2909.06		23.02	41.10	41.10
III	l crop					
1.a	Paddy	0.00	786	0.000	0	0
1.b	Paddy - SRI	2757.92	550	15.174	27.10	27.10
2	Maize	651.00	550	3.581	6.39	6.39
3	Pulses	860.00	302	2.597	4.64	4.64
4	Groundnut	550.00	635	3.496	6.24	6.24
5	Cumbu	250.00	357	0.893	1.59	1.59
6	Ragi	70.00	308	0.216	0.39	0.39
7	Brinjal	203.00	464	0.942	1.68	1.68
8	Bhendi	121.00	315	0.381	0.68	0.68
9	Chilies	22.00	1017	0.224	0.4	0.4
10	Gingelly	50.75	342	0.174	0.31	0.31
11	Gourds	80.00	268	0.214	0.38	0.38
12	Crossandra	15.00	350	0.053	0.09	0.09
13	Fallow	0.00	0	0.000	0	0
14	Buildings/others	0.00	0	0.000	0	0
	Sub Total	5630.67		27.95	49.89	49.89
	Grand Total (I+II+III)	9337.18		54.33	97.00	97.00
			Page 50			

Crop Water Requirement With Project

IV	ll crop					
1.a	Paddy	0	304	0.000	0	0
b	Paddy - SRI	1449	213	3.083	5.51	5.51
2	Maize	850	550	4.675	8.35	8.35
3	Pulses	850	300	2.550	4.55	4.55
4	Groundnut	575	211	1.213	2.17	2.17
5	Gingelly	50	342	0.171	0.31	0.31
6	Brinjal	50	464	0.232	0.41	0.41
7	Bhendi	46	315	0.145	0.26	0.26
8	Chilies	73	812	0.593	1.06	1.06
9	Crossandra	25	350	0.088	0.16	0.16
	Total	3968.00		12.75	22.78	22.78
	Great Grand Total	13305.18		67.08	119.78	119.78
			Pag e 51			

• •	۱	٨	I

Surface Water Potential Ground Water Potential	= =	227.22 Mcm 473.36 Mcm
Total Potential	=	700.58 Mcm
w		
Domestic	=	27.30 Mcm
Livestock	=	24.85 Mcm
Industrial	=	50.26 Mcm
Irrigation WRO	=	119.78 Mcm
PU & GW	=	103.20 Mcm
Total Water Demand	=	325.39 Mcm
Water Balance	=	375.19 Mcm

Gadilam Sub Basin - Pennaiyar Basin

<u>Water</u>

Total Potential	=	700.58 Mcm
Ground Water	=	473.36 Mcm
Surface Water	=	227.22 Mcm

<u>Water</u>

-

Domestic		=	27.30 Mcm
Livestock		=	24.85 Mcm
Industrial		=	50.26 Mcm
Irrigation	WRO	=	119.18 Mcm
	PU & GW	=	103.20 Mcm
Total Wate	er Demand	=	324.79 Mcm
Water Bala	ance	=	375.79 Mcm

Page 52 A

CHAPTER-1.3 HYDRAULICS OF THE COMPONENTS

•••	j	S OF TANKS NAME OF T				
SI. No.	Name of Tank	Village	Ayacut in Ha	Capacity Mcum.	No. Fillings	Annual Storage.
1	Yal	Yal	65.28	13.34	2	26.68
2	Melapangur	Melapangur	56.50	9.23	3	29.69
3	Peral	Peral	54.66	12.66	4	50.64
4	Sathaputtur	Sathaputtur	43.12	11.14	5	55.70
5	Pavandur	Pavandur	45.29	12.23	2	24.46
6	Pasar	Pasar	124.97	33.96	2	67.92
7	Rishivanthiyam	Rishivanthiyam	73.97	17.40	2	34.80
8	Vengalam	Vengalam	45.14	12.38	2	24.76
9	Munivzhai	Munivzhai	51.99	18.35	2	36.70
10	Kunniyur	Kunniyur	46.10	21.65	2	43.30
11	Thimmalai	Thimmalai	68.99	18.18	2	36.36
12	Panapadi	Panapadi	58.62	13.58	2	27.16
13	Kattu edaiyur	Kattu edaiyur	154.06	65.00	2	130.00
14	Alur	Alur	70.13	25.63	2	51.26
15	Memalur	Memalur	63.82	21.43	2	42.86
16	Mohalar	Mohalar	61.83	40.32	2	80.64
17	Arunkurukkai	Arunkurukkai	78.06	16.15	2	32.30
18	Dhamal	Dhamal	51.02	10.60	2	21.20
19	M. Kunnathur	M. Kunnathur	64.10	12.78	2	25.56
20	Kiliyur	Kiliyur	50.12	9.72	2	19.44
21	Nathamoor	Nathamoor	82.43	10.40	2	20.80
22	Periyakurukkai	Periyakurukkai	47.70	16.92	2	29.44
		Page 54				

1.3.1 Hydraulics of Tanks NAME OF THE SUB BASIN : GADILAM

23	Puthananthal	Puthananthal	51.00	74.10	2	148.20
24	Athur	Athur	43.53	9.00	2	18.00
25	Pachapalayam	Pachapalayam	41.83	5.12	2	10.24
26	Adanur	Adanur	53.40	10.99	2	21.98
27	Neivanai	Neivanai	61.57	12.76	2	25.52
28	Koovadu	Koovadu	91.09	18.80	2	37.60
29	Pa. killanur	Pa. killanur	44.72	10.00	2	20.00
30	Orathur	Orathur	109.37	22.50	2	45.00
31	Kalamaruthur	Kalamaruthur	142.51	117.32	2	234.64
32	Pandur	Pandur	82.43	19.92	2	39.84
33	Arali	Arali	58.04	12.10	2	24.20
34	U. Sellur	U. Sellur	42.92	10.58	2	21.16
35	Semmanagur	Semmanagur	70.79	19.57	2	39.14
36	U. Keeranur	U. Keeranur	56.18	11.57	2	23.14
37	Ulundur	Ulundur	55.04	11.15	2	22.30
38	Nagar	Nagar	47.00	9.70	2	19.40
39	Mathiyanur	Mathiyanur	46.62	10.40	2	20.80
40	Koo. Kallakurichi	Koo. Kallakurichi	53.89	26.90	2	53.80
41	Mattigai	Mattigai	46.20	16.11	2	32.22
42	Senthanadu	Senthanadu	78.23	9.15	2	18.30
43	Manalur	Manalur	118.62	13.36	2	26.72
44	Kalattur	Kalattur	131.53	23.10	2	46.20
45	Padur	Padur	245.75	50.58	2	101.16
		Page 55				

-					T	
46	Sengurichi	Sengurichi	53.75	12.06	2	24.12
47	Pu. Konanalavadi	Pu. Konanalavadi	46.40	25.50	2	51.00
48	Vellaiyur	Vellaiyur	123.08	25.30	2	50.60
49	Sirupakkam	Sirupakkam	48.70	10.15	2	20.30
50	Anganur	Anganur	79.69	12.57	2	25.14
51	A Puthur	A Puthur	59.80	51.95	2	103.90
52	Kunjaram	Kunjaram	116.19	34.36	2	12.24
53	Eraiyur	Eraiyur	54.28	51.95	2	103.90
54	Adhaiyur	Adhaiyur	45.78	16.13	2	32.26
55	Sikkadu	Sikkadu	44.72	8.50	2	17.00
56	Sempiyamadevi	Sempiyamadevi	47.90	9.87	2	19.74
57	Veeramangalam	Veeramangalam	41.63	8.58	2	17.16
58	Pinnalavadi	Pinnalavadi	63.02	15.97	2	31.94
59	S. Malaiyanur	S. Malaiyanur	58.05	11.97	2	23.94
60	Vadukurmbur	Vadukurmbur	86.64	17.50	2	35.00
61	Salapakkam	Salapakkam	41.11	10.37	2	20.74
62	Alangiri	Alangiri	53.43	10.20	2	20.40
63	Kattusellur	Kattusellur	79.24	9.96	2	19.92
64	Emam	Emam	43.18	17.38	2	34.76
65	Natham	Natham	259.04	53.32	2	106.64
66	Semakotti	Semakotti	70.85	14.58	2	29.16
67	Manamthavizhnthaputhur	Manamthavizhnthaputhur	62.13	12.50	2	25.00
68	L.N. Puram	L.N. Puram	122.68	25.25	2	50.50
		Page 56				
69	Poongunam	Poongunam	86.29	17.76	2	35.52

					1	
70	P.N.Palayam	P.N.Palayam	68.62	14.12	2	28.24
71	Veeraprumanallur	Veeraprumanallur	259.03	106.63	2	213.26
72	Sirugramam	Sirugramam	191.50	78.83	2	157.66
73	Siruvathur	Siruvathur	214.26	88.20	2	176.40
74	Manapakkam	Manapakkam	57.51	23.27	2	46.54
75	Semmedu	Semmedu	46.56	20.40	2	40.80
76	Vizur zamberi	Vizur zamberi	58.04	23.89	2	47.78
77	Thiruvamur	Thiruvamur	30.60	18.67	2	37.34
78	Chetipattadai	Chetipattadai	274.52	113.84	2	227.68
79	Pandarakotti	Pandarakotti	41.25	16.97	2	33.94
80	Elumedu	Elumedu	117.41	48.33	2	96.66
81	C N Palayam	C N Palayam	50.20	20.67	2	41.34
82	Elanthampattu	Elanthampattu	156.29	26.05	2	52.10
83	Ramapuram Devan Eri	Ramapuram Devan Eri	77.70	32.00	2	64.00
84	Vilangalpattu Tnk	Vilangalpattu Tnk	78.91	16.00	2	32.00
85	Naduveerapatu Tank	Naduveerapatu Tank	106.84	34.00	2	68.00
86	Thottapattu Tank	Thottapattu Tank	66.48	7.20	2	14.40
87	Varakalpattu tank	Varakalpattu tank	114.56	13.50	2	27.00
88	Gunamangalam Tank	Gunamangalam Tank	252.50	26.85	2	53.70
89	Eidanur Tank	Eidanur Tank	135.16	22.87	2	45.74
90	Vali Odai Tank	Vali Odai Tank	222.40	39.00	2	78.00
91	Naduveerpattu old tank	Naduveerpattu old tank	106.88	34.00	2	68.00
		Page 57				

1.3.1 HYDRAULIC PARTICULARS

NA	ME OF THE SUB E	BASIN : GADILA	M				-	ANIC	UT					-					
V0	Name of Anicut		cut	of Anicut 1)	Crest level of Anicut	nt	q.Km	d Sq.km	m flood cumecs / ecs	Head Sluice Location	Vent (M)	d Sluice	Cumecs	Supply Channel					
SI.No		Village Block	Ayacut	Length of Anicut (M)		Front	Free Sq.Km	Combined Sq.km Maximum flood discharge cumecs / Cusecs	Head 9 Loca	Vent	Sill Level Sluice	Discharge Cumecs	Length (M)	Bed Width (M)	FSD (M)	Bed slope	Sluice	Remarks.	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ι	Ulundurpet Section																		
	<u>Gadilam River</u>																		
1	Kattu Edaiyar	Kattu Edaiyar	- 154.06	50	100.00						Onen of			2700	3.00	0.80	1/200		
	5	Ulunderpet								RS	Open of take						1/200		
2	Memalur	Memalur	- 63.82	50	100.00					LS				4000	3.00	0.90	1/200		
_		Thirukoilur	03.02	20	100.00						Open of take			1000	5.00	0.90	17200		
3	Alur	Alur	- 70.13	90	100.00					LS				2000	3.00	1.80	30 1/200		
5	1 1101	Thirukoilur	/0.15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	100.00					Lo	Open of take			2000	5.00	1.00	1/200		
4	Arunkurukkai	Arunkurukkai	- 78.06	70	100.00					LS				2000	3.00	0.90	1/200		
-		T. V. Nallur	78.00	70	100.00					LS	Open of take			2000	5.00	0.90	1/200		
5	Mohalar	Mohalar	61.83	80	100.00					RS	On on of			1500	3.00	1.60	1/200		
_		Thirukoilur									Open of take								
6	Thamal	Thamal	- 51.02	150	100.00					RS				3000	3.00	1.80	1/200		
	1 11011101	Ulunderpet	51.02	150	100.00					110	Open of take			5000	5.00	1.00	1/200		
7	Puthananthal	Puthananthal	- 246.96	150	100.00					RS				2000	3.00	1.80	1/200		
		Ulunderpet							Page	~~	1 x 0.60								

8	S. Malayanur	S. Malayanur	58.05	80	100.00				LS				1100	3.00	0.90	1/200	
0	5. Walayahu	Ulunderpet	56.05	00	100.00				LS	1 x0.90			1100	5.00	0.70	17200	
9	Antronya	Ankanur	18.62	47	100.00				LS					2.00	1.50	1/200	
9	Ankanur	Ulunderpet		47	100.00				LS	Open of take				2.00	1.50	1/200	
10	Decehenclover	Paachapalayam	41.83	56	100.00				LS				2700	4.00	0.90	1/200	
10	Paachapalayam	Thirunavalur	41.05						LS	Open of take			2700	4.00	0.90	1/200	
11	Kalathur	Kalathur	- 118.62	230	100.00			RS	DC				1500	2.00	0.90	1/200	
11		Thirunavalur	118.02						КЭ	Open of take			1300	2.00	0.90	1/200	
П	Panruti Section			_													
		Panruti		524	55.7				Left								
12	Thiruvathigai	Panruti	6469.39			51.3	2012 c/s	5	bank of anicut	6'1"x4'6"x3	51.3	150 c/s	13600	6	198 c/s	1:01	
		Cuddalore					302		uniteut						100		
13	Thiruvanthipuram	Cuddalore	3000.00	132.89	5.47		502 c/s			3'6"x5'6"x2	4.03		6800	6	100 c/s	1/2500	
	Vanamadevi	Cuddalore								2'3'3"x					101		
14		Cuddalore	839.00	156.16	12.1		-			6'x9"	10.28		8000	6	c/s	1/2500	

Total length of supply channel under Anicuts 50900

1.3.2 TANKS (Separate statement for system & Non System Tanks)

NAME OF THE SUB BASIN : GADILAM

		SOB BASIN :		1		r –	1					1					
SI.No.	District	Taluk	Name of Tank	Ayacut in Ha	Capacity in Mcft	Number of filling	Combined catchmemt in Sq.Km	Water spread area (Sq.Km)	FTL in M	MWL in M	No.of Sluices		and Length `weir (m) Length in m	Length of bund (M)	Length of Supply channel (M)	Upper Tank	Lower Tank
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Ι	Sankarapur	am Section		_													
1	Villupuram	Sankarapuram	Yal	65.28	13.34	2	1.90	42.80	100.00	100.60	2	1	36.00	1540	2900	Myyanur	Sitheri
2	Villupuram	Sankarapuram	Melapangur	56.5	9.23	3	2.50	46.34	100.00	100.60	2	1	9.00	1150	500	Forest	Nooroli Tank
3	Villupuram	Sankarapuram	Peral	54.66	12.66	4	2.30	36.38	100.00	100.60	1	1	10.00	1360	2900	Forest	Sathaputhur
4	Villupuram	Sankarapuram	Sathaputtur	43.12	11.14	5	2.80	56.34	100.00	100.60	2	2	15.00	1000	2000	Peral	Pasar
5	Villupuram	Sankarapuram	Pavandur	45.29	12.23	2	2.20	50.30	100.00	100.60	1	2	16.00	1120	2000	Forest	Pasar
6	Villupuram	Sankarapuram	Pasar	124.97	33.96	2	3.50	145.84	100.00	100.60	4	2	11.00	1000	2000	Pavadur	River
7	Villupuram	Sankarapuram	Rishivanthiyam	73.97	17.4	2	1.90	57.30	100.00	100.60	2	1	15.00	1220	3050	Forest	Vengalam
8	Villupuram	Sankarapuram	Vengalam	45.14	12.38	2	2.40	22.30	100.00	100.60	2	1	20	1000	2000	Rishivandiyam	Munivzhai
9	Villupuram	Sankarapuram	Munivzhai	51.99	18.35	2	3.10	59.35	100.00	100.60	2	2	15.00	1000	2300	Vengalam	River
			Page 60														

10	Villupuram	Sankarapuram	Kunniyur	46.1	21.65	2	1.70	63.40	100.00	100.60	2	1	37.00	850	1700	Forest	Gadilam River
11	Villupuram	Sankarapuram	Thimmalai	68.99	18.18	2	2.50	76.92	100.00	100.60	2	1	50	1450	1500	Forest	Gadilam River
П	Ulundurpet	Section															
12	Villupuram	Thirukoilur	Panapadi	58.62	13.58	2		85.50	50.000	50.600	1	1	11.60			M. thangal	kattuEdiyar
13	Villupuram	Ulundurpet	Kattu edaiyur	154.06	65.00	2	0.75	92.44	50.000	50.600	5	1	52.30	1390	2700	Panapady	Memalur
14	Villupuram	Thirukoilur	Alur	70.13	25.63	2		74.40	50.000	50.600	2	1	26.00	1630	2000	Memalur	Mohlar
15	Villupuram	Thirukoilur	Memalur	63.82	21.43	2	1.180	85.50	50.000	50.600	2	2	39.00	1760	4000	Kattue daiyar	Alur
16	Villupuram	Thirukoilur	Mohalar	61.83	40.32	2	1.05	25.35	50.000	50.600	2	1	17.00	900	1500	Alur	Arunkurukkai
17	Villupuram	Thirukoilur	Arunkurukkai	78.06	16.15	2		46.80	50.000	50.600	2	1	22.00	1620	2000	Mohalar	Damal
18	Villupuram	Ulundurpet	Dhamal	51.02	10.60	2	0.50	30.61	50.000	50.600	3	1	14.50	1600	3000	Arunkurukkai	Puthananthal
19	Villupuram	Ulundurpet	M. Kunnathur	64.10	12.78	2	0.67		50.000	50.600	2	1	18.30	1200	2000	Damal	Puthananthal
20	Villupuram	Ulundurpet	Kiliyur	50.12	9.72	2	0.56		50.000	50.600	3	1	16.30	1250	1500	Nathamur	M. Kunnathur
			Page 61														

21	Villupuram	Ulundurpet	Nathamoor	82.43	10.40	2		46.40	50.000	50.600	2	1	12.00	1250	2000	Periya kurukkai	Kiliur
22	Villupuram	Ulundurpet	Periyakurukkai	47.70	16.92	2	0.87	28.62	50.000	50.600	2	1	13.70	1150	2000	Kattu sellur	Nathamoor
23	Villupuram	Ulundurpet	Puthananthal	51.00	74.10	2		25.02	50.000	50.600	2	1	32.60	1510	2000	Kunnadur	Athur
24	Villupuram	Ulundurpet	Athur	43.53	9.00	2	0.47	95.03	50.000	50.600	1	1	16.50	675	3600	Puthananthal	Kalamarudur
25	Villupuram	Ulundurpet	Pachapalayam	41.83	5.12	2	0.70	61.99	50.000	50.600	1	1	25.00	2000	2700	Anganur	U.sellur
26	Villupuram	Ulundurpet	Adanur	53.40	10.99	2	0.76	76.20	50.000	50.600	2	1	22.60	1800	2000	Neyvani	Kalamarudur
27	Villupuram	Ulundurpet	Neivanai	61.57	12.76	2	0.48	36.94	50.000	50.600	2	3	20.00	1290	2000	Vadakurumbur	Adanur
28	Villupuram	Ulundurpet	Koovadu	91.09	18.80	2	15.26	61.94	50.000	50.600	3	1	65.70	1240	2000	Eraiyur	Neyvanai
29	Villupuram	Ulundurpet	Pa. killanur	44.72	10.00	2	0.37	64.09	50.000	50.600	4	2	29.80	2700	2000	Kalamaruthur	Orathur
30	Villupuram	Ulundurpet	Orathur	109.37	22.50	2	4.15	162.00	50.000	50.600	2	1	15.80	2500	5000	Killanur	Padur
31	Villupuram	Ulundurpet	Kalamaruthur	142.51	117.32	2	4.48	211.20	50.000	50.600	4	1	41.00	2700	3600	Athanur	Killanur
32	Villupuram	Ulundurpet	Pandur	82.43	19.92	2	3.67	46.40	50.000	50.600	2	2	28.80	1200	3000	Konara vadi	Arali
			Page 62														

33	Villupuram	Ulundurpet	Arali	58.04	12.10	2	0.36	86.02	50.000	50.600	2	2	28.10	955	2000	Pandur	Semmangur
34	Villupuram	Ulundurpet	U. Sellur	42.92	10.58	2	0.57	64.48	50.000	50.600	2	1	24.00	2300	1500	Pachapalayam	Pandur
35	Villupuram	Ulundurpet	Semmanagur	70.79	19.57	2	0.41	104.91	50.000	50.600	2	1	35.15	1242	1500	Arali	Nagar
36	Villupuram	Ulundurpet	U. Keeranur	56.18	11.57	2	7.86	80.60	50.000	50.600	2	1	37.00	1150	1500	Konala vadi	Uundur
		Ulundurpet															
37	Villupuram	Ulundurpet	Ulundur	55.04	11.15	2	0.87	33.02	50.000	50.600	1	1	16.00	1200	2000	keeranur	Nagar
38	Villupuram	Ulundurpet	Nagar	47.00	9.70	2	0.32	69.60	50.000	50.600	1	1	13.70	1492	1000	Ulundur	Senkurichi
39	Villupuram	Ulundurpet	Mathiyanur	46.62	10.40	2	1.27	86.46	50.000	50.600	2	2	15.00	1370	3000	Pu. Mampakkam	Koo. Kallakurichi
40	Villupuram	Ulundurpet	Koo. Kallakurichi	53.89	26.90	2	0.97	195.00	50.000	50.600	2	1	13.80	1325	2000	Mathi yanur	Mattigai
41	Villupuram	Ulundurpet	Mattigai	46.20	16.11	2	0.37	116.02	50.000	50.600	2	2	13.90	1600	2000	Koo. Kallakurichi	Senthanadu
42	Villupuram	Ulundurpet	Senthanadu	78.23	9.15	2	0.56	79.66	50.000	50.600	1	2	10.60	1060	2000	Mattigai	manalur
			Page 63														

43	Villupuram	Ulundurpet	Manalur	118.62	13.36	2	0.47	60.06	50.000	50.600	2	1	11.60			Senthanadu	kalathur
44	Villupuram	Ulundurpet	Kalattur	131.53	23.10	2	19.78	75.50	50.000	50.600	3	1	22.10	2600	1500	Koo. Kallakurichi	manalur
45	Villupuram	Ulundurpet	Padur	245.75	50.58	2	1.72	121.80	50.000	50.600	3	2	180.00			U. sellur	Senkurichi
46	Villupuram	Ulundurpet	Sengurichi	53.75	12.06	2	0.37	79.86	50.000	50.600	1	1	17.80	1300	2000	Nagar	Padur
47	Villupuram	Ulundurpet	Pu. Konanalavadi	46.40	25.50	2		27.84	50.000	50.600	2	1	41.80	1140	2000	Vellaiyur	U. Keeranur
48	Villupuram	Ulundurpet	Vellaiyur	123.08	25.30	2	1.70	83.69	50.000	50.600	2	2	54.50			Emam	Konalavadi
49	Villupuram	Ulundurpet	Sirupakkam	48.70	10.15	2	0.47	33.12	50.000	50.600	1	1	10.80	630	2000	Kumaramangalam	Anganur
50	Villupuram	Ulundurpet	Anganur	79.69	12.57	2	0.47	41.52	50.000	50.600	1	1	16.80			Sirupak kam	Pa chapalayam
51	Villupuram	Ulundurpet	A Puthur	59.80	51.95	2	0.76	104.82	50.000	50.600	1	1	30.50	700	1500	Sembimadevi	Pinnalavady
52	Villupuram	Ulundurpet	Kunjaram	116.19	34.36	2	1.50	79.01	50.000	50.600	3	1	76.60	1295	2000	Adiyur	Veera mangalam
53	Villupuram	Ulundurpet	Eraiyur	54.28	51.95	2	0.93	36.91	50.000	50.600	3	1	30.50	1250	2000	Kunjaram	Vada kurumbur
54	Villupuram	Ulundurpet	Adhaiyur	45.78	16.13	2	0.84	31.09	50.000	50.600	1	1	30.00	1230	2000	Sikkadu	Kunjaram
			Page 64														

55 Villupuram	Ulundurpet	Sikkadu	44.72	8.50	2	0.47	30.41	50.000	50.600	1	1	43.50	960	2000	Sembimadevi	Athaiyur
56 Villupuram	Ulundurpet	Sempiyamadevi	47.90	9.87	2	0.76	71.03	50.000	50.600	1	1	10.50	582	1500	Salapa kkam	Alangiri
57 Villupuram	Ulundurpet	Veeramangalam	41.63	8.58	2	0.72	61.77	50.000	50.600	1	1	29.00	1010	1500	Pinnala vadi	S.malayanur
58 Villupuram	Ulundurpet	Pinnalavadi	63.02	15.97	2	0.46	42.85	50.000	50.600	2	2	19.70	1124	2000	Alangiri	Veeramangalam
59 Villupuram	Ulundurpet	S. Malaiyanur	58.05	11.97	2	0.76	39.47	50.000	50.600	2	1	32.20	2298	1100	Vadakurumbur	Neyvanai
60 Villupuram	Ulundurpet	Vadukurmbur	86.64	17.50	2	7.26	58.92	50.000	50.600	2			1750	1500	Eraiyur	S. malayanur
61 Villupuram	Ulundurpet	Salapakkam	41.11	10.37	2	5.18	27.95	50.000	50.600	1	1	12.00	920	1500	Sembimadevi	Alangiri
62 Villupuram	Ulundurpet	Alangiri	53.43	10.20	2	1.62	76.66	50.000	50.600	1	1	51.00	870	2000	Salapa kkam	Pinnalvadi
63 Villupuram	Ulundurpet	Kattusellur	79.24	9.96	2	1.65	47.54	50.000	50.600	1	2	20.40	1380	2000	Kattu ediyur	Periya kurukai
64 Villupuram	Ulundurpet	Emam	43.18	17.38	2	5.47	29.35	50.000	50.600	1	3	22.50	1060	2000	Sirupa kkam	Vellaiyur
		Page 65														

ш	Panrut	i Section]													
65	Cuddalore	Panruti	Natham	259.04	53.32	2		2.43	2.61	3	2	3.70+27.10	2700	4000	Manamthavizhnthaputhur	Semakottai
66	Cuddalore	Panruti	Semakotti	70.85	14.58	2		2.49	2.67	2	1	22.00	1500	3000	Natham	Siruvathur
67	Cuddalore	Panruti	Manamthavizhnthaputhur	62.13	12.5	2		2.45	2.63	2	1	20.00	1500	4700		Natham
68	Cuddalore	Panruti	L.N. Puram	122.68	25.25	2		2.00	2.18	1	1	18.00	1700	7700		Poongunam
69	Cuddalore	Panruti	Poongunam	86.29	17.76	2		1.8	1.98	2	1	8.00	1550	3600	LN Puram	Chetti pattadai
70	Cuddalore	Panruti	PN Palayam	68.62	90.46	2		2.10	2.60	3			1700	2500	Poongunam	_
71	Cuddalore	Panruti	Veeraprumanallur	259.03	106.6	2		2.24	2.42	3	1	34	1600	4000	Sirugramam	
72	Cuddalore	Panruti	Sirugramam	191.50	78.83	2		2.02	2.2	3	1	22		1500		Veeraperumanallur
73	Cuddalore	Panruti	Siruvathur	214.26	88.2	2		3.35	3.53	4	1	45	2800	4500	Elantham pattu	
74	Cuddalore	Panruti	Manapakkam	57.51	23.27	2		2.46	2.64	2	1	15		2200	Manamthavizhnthaputhur	
75	Cuddalore	Panruti	Semmedu	46.56	20.4	2		2.37	2.56		1	8	600			
76	Cuddalore	Panruti	Vizur zamberi	58.04	23.89	2		2.37	2.56	2	1	12	1500			
77	Cuddalore	Panruti	Thiruvamur	30.60	18.67	2		2.66	2.84	2	1	25	750	2000		
78	Cuddalore	Panruti	Chetipattadai	274.52	113.8	2		2.43	2.62	5	1	12	3400	22100		Elumedu
79	Cuddalore	Panruti	Pandarakotti	41.25	16.97	2		2.27	2.45	2	1	15	1600		Oraiyur	
			Page 66													

80	Cuddalore	Panruti	Elumedu	117.41	48.33	2	1.93	2.11	4	2	6+40	2100	6500	Chetipatadai	
81	Cuddalore	Panruti	C N Palayam	50.20	20.67	2	1.46	1.64	2	1	17	1200			
82	Cuddalore	Panruti	Elanthampattu	156.29	26.05	2	2.2	2.38	4	1	40		1200	Natham	Siruvathur
IV	Cuddalore S	ection													
83	Cuddalore	Cuddalore	Ramapuram Devan Eri	77.70	32	2	1.52	2.13	1	1	11	600			
84	Cuddalore	Cuddalore	Vilangalpattu Tnk	78.91	16	2	1.68	2.28	1	1	15.4	775	3500		
85	Cuddalore	Cuddalore	Naduveerapatu New Tank	106.84	34	2	1.37	1.98	1	1	13.72	720	2300		Naduvera-pattu Old Tank
86	Cuddalore	Cuddalore	Thottapattu Tank	66.48	7.2	2	1.83	2.44	2	1	6	1500	1100	Vellapakkam	
87	Cuddalore	Cuddalore	Varakalpattu tank	114.56	13.5	2	1.83	1.44	2	1	10	1400			Verakal-pattu
88	Cuddalore	Cuddalore	Gunamangalam Tank	252.50	26.85	2	2.44	3.05	2	1	13	800	1800		
89	Cuddalore	Cuddalore	Eidanur Tank	135.16	22.87	2	2.44	3.05	2	1	8				
90	Cuddalore	Cuddalore	Vali Odai Tank	222.40	39	2	1.83	2.44	2	1	10	600	2000		
91	Cuddalore	Cuddalore	Naduveerpattu old tank	106.88	34	2	1.37	1.98	1	1	13.72	720	2500		Naduvera-pattu

GRAND TOTAL

33315 82700

113163 206750

1.3.2. SUPPLY CHANNELS HAVING DIRECT AYACUT

NAME OF THE SUB BASIN: GADILAM

SI.	Sl. Name of Supply No Channel	Start Point		End Poir	Length in	Bed Width in	Bed	Side	MFD	Depth of	Remarks.	
No		Location	Sill level	Location	Sill level	metres	'm'	Slope	Slope	MFD	Flow 'm'	Remarks.
1	Anganur	Anicut	98.20	Vellaiyur		1200	2	1/2000	1:1	0.9	0.60	
2	Thiruvathigai anicut	Thiruvathigai	(+)55.70	Vellappakkam	48.98	16800	6	1:2500	1:1	198. c/s	2.05	-
3	Vanamadevi supply channel	Vanamadevi	(+)10.28	Thotti	(+) 7.08	8000	6	1:2500	1:1	101 c/s	2.06	-

1.4. PARTICIPATORY IRRIGATION MANAGEMENT (PIM)

1) The sub - basin :

This is one of the seven sub basins of the Pennaiyar river basin. Totally 91 irrigation tanks and 14 Anicut are under the control of Water Resources Department (WRD) of Public works Department (PWD) in this sub - basin. The list of tanks covered with more details are furnished in the Annexure - 1. These 91 tanks are located within the sub - basin's hydraulic boundary spread over 91 Villages of Villupuram and Cuddalore District. The total command area under these 91 tanks works out to 9356.95Ha.

2) Command area :

under Non - System tanks (91 tanks)	-	7672.75 Ha
Anicut (3 Nos)	-	1684.20 Ha
Total	-	9356.95 Ha

3) An assessment of number of WUA's

i) Association Proposed to be formed under IAWARM	100 Nos (8647.38Ha)
Project covering 91 tanks and 3 nos. of anicuts villages only.	3 No. WUA formed under WRCP-I (709.57 Ha)

4) An account of "Awareness creation"

Activates undertaken and "Walkthrough Surveys" carried out.

- i) There are 91 tanks in the sub-basin spread over 91 villages.
- ii) As detailed out in Anexure 01. All these villages were visited by the WRO officials and awareness about various activities, contemplated under IAMWARM Project has been created.
- iii) Details of Villages covered, walkthrough surveys conducted, farmers attended, list of works suggested by the farmers, list of works officials are all furnished in the Annexure - 02.

- 5) Schedule for completion of delineation and preparation for WUA documents, comprising of :
 - i) Form I: Details to be notified by District collectors, (End of March 09)
 - ii) Form II : WUA document to be notified by district collectors (End of April-09)
 - iii) Completion of preparatory works for the conduct of Elections for WUA's (End of May - 09)
- 6) Schedule for Conduct of Elections in the Sub basin for farming management committees will be completed by end of Jan 2010.
- Initiating and completing the process of publishing EOI to hire support Organisation at sub-basin level. (End Jun 2009)
- 8) Providing request for proposals (RFPs) to all the short listed agencies, and obtaining technical and cost proposals. (Middle of August 2009)
- 9) Selection and deployment of support Organisation to the sub basin (End of sep 2009)
- 10)Appointment and the Role of competent Authorities.
 - i) Section 26 of the Tamil Nadu Farmers Management of Irrigation Systems (TNFMIS) act provides for the appoint of "competent Authorities" to assist the respective farmers organization (WUA, Distributory committee and Project Committee) in the implementation and execution of all decisions taken by such farmers Organization similarly every farmer's organization shall extend such co-option or assistance as may be required by the competent authority, for carrying out all the tasks related to implementation of TNFMIS Act.
 - ii) It is proposed to form 99WUAs only under IAMWARM Project to cover a command area of 8647.38Ha.
 - iii) Appointment of competent Authorities for the WUAs proposed to be formed under IAMWARM Project is based on the WRO section officer wise" distribution as indicated below.

Name of the WRO Sub Division officers working in the

GADILAM SUB BASIN

a. Assistant Executive Engineer W.R.O., P.W.D., Vellar Basin Sub Division

Kallakurichi	—	WUAs	-	1 – 64 GAM VPM
Cuddalore	_	WUAs	_	65 -103 GAM CUD

List of Competent Authorities.

 a. Section officer, WRd Irrigation section Vellar Basin. Sankarapuram and Ulundurpet Basin : Gadilam Sub Basin 	WUAs GAM – VPM 1 - 64
 b. Section officer WRO Irrigation section Cuddalore & Panruti. Basin : Gadilam Sub Basin 	WUAs GAM – CDM 65 - 103

11)Involvement of farmers in the preparation "Scheme Modernisation Plans"

- i) Based on the outcome of the "Awareness Creation Programme" and walkthrough survey carried out with the involvement of farmers, a list of tasks proposed to be taken up for "Modernization" under IAMWARM project was discussed with No.of farmers from 103 villages and the tasks was also prepared and exhibited in the notice Board of the village Administrative officers and panchayat office.
- ii) During the meeting, the farmers present were also informed that soon after finalization of contract for carrying out "Modernization of Irrigation systems" a Notice Board" with the details about the nature of works. its cost period of contract and name of the contractor will all be fixed at the site of the work as well as in the panchayath office, for information of the farmers. They have also been informed that they are free to supervise the work by the contractor and any lapse in the quality of work may be reported to the field officers of WRO as wall as the Executive Engineer of WRO, who has been designated as the Nodal officer for the sub basin concerned.
- iii) The field officers of WRO have all been informed about the problems in handing over the operation and maintenance responsibilities to the farmers concerned, if the tasks as desired by them are not included in the modernization of the system and also in case some of the tasks already planned are not implanted due to some reasons or other.

 iv) The WRO officers were also informed that hey are personally responsible for handing over the irrigation systems after completing the tasks related to modernization of irrigation systems.

12) Current status of Recovery of water charges.

- i) An enquiry conduced with the "village Administrative officers" (VAO's) of randomly selected villages (15 numbers out of 91 Village) the normal water charges recovery as informed by the VAO works out to 50-60% only. about the expected percentage of 80-90%.
- ii) With the proposal to form New WUAs under IAMWARM in Gomukhi sub basin the managing committee will be trained to take up the responsibility of improving the water charges recovery percentage. These wll be followed up after completing the modernization tasks and handing over of the O & M responsibilities to WUAs.

13)"Capacity Building" of the WUA farmers:

- i) The Support Organisation Group" will prepare "Training Modules" required for building the capacity of the WUA farmers. based on a "Training Needs" Analysis. They will also Organize various "Capacity building" Programmes at suitable locations within the sub - basin command area, to benefit the farmers of the WUAs in the sub - basin.
- ii) The "Support Organization" will also arrange for organizing the "Study Tours" both within and outside the state to enhance their knowledge and experiences which will help them to improve the crop productivity and there by the farmer's income.
- iii) The support Organization will also conduct necessary "awareness programme" and impart training to educate the farmers of the WUAs in all aspects of the TNFMIS act, TNFMS rules and election procedures for constituting the "Managing committees" of the WUAs
- The competent Authorities appointed for the sub-basins will also be trained to effectively to interact with WUA farmers and maintain good rapport and relationship with the farming community in the sub-basin.

DETAILS OF WUA'S PROPOSED / EXISTING IN GADILAM SUB BASIN

Sl. NO	WUA NO.	Tank & village it covers	Name of the WUA	Ayacut area in Ha
		Existing WUA's		
			Nil	
		Proposed WUA	's	
1	01/GDM-VPM	Yal	Yal Tank Water Users Association	65.28
2	02/GDM-VPM	Melpangur	Melpangur Tank Water Users Association	56.50
3	03/GDM-VPM	Peral	Peral Tank Water Users Association	54.66
4	04/GDM-VPM	Sathaputhur	Sathaputhur Tank Water Users Association	43.12
5	05/GDM-VPM	Pavandur	Pavandur Tank Water Users Association	45.29
6	06/GDM-VPM	Pasar	Pasar Tank Water Users Association	124.97
7	07/GDM-VPM	Rishivandiyam	Rishivandiyam Tank Water Users Association	73.97
8	08/GDM-VPM	Vengalam	Vengalam Tank Water Users Association	45.14
9	09/GDM-VPM	Munivazhai	Munivazhai Tank Water Users Association	51.99
10	10/GDM-VPM	Kunniyur	Kunniyur Tank Water Users Association	49.10
11	11/GDM-VPM	Thimmalai	Thimmalai Tank Water Users Association	68.99
12	12/GDM-VPM	Kattu Edaiyar	Kattu Edaiyar Tank Water Users Association	154.06
13	13/GDM-VPM	memalur	memalur Tank Water Users Association	63.82
14	14/GDM-VPM	Kattusellur	Kattusellur Tank Water Users Association	79.24
15	15/GDM-VPM	Alur	Alur Tank Water Users Association	70.13
		PAGE 74		

16	16/GDM-VPM	Periyakurukkai	Periyakurukkai Tank Water Users Association	47.70
17	17/GDM-VPM	Mohalar	Mohalar Tank Water Users Association	61.83
18	18/GDM-VPM	Sikkadu	Sikkadu Tank Water Users Association	44.72
19	19/GDM-VPM	Adaiyur	Adaiyur Tank Water Users Association	45.72
20	20/GDM-VPM	Kunjaram	Kunjaram Tank Water Users Association	116.19
21	21/GDM-VPM	Eraiyur	Eraiyur Tank Water Users Association	54.28
22	22/GDM-VPM	Veeramangalam	Veeramangalam Tank Water Users Association	41.63
23	23/GDM-VPM	Vadakurumbur	Vadakurumbur Tank Water Users Association	86.64
24	24/GDM-VPM	S. Malaiyanur	S. Malaiyanur Tank Water Users Association	58.05
25	25/GDM-VPM	Koovadu	Koovadu Tank Water Users Association	91.09
26	26/GDM-VPM	Neivainai	Neivainai Tank Water Users Association	61.57
27	27/GDM-VPM	Pinnalvadi	Pinnalvadi Tank Water Users Association	63.02
28	28/GDM-VPM	Aurnkurukkai	Aurnkurukkai Tank Water Users Association	78.06
29	29/GDM-VPM	Damal	Damal Tank Water Users Association	51.02
30	30/GDM-VPM	Kiliyur	Kiliyur Tank Water Users Association	50.12
31	31/GDM-VPM	M. Kunnathur	M. Kunnathur Tank Water Users Association	64.10
32	32/GDM-VPM	Puthanandal	Puthanandal Tank Water Users Association	51.00
33	33/GDM-VPM	Nathamur	Nathamur Tank Water Users Association	82.43
		PAGE 75		
34	34/GDM-VPM	Athur	Athur Tank Water Users Association	43.53

35	35/GDM-VPM	Adanur	Adanur Tank Water Users Association	53.40
36	36/GDM-VPM	Kalamarudur	Kalamarudur Tank Water Users Association	142.51
37	37/GDM-VPM	Orathur	Orathur Tank Water Users Association	109.31
38	38/GDM-VPM	Pa. Killanur	Pa. Killanur Tank Water Users Association	44.72
39	39/GDM-VPM	Pachapalayam	Pachapalayam Tank Water Users Association	41.83
40	40/GDM-VPM	U. Sellur	U. Sellur Tank Water Users Association	42.92
41	41/GDM-VPM	Pandur	Pandur Tank Water Users Association	82.43
42	42/GDM-VPM	Arali	Arali Tank Water Users Association	58.04
43	43/GDM-VPM	Sennangur	Sennangur Tank Water Users Association	70.79
44	44/GDM-VPM	Nagar	Nagar Tank Water Users Association	47.00
45	45/GDM-VPM	Sengurichi	Sengurichi Tank Water Users Association	53.75
46	46/GDM-VPM	Padur	Padur Tank Water Users Association	245.75
47	47/GDM-VPM	Mathiyanur	Mathiyanur Tank Water Users Association	46.62
48	48/GDM-VPM	Koo. Kallakurichi	Koo. Kallakurichi Tank Water Users Association	53.89
49	49/GDM-VPM	Mattigai	Mattigai Tank Water Users Association	46.20
50	50/GDM-VPM	Sendanadu	Sendanadu Tank Water Users Association	78.23
		PAGE 76		

51	51/GDM-VPM	T. Kalathur	T. Kalathur Tank Water Users Association	131.53
52	52/GDM-VPM	Emam	Emam Tank Water Users Association	43.18
53	53/GDM-VPM	Pu. Konalavadi	Pu. Konalavadi Tank Water Users Association	46.40
54	54/GDM-VPM	U. Keeranur	U. Keeranur Tank Water Users Association	56.18
55	55/GDM-VPM	Ulundur	Ulundur Tank Water Users Association	55.04
56	56/GDM-VPM	Sirupakkam	Sirupakkam Tank Water Users Association	48.70
57	57/GDM-VPM	Sembiyanmadevi	Sembiyanmadevi Tank Water Users Association	47.90
58	58/GDM-VPM	Alangiri	Alangiri Tank Water Users Association	53.43
59	59/GDM-VPM	Salappakkam	Salappakkam Tank Water Users Association	41.11
60	60/GDM-VPM	A. Puthur	A. Puthur Tank Water Users Association	59.80
	Supply Channel	Supply Channel	Cuddalore District	
61	61/GDM-CUD	Manamthaviznthaputhur tank	Manamthaviznthaputhur tank Tank Water Users Association	62.17
62	62/GDM-CUD	Natham tank	Natham Tank Water Users Association (Formed under WRCP- I)	259.04
63	63/GDM-CUD	Sirugrammam tank	Sirugrammam Tank Water Users Association (Formed under WRCP-I)	191.50
64	64/GDM-CUD	Veeraperumanallur tank	Veeraperumanallur Tank Water Users Association (Formed under WRCP-I)	259.03
			Thiruvamur Tank Water	30.60
65	65/GDM-CUD	Thiruvamur tank	Users Association	
65 66	65/GDM-CUD 66/GDM-CUD	Elanthampattu tank	Users Association Elanthampattu Tank Water Users Association	156.29

67	67/GDM-CUD	Semmedu tank	Semmedu Tank Water Users Association	49.56
68	68/GDM-CUD	Vizur Zemberi tank	Vizur Zemberi Tank Water Users Association	58.04
69	69/GDM-CUD	Semakottai tank	Semakottai Tank Water Users Association	70.85
70	70/GDM-CUD	Manapakkam tank	Manapakkam Tank Water Users Association	57.51
71	71/GDM-CUD	Siruvathur tank	Siruvathur Tank Water Users Association	214.26
72	72/GDM-CUD	Pandarakottai tank	Pandarakottai Tank Water Users Association	41.25
73	73/GDM-CUD	L.N.Puram tank	L.N.Puram Tank Water Users Association	122.65
74	74/GDM-CUD	Poongunam tank	Poongunam Tank Water Users Association	86.29
75	75/GDM-CUD	Chettipattadai tank	Chettipattadai Tank Water Users Association	274.52
76	76/GDM-CUD	Elumedu tank	Elumedu Tank Water Users Association	117.41
77	77/GDM-CUD	P.N.Palayam tank	P.N.Palayam Tank Water Users Association	68.62
78	78/GDM-CUD	C.N.Palayam tank	C.N.Palayam Tank Water Users Association	50.2
79	79/GDM-CUD	Thottapattu tank	Thottapattu Tank Water Users Association	66.8
80	80/GDM-CUD	Varakkalpattu tank	Varakkalpattu Tank Water Users Association	70.45
81	81/GDM-CUD	Gunamangalam tank	Gunamangalam Tank Water Users Association	252.63
82	82/GDM-CUD	Eidanur tank	Eidanur tank Tank Water Users Association	135.22
83	83/GDM-CUD	Valiodai tank	Valiodai tank Tank Water Users Association	272.47
84	84/GDM-CUD	Naduveerapattu Old tank Naduveerapattu New tank	Naduveerapattu Old tank & Naduveerapattu New tank Water Users Association	147.79
		PAGE 78		
85	85/GDM-CUD	Vilangalpattu tank	Vilangalpattu tank Tank Water Users Association	78.90

86	86/GDM-CUD	Ramapuram Devan Eri	Ramapuram Devan Eri Tank Water Users Association	77.67
			Total	7311.34
	Thiruvathigai Anicut			
87	87/GDM-CUD	Muthukrishnapuram	Thiruvathigai anicut water users association	87.26
88	88/GDM-CUD	Agaram	Thiruvathigai anicut water users association	168.16
89	90/GDM-CUD	Palur	Thiruvathigai anicut water users association	187.53
90	91/GDM-CUD	Sithrarasur	Thiruvathigai anicut water users association	161.59
91	91/GDM-CUD	Kizarungunam	Thiruvathigai anicut water users association	42.57
92	92/GDM-CUD	Thotti	Thiruvathigai anicut water users association	138.65
93	93/GDM-CUD	Natham	Thiruvathigai anicut water users association	119.73
94	94/GDM-CUD	Melpathi	Thiruvathigai anicut water users association	42.51
95	95/GDM-CUD	Kudithangi	Thiruvathigai anicut water users association	110.99
96	96/GDM-CUD	Vaidipakkam Nesanoor	Thiruvathigai anicut water users association	132.89
		PAGE 79		

	Vanamadevi Aniucut			
97	97/GDM-CUD	Thirumanikuzhi	Vanmadevi anicut water users association	97.66
98	98/GDM-CUD	Vanamadeviu	Vanmadevi anicut water users association	123.25
99	99/GDM-CUD	Otteri	Vanmadevi anicut water users association	118.63
			Total	9356.95

Note:

- a. St. TB -
- b. RC Sluices -
- c. RE Sluices -
- d. RC weir -
- e. RE weir -
- f. DS chll -

g. RH.

PAGE 80

GADILAM RIVER SUB BASIN

<u>1.4.1. WALK THROUGH SURVEY</u>

	Walk Thr	ough Survey	Farmers request	Techn	ical \$	Solutio	n							Proposa	ls in P	lan				Rem
SI. No	Date	Location	WRO	WRO	Agri	Horti	AED	TNA U	AG MT	AHI	D Fisher ies	WRO	Agri	Horti	AED	TNA U	AGM T	AHD	Fish eries	arks ·
	Sankarap	uram Section																		
1	8.11.2008	Yal	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided								Included in the IAMWARM Project								
2	8.11.2008	Melpangur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided								Included in the IAMWARM Project								
3	8.11.2008	Peral	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided								Included in the IAMWARM Project								
4	8.11.2008	Sathapattu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided								Included in the IAMWARM Project								
5	8.11.2008	Pavanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided								Included in the IAMWARM Project								
6	8.11.2008	Pasar	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided								Included in the IAMWARM Project								
			Page 81																	

7	8.11.2008	Rishivanthiya m	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
8	8.11.2008	Vengalam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
9	8.11.2008	Minivazhai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
10	8.11.2008	Kunniyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
11	8.11.2008	Timmalai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
	Ulundur	pet Section							
12	11.11.200 8	Panapadi	Lining in field channel in requested	Rejected		Work already have been executed under NABARD scheme			
13	17.12.200 8	Kattu Edaiyar	Left Bank of Canel breached during the year 200-08, 2008-09. Retaining wall is needed for a length of 50m. O & M is needed for about 3km. Sluice is to be required.	Accepted		Included in the IAMWARM Project			
			Page 82						

14 11.11.200 8 Memalur Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Can be provided Can be provided To be repaired and reconstructed Included in the IAMWARM Project	
15 $18.11.200$ 8 KattuchellurSluice repair is neededTo be repaired and reconstructedImage: Constructed of the lange of th	
16 11.11.200 8 Alur Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Can be provided Can be provided To be repaired and reconstructed Image: Can be provided of the pr	
1711.11.200Periyakurukka iTank bund to be strengthened Supply channel improvements is requested. Sluice repair is neededCan be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided Can be provided To be repaired and reconstructedImage: Can be provided 	
18 11.11.200 8 Mohalar Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Can be provided Can be provided To be repaired and reconstructed Image: Can be provided to be repaired and reconstructed	
19 17.12.200 Sikkadu Tank bund to be strengthened Can be provided Included in 19 17.12.200 Sikkadu Sikkadu Tank bund to be strengthened Can be provided Included in 19 17.12.200 Sikkadu Sikkadu Supply channel improvements is requested. Can be provided Included in Included in 19 10	
2017.12.200 8AdhaiyurTank bund to be strengthened Supply channel improvements is requested. Sluice repair is neededCan be provided Can be provided To be repaired and reconstructedIncluded in the IAMWARM Project2017.12.200 8AdhaiyurRight Bank of Canel breached during the year 200-08, 2008-09. Retaining wall is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for a length of 50m. O & M is needed for 	
2117.12.200 8KunjaramTank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Retaining wall requestedCan be provided Can be provided To be repaired and reconstructed Can be provided Can be providedIncluded in the IAMWARM Project	
Page 83	

22	17.12.200 8	Eriyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Weir Repair is requested	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
23	17.12.200 8	Veeramangala m	Tank bund to be strengthened Supply channel improvements is requested. Eviction is to be removed	Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
24	17.12.200 8	Vadakurumbu r	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
25	16.12.200 8	S. Malayanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
26	18.12.200 8	Koovadu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
27	13.12.200 8	Neyvanai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
28	18.12.200 8	Pinnalvadi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested Threashing floor is required	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
29	11.11.200 8	Arunkurukkai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested Threashing floor is required	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
			Page 84						

30	11.11.200 8	Damal	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Anicut is to be repaired	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided			Included in the IAMWARM Project				
31	11.11.200 8	Kiliyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided			Included in the IAMWARM Project				
32	18.12.200 8	M. Kunnathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed weir repair is required Threashing floor	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided			Included in the IAMWARM Project				
33	11.11.200 8	Puthananthal	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed weir repair is required Threashing floor	Can be provided Can be provided To be repaired and reconstructed Can be provided can be provided			Included in the IAMWARM Project				
34	11.11.200 8	Nathamoor	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed weir repair is required	Can be provided Can be provided To be repaired and reconstructed Can be provided			Included in the IAMWARM Project				
35	11.11.200 8	Athur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Cane be provided Can be provided To be repaired and reconstructed			Included in the IAMWARM Project				
36	13.12.200 8	Adanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair Eviction to be removed	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided			Included in the IAMWARM Project				
			Page 85								

37	14.11.200 8	Kalamarudur	Supply channel improvements is requested. Sluice repair is needed Weir Repair Eviction to be removed	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
38	14.11.200 8	T. Orathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
39	14.11.200 8	Pa. killanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction to be removed	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
4(13.12.200 8	Pachaplayam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
41	13.12.200 8	U. Sellur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
42	14.11.200 8	Pandur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
43	14.11.200 8	Arali	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
44	14.11.200 8	Semmanankur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
			Page 86						

45	14.11.200 8	Nagar	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided	Included in the IAMWARM Project		
46	14.11.200 8	Senkurichi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided	Included in the IAMWARM Project		
47	14.11.200 8	Padur	Desilting work is required and capacity of the tank has to be increased	Rejected	Already have been executed under NABARD Scheme		
48	18.11.200 8	Mathiyanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided	Included in the IAMWARM Project		
49	18.11.200 8	Koo. Kallakurichi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided	Included in the IAMWARM Project		
50	18.11.200 8	Mattigai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed Can be provided	Included in the IAMWARM Project		
51	18.11.200 8	Senthanadu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed Can be provided	Included in the IAMWARM Project		
52	18.11.200 8	Manalur	Additional weir is required. Field channel lining is needed	Rejected	Already have been executed under NABARD Scheme		
			Page 87				

				ГГ					
53	18.11.200 8	Kalathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
54	18.11.200 8	Ankanur	Field channel lining is required	Rejected		Already have been executed under NABARD Scheme			
55	13.12.200 8	Emam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
56	18.11.200 8	Vellaiyur	Weir repair work is requested	Rejected		Work already have been executed under PART scheme			
57	16.12.200 8	Pu. Kolanavadi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
58	16.12.200 8	U. keeranur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Eviction is to be removed	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
59	16.12.200 8	Ulundur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Eviction is to be removed	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
60	18.11.200 8	Sirupakkam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
			Page 88						
L			5				1		

61	16.12.200 8	Sembimadevi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Eviction is to be removed	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided		Included in the IAMWARM Project				
62	18.12.200 8	Alangiri	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project				
63	18.12.200 8	Salapakkam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project				
64	16.12.200 8	A. Puthur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project				
		Panruti								
65	17.12.08	Natham	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project				
66	18.11.08	Elanthampattu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project				
67	18.11.08	Siruvathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project				
			Page 89							

60 18.11.08 Manapakkan Supply clanance improvements is requested. Sluice repair is needed weir repair Can be provided Can be provided Image (Can be provided) Image (Can be provided) 70 18.12.08 Manapakkan Supply clanance improvements is requested weir repair Can be provided Can be provided Image (Can be provided) Imag	68	17.12.08	Semakottai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Retaining Wall Threashing floor	Can be provided To be repaired and reconstructed Can be provided Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
70 18.12.08 Malanimum V Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Image: Can be provided Ima	69	18.11.08	Manapakkam	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
71 18.11.08 Semmedu Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Image: Can be provided Image:	70	18.12.08	n	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
72 18.11.08 Thiruvamur Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Can be provided Image: Can be provided Image: C	71	18.11.08	Semmedu	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
73 18.12.08 LN Puram Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Can be provided To be repaired and reconstructed Can be provided Image: Can be provided Image: Can be provided 74 18.12.08 Poongunam Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Can be provided Image: Can be provided Image: Can be provided 74 18.12.08 Poongunam Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Can be provided Can be provided Image: Can be provided Image: Can be provided 74 18.12.08 Poongunam Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Can be provided Can be provided Image: Can be provided	72	18.11.08	Thiruvamur	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
74 18.12.08 Poongunam Supply channel improvements is requested. Can be provided 74 18.12.08 Poongunam Sluice repair is needed To be repaired and reconstructed 18.12.08 Poongunam Sluice repair is needed To be repaired and reconstructed 18.12.08 Poongunam Sluice repair is needed To be repaired and reconstructed 18.12.08 Poongunam Eviction is to be removed Can be provided	73	18.12.08	LN Puram	Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed		the IAMWARM			
	74	18.12.08	Poongunam	Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Can be provided To be repaired and reconstructed Can be provided		the IAMWARM			
Page 90				Page 90						

76 18.11.08 Veerperumanal llur Supply channel improvements is requisted. Shice repair is needed Weir repair Can be provided Can be	75	18.12.08	Chettipattadai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
77 18.11.08 Sirugramam Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Image: Can be provided Can be provided Can be provided Can be provided 78 18.11.08 Vizur Supply channel improvements is requested. Sluice repair is needed Weir repair Can be provided Can be provided Can be provided Image: Can be provided Can	76	18.11.08	·	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
78 18.11.08 Vizur Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Image: Can be provided Can be provided Image: Can be provided Image: Can be provided Image: Can be provided Image:	77	18.11.08	Sirugramam	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
79 10.12.08 Elumedu Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Can be provided Image: Can be provided Project Image: Can be provided Project 10.12.08 Elumedu Supply channel improvements is requested. Sluice repair Image: Can be provided Can be provided Image: Can be provided Project Image: Can be provided Ima	78	18.11.08	Vizur	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
Tank bund to be strengthened Can be provided Included in	79	10.12.08	Elumedu	Supply channel improvements is requested. Sluice repair is needed	To be repaired and reconstructed Can be provided		the IAMWARM			
80 10.12.08 Thirvathigai Supply channel improvements is requested. Sluice repair is needed Weir repair To be repaired and reconstructed Can be provided Can be provided the IAMWARM Project	80	10.12.08	Thirvathigai	Sluice repair is needed	Can be provided		the IAMWARM			
81 11.12.08 P N Palayam Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Can be provided Can be provided To be repaired and reconstructed Can be provided Included in the IAMWARM Project Included in the IAMWARM	81	11.12.08	P N Palayam	Supply channel improvements is requested. Sluice repair is needed	Can be provided To be repaired and reconstructed		the IAMWARM			
				Page 91						

82	11.12.08	Pandarakottai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
83	10.12.08	C N Palayam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
		Cuddalore Section							
84	16.12.08	Vilangalpattu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs Providing retaining wall	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
85	16.12.08	Ramapuram Devan Eri	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs Threshering floor	Can be provided Can be provided To be repaired and reconstructed Can be provided Can be provided		Included in the IAMWARM Project			
86	12.11.08	Eidanur	Lining work in supply channel Culvert is to be repaired	Can be provided Can be provided		Included in the IAMWARM Project			
87	19.12.08	Vali Odai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Providing shutter	Can be provided Can be provided To be repaired and reconstructed Can be provided		Included in the IAMWARM Project			
			Page 92						

88	19.12.08	Naduveerapatt u Old	Check dam provided near Naduveerapattu across Gadilam river Bed dam provided across nariyan odai Tank bund to be strengthened Providing shutter Providng threshing floor Weir Repair Providing shutter arrangement in infall point of nariyan odai.	Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
89	16.12.08	Thottapattu	Desilting the tank Strengthening of bund Providing retaining wall in Weeker section of the bund. Improvement to Supply channel Weir Repaired Encroachment is to be removed	Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
90	16.12.08	Varkkalpattu	Desilting the tank Strengthening of bund Improvement to Supply channel Providing revetment Providng new sluice Weir Repaired Providing lining the supply channel	Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
91	16.12.08	Gunaman galam	Desilting the tank Strengthening of bund Improvement to Supply channel Repair to sluice Providing lining the supply channel	Can be provided Can be provided Can be provided Can be provided Can be provided		Included in the IAMWARM Project			
92	19.12.08	Naduveera pattu New	Check dam provided near Naduveerapattu across Gadilam river Bed dam provided across nariyan odai Tank bund to be strengthened Providing shutter Providng threshing floor Weir Repair Providing shutter arrangement in infall point of nariyan odai.	Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided Can be provided		Included in the IAMWARM Project			

Annexure -1

An Assessment of Command Area and WUAs under the Control of WRO of PWD in
"GADILAM SUB BASIN"

					•				
	Name of Invited	Comman	Location of th	e Command A	rea	Covera Comr Area u Differ	nand under	of WUAs	f Formation s in the Sub asin
SI. No.	Name of Irrigation Systems and Tanks	d Area in Ha	Village	Taluk	Distr ict	WRCP and Others	IAMW ARM	Formed under WRCP (Code	To be formed under IAMWARM (Code)
1	Yal Tank	65.28	Rishivanthiyam	Sangarapuram			65.28		To be formed under IAMWARM
2	Melpangur	56.50	Rishivanthiyam	Sangarapuram			56.50		
3	Peral	54.66	Rishivanthiyam	Sangarapuram			54.66		
4	Sathaputhur Tank	43.12	Rishivanthiyam	Sangarapuram			43.12		
5	Pavandur Tank	45.29	Rishivanthiyam	Sangarapuram			45.29		
6	Pasar Tank	124.97	Rishivanthiyam	Sangarapuram	1		124.97		
7	Rishivandiyam Tank	73.97	Rishivanthiyam	Sangarapuram	Villu		73.97		
8	Vengalam Tank	45.14	Rishivanthiyam	Sangarapuram	pura m		45.14		
9	Munivazhai	51.99	Rishivanthiyam	Sangarapuram			51.99		
10	Kunniyur Tank	49.10	Rishivanthiyam	Sangarapuram			49.10		
11	Thimmalai Tank	68.99	Thiyagathurugam	Sangarapuram			68.99		
12	Kattu Edaiyar	154.06	Ulundurpet	Ulundurpet			154.06		
13	memalur	63.82	Thirukoilur	Thirukoilur			63.82		
14	Kattusellur	79.24	Ulundurpet	Ulundurpet			79.24		
15	Alur Periyakurukkai	70.13	Thirukoilur	Thirukoilur			70.13		
16		47.70	Ulundurpet	Ulundurpet			47.70		
				Page 94					

				-	
17	Mohalar	61.83	Thirukoilur	Thirukoilur	
18	Sikkadu	44.72	Ulundurpet	Ulundurpet	
19	Adaiyur	45.72	Ulundurpet	Ulundurpet	
20	Kunjaram	116.19	Ulundurpet	Ulundurpet	
21	Eraiyur	54.28	Ulundurpet	Ulundurpet	
22	Veeramangalam	41.63	Ulundurpet	Ulundurpet	
23	Vadakurumbur	86.64	Ulundurpet	Ulundurpet	
24	S. Malaiyanur	58.05	Ulundurpet	Ulundurpet	
25	Koovadu	91.09	Ulundurpet	Ulundurpet	
26	Neivainai	61.57	Ulundurpet	Ulundurpet	
27	Pinnalvadi	63.02	Ulundurpet	Ulundurpet	
28	Aurnkurukkai	78.06	T V. Nallur	Thirukoilur	
29	Damal	51.02	Ulundurpet	Ulundurpet	
30	Kiliyur	50.12	Ulundurpet	Ulundurpet	
31	M. Kunnathur	64.10	Ulundurpet	Ulundurpet	- Villu pura m
32	Puthanandal	51.00	Ulundurpet	Ulundurpet	
33	Nathamur	82.43	Ulundurpet	Ulundurpet	
34	Athur	43.53	Thirunavalur	Ulundurpet	
35	Adanur	53.40	Thirunavalur	Ulundurpet	
36	Kalamarudur	142.51	Thirunavalur	Ulundurpet	
37	Orathur	109.31	Thirunavalur	Ulundurpet	
38	Pa. Killanur	44.72	Thirunavalur	Ulundurpet	
39	Pachapalayam	41.83	Thirunavalur	Ulundurpet	
40	U. Sellur	42.92	Thirunavalur	Ulundurpet	
41	Pandur	82.43	Thirunavalur	Ulundurpet	
42	Arali	58.04	Thirunavalur	Ulundurpet	
43	Sennangur	70.79	Thirunavalur	Ulundurpet]
44	Nagar	47.00	Thirunavalur	Ulundurpet	
				Page 95	1

_		
	 61.83	
ĺ	 44.72	
ĺ	 45.72	
ĺ	 116.19	
ĺ	 54.28	
ĺ	 41.63	
	 86.64	
	 58.05	
	 91.09	
	 61.57	
	 63.02	
	 78.06	
	 51.02	
1	 50.12	
1	 64.10	
	 51.00	
	 82.43	
	 43.53	
	 53.40	
	 142.51	
	 109.31	
	 44.72	
	 41.83	
	 42.92	
	 82.43	
	 58.04	
	 70.79	
	 47.00	
ĺ		

45	Sengurichi	53.75	Thirunavalur	Ulundurpet		 53.75	
46	Padur	245.75	Thirunavalur	Ulundurpet		 245.75	
47	Mathiyanur	46.62	Thirunavalur	Ulundurpet		 46.62	
48	Koo. Kallakurichi	53.89	Thirunavalur	Ulundurpet		 53.89	
49	Mattigai	46.20	Thirunavalur	Ulundurpet		 46.20	
50	Sendanadu	78.23	Thirunavalur	Ulundurpet		 78.23	
51	T. Kalathur	131.53	Thirunavalur	Ulundurpet		 131.53	
52	Emam	43.18	Ulundurpet	Ulundurpet		 43.18	
53	Pu. Konalavadi	46.40	Ulundurpet	Ulundurpet	Villu pura m	 46.40	
54	U. Keeranur	56.18	Ulundurpet	Ulundurpet		 56.18	
55	Ulundur	55.04	Ulundurpet	Ulundurpet		 55.04	
56	Sirupakkam	48.70	Ulundurpet	Ulundurpet		 48.70	
57	Sembiyanmadevi	47.90	Ulundurpet	Ulundurpet		 47.90	
58	Alangiri	53.43	Ulundurpet	Ulundurpet		 53.43	
59	Salappakkam	41.11	Ulundurpet	Ulundurpet		 41.11	
60	A. Puthur	59.80	Ulundurpet	Ulundurpet		 59.80	

	Cuddalore District								
61	Manamthaviznthapu thur tank	62.17	Panruti	Panruti			62.17		
62	Natham tank	259.04	Panruti	Panruti		259.04		Yes	
63	Sirugrammam tank	191.50	Panruti	Panruti		191.50		Yes	
64	Veeraperumanallur tank	259.03	Panruti	Panruti		259.03		Yes	
65	Thiruvamur tank,	30.60	Panruti	Panruti			30.60		
66	Elanthampattu tank	156.29	Panruti	Panruti			156.29		
67	Semmedu tank	49.56	Panruti	Panruti			49.56		
68	Vizur Zemberi tank	58.04	Panruti	Panruti			58.04		
69	Semakottai tank	70.85	Panruti	Panruti	Cud dalor e		70.85		
70	Manapakkam tank	57.51	Panruti	Panruti			57.51		
71	Siruvathur tank	214.26	Panruti	Panruti			214.26		
72	Pandarakottai tank	41.25	Annagramam	Panruti			41.25		
73	L.N.Puram tank	N.Puram tank 122.65 Panruti Panruti		122.65					
74	Poongunam tank	86.29	Panruti	Panruti			86.29		
75	Chettipattadai tank	274.52	Panruti	Panruti			274.52		
76	Elumedu tank	117.41	Annagramam	Panruti			117.41		
				Page 97					

77	P.N.Palayam tank	68.62	Annagramam	Panruti		 68.62	
78	C.N.Palayam tank	50.2	Annagramam	Panruti	Cud dalor e	 50.2	
79	Thottapattu tank	66.8	Cuddalore	Cuddalore		 66.8	
80	Varakkalpattu tank	70.45	Cuddalore	Cuddalore		 70.45	
81	Gunamangalam tank	252.63	Cuddalore	Cuddalore		 252.63	
82	Eidanur tank	135.22	Annagramam	Panruti		 135.22	
83	Valiodai tank	272.47	Annagramam	Panruti		 272.47	
84	Naduveerapattu Old tank & New tank	147.79	Cuddalore	Cuddalore		 147.79	
85	Vilangalpattu tank	78.90	Cuddalore	Cuddalore		 78.90	
86	Ramapuram Devan Eri	77.67	Cuddalore	Cuddalore		 77.67	
	Thiruvathigai Anicut						
87	Muthukrishnapuram	87.26	Annagramam	Panruti		 87.26	
88	Agaram	168.16	Annagramam	Panruti		 168.16	
89	Palur	187.53	Annagramam	Panruti		 187.53	
				Page 98			

90	Sittharasur	161.59	Annagramam	Panruti		 161.59	
91	Kilarungunam	42.57	Annagramam	Panruti		 42.57	
92	Thotti	138.65	Annagramam	Panruti		 138.65	
93	Natham	119.73	Annagramam	Panruti	Cud dalo	 119.73	
94	Melpathi	42.51	Annagramam	Panruti	re	 42.51	
95	Kudithangi	110.99	Annagramam	Panruti		 110.99	
96	Vaidipakkam, Nesanoor	132.89	Annagramam	Panruti		 132.89	
	Vanamadevi Anicut						
97	Thirumanikuzhi	97.66	Cuddalore	Cuddalore		 97.66	
98	Vanamadevi	123.25	Cuddalore	Cuddalore	Cud dalor e	 123.25	
99	Otteri	118.63	Cuddalore	Cuddalore		 118.63	
		8842.76	ABSTRAC				

ABSTRACT

- 1 Command area already covered under WRCP and other projects/ schems 709.57
- 2 Command Area proposed to be covered under IAMWARM Project 8647.38 Ha
- 3 Total Command area controlled by WRO of PWD in the sub basin 9356.95Ha
- 4 Total No. of WUA's already formed under WRCP 3 Nos.
- 5 Total No. of WUA's proposed to be formed under IAMWARIM 96 Nos.
- 6 Total No. of WUA's that will cover the entire sub Basin 99 Nos.

Page 99

Annexure -2

Na					
SI. No.	Date of Visit	Name if the Villages Visted	of farmers with	Walk Through Survey (No. of Farmers Participated) (Prepare the list of farmers with ackonolwdgement sperately and attach)	Remarks.
1	2	3	4	5	6
1	8.11.2008	Yal	10 Nos.	10 Nos.	
2	8.11.2008	Melpangur	13 Nos.	13 Nos.	
3	8.11.2008	Peral	11Nos.	11Nos.	
4	8.11.2008	Sathapattu	9Nos.	9Nos.	
5	8.11.2008	Pavanur	10 Nos.	10 Nos.	
6	8.11.2008	Pasar	14 Nos.	14 Nos.	
7	8.11.2008	Rishivanthiyam	5 Nos.	5 Nos.	
8	8.11.2008	Vengalam	7 Nos.	7 Nos.	
9	8.11.2008	Minivazhai	11 Nos.	11 Nos.	
		PAGE 100			

Na

10	8.11.2008	Kunniyur	8 Nos.	8 Nos.	
11	8.11.2008	Timmalai	12 Nos.	12 Nos.	
12	11.11.2008	Panapadi	15 Nos.	15 Nos.	
13	11.11.2008	Memalur	9 Nos.	9 Nos.	
14	11.11.2008	Alur	8 Nos.	8 Nos.	
15	11.11.2008	Periyakurukkai	11 Nos.	11 Nos.	
16	11.11.2008	Mohalar	7 Nos.	7 Nos.	
17	11.11.2008	Arunkurukkai	13 Nos.	13 Nos.	
18	11.11.2008	Damal	6 Nos.	6 Nos.	
19	11.11.2008	Kiliyur	5 Nos.	5 Nos.	
20	11.11.2008	Puthananthal	8 Nos.	8 Nos.	
21	11.11.2008	Nathamoor	10 Nos.	10 Nos.	
22	11.11.2008	Athur	7 Nos.	7 Nos.	
23	12.11.08	Eidanur	11 Nos.	11 Nos.	
		PAGE 101			

24	14.11.2008	Kalamarudur	8 Nos.	8 Nos.	
25	14.11.2008	T. Orathur	9 Nos.	9 Nos.	
26	14.11.2008	Pa. killanur	7 Nos.	7 Nos.	
27	14.11.2008	Pandur	10 Nos.	10 Nos.	
28	14.11.2008	Arali	5 Nos.	5 Nos.	
29	14.11.2008	Semmanankur	11 Nos.	11 Nos.	
30	14.11.2008	Nagar	6 Nos.	6 Nos.	
31	14.11.2008	Senkurichi	8 Nos.	8 Nos.	
32	14.11.2008	Padur	7 Nos.	7 Nos.	
33	18.11.08	Elanthampattu	7 Nos.	7 Nos.	
34	18.11.08	Siruvathur	10 Nos.	10 Nos.	
35	18.11.08	Manapakkam	13 Nos.	13 Nos.	
36	18.11.08	Semmedu	11Nos.	11Nos.	
37	18.11.08	Thiruvamur	9Nos.	9Nos.	

PAGE 102

				1	
38	18.11.08	Veerperumanallur	10 Nos.	10 Nos.	
39	18.11.08	Sirugramam	14 Nos.	14 Nos.	
40	18.11.08	Vizur	5 Nos.	5 Nos.	
41	18.11.2008	Kattuchellur	7 Nos.	7 Nos.	
42	18.11.2008	Mathiyanur	11 Nos.	11 Nos.	
43	18.11.2008	Koo. Kallakurichi	8 Nos.	8 Nos.	
44	18.11.2008	Mattigai	12 Nos.	12 Nos.	
45	18.11.2008	Senthanadu	15 Nos.	15 Nos.	
46	18.11.2008	Manalur	9 Nos.	9 Nos.	
47	18.11.2008	Kalathur	8 Nos.	8 Nos.	
48	18.11.2008	Ankanur	11 Nos.	11 Nos.	
49	18.11.2008	Vellaiyur	7 Nos.	7 Nos.	
50	18.11.2008	Sirupakkam	13 Nos.	13 Nos.	
51	10.12.08	Elumedu	6 Nos.	6 Nos.	
		PAGE 103			

52	10.12.2008	Thiruvathigai	5 Nos.	5 Nos.	
53	10.12.08	C N Palayam	8 Nos.	8 Nos.	
54	11.12.08	P N Palayam	10 Nos.	10 Nos.	
55	11.12.08	Pandarakottai	7 Nos.	7 Nos.	
56	13.12.2008	Neyvanai	11 Nos.	11 Nos.	
57	13.12.2008	Adanur	8 Nos.	8 Nos.	
58	13.12.2008	Pachaplayam	9 Nos.	9 Nos.	
59	13.12.2008	U. Sellur	7 Nos.	7 Nos.	
60	13.12.2008	Emam	10 Nos.	10 Nos.	
61	16.12.08	Vilangalpattu	5 Nos.	5 Nos.	
62	16.12.08	Ramapuram Devan Eri	11 Nos.	11 Nos.	
63	16.12.08	Thottapattu	6 Nos.	6 Nos.	
64	16.12.08	Varkkalpattu	8 Nos.	8 Nos.	
65	16.12.08	Gunamangalam	7 Nos.	7 Nos.	
		PAGE 104			

66	16.12.2008	S. Malayanur	7 Nos.	7 Nos.	
67	16.12.2008	Pu. Kolanavadi	10 Nos.	10 Nos.	
68	16.12.2008	U. keeranur	13 Nos.	13 Nos.	
69	16.12.2008	Ulundur	11Nos.	11Nos.	
70	16.12.2008	Sembimadevi	9Nos.	9Nos.	
71	16.12.2008	A. Puthur	10 Nos.	10 Nos.	
72	17.12.08	Natham	14 Nos.	14 Nos.	
73	17.12.08	Semakottai	5 Nos.	5 Nos.	
74	17.12.2008	Kattu Edaiyar	7 Nos.	7 Nos.	
75	17.12.2008	Sikkadu	11 Nos.	11 Nos.	
76	17.12.2008	Adhaiyur	8 Nos.	8 Nos.	
77	17.12.2008	Kunjaram	12 Nos.	12 Nos.	
78	17.12.2008	Eriyur	15 Nos.	15 Nos.	
79	17.12.2008	Veeramangalam	9 Nos.	9 Nos.	
		PAGE 105			

80	17.12.2008	Vadakurumbur	8 Nos.	8 Nos.	
81	18.12.08	Manamthavizn thapudur	11 Nos.	11 Nos.	
82	18.12.08	LN Puram	7 Nos.	7 Nos.	
83	18.12.08	Poongunam	13 Nos.	13 Nos.	
84	18.12.08	Chettipattadai	6 Nos.	6 Nos.	
85	18.12.2008	Koovadu	5 Nos.	5 Nos.	
86	18.12.2008	Pinnalvadi	8 Nos.	8 Nos.	
87	18.12.2008	M. Kunnathur	10 Nos.	10 Nos.	
88	18.12.2008	Alangiri	7 Nos.	7 Nos.	
89	18.12.2008	Salapakkam	11 Nos.	11 Nos.	
90	19.12.08	Vali Odai	8 Nos.	8 Nos.	
91	19.12.08	Naduveerapattu Old	9 Nos.	9 Nos.	
92	19.12.08	Naduveerapattu New	7 Nos.	7 Nos.	
		Page 106			

Annexure -3

Details of Modernisation works as suggested by the Farmers

Name of the Sub Basin : Gadilam

SI.		Name if the	Out come of wald through survey and discussions with farmers.			
No.	Date of Visit	Villages Visted	Works suggested by Farmers	Works finalized by WRO		
1	2	3	4	5	6	
1	8.11.2008	Yal	Tank bund to be strengthened Supply channel improvements is requested.	Included in the IAMWARM Project		
2	8.11.2008	Melpangur	Tank bund to be strengthened Supply channel improvements is requested.	Included in the IAMWARM Project		
3	8.11.2008	Peral	Tank bund to be strengthened Supply channel improvements is requested.	Included in the IAMWARM Project		
4	8.11.2008	Sathapattu	Tank bund to be strengthened Supply channel improvements is requested.	Included in the IAMWARM Project		
5	8.11.2008	Pavanur	Tank bund to be strengthened Supply channel improvements is requested.	Included in the IAMWARM Project		
				PAGE 107		

6	8.11.2008	Pasar	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
7	8.11.2008	Rishivanthiyam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
8	8.11.2008	Vengalam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
9	8.11.2008	Minivazhai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
10	8.11.2008	Kunniyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
11	8.11.2008	Timmalai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
				PAGE 108

12	11.11.2008	Panapadi	Lining in field channel in requested	Included in the IAMWARM Project
13	11.11.2008	Memalur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
14	11.11.2008	Alur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
15	11.11.2008	Periyakurukkai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
16	11.11.2008	Mohalar	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
17	11.11.2008	Arunkurukkai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested Threashing floor is required	Included in the IAMWARM Project
18	11.11.2008	Damal	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Anicut is to be repaired	Included in the IAMWARM Project
				PAGE 109

19	11.11.2008	Kiliyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
20	11.11.2008	Puthananthal	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed weir repair is required Threashing floor	Included in the IAMWARM Project
21	11.11.2008	Nathamoor	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed weir repair is required	Included in the IAMWARM Project
22	11.11.2008	Athur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
23	12.11.08	Eidanur	Lining work in supply channel Culvert is to be repaired	Included in the IAMWARM Project
24	14.11.2008	Kalamarudur	Supply channel improvements is requested. Sluice repair is needed Weir Repair Eviction to be removed	Included in the IAMWARM Project
25	14.11.2008	T. Orathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
				PAGE 110

26	14.11.2008	Pa. killanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction to be removed	Included in the IAMWARM Project
27	14.11.2008	Pandur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
28	14.11.2008	Arali	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
29	14.11.2008	Semmanankur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required	Included in the IAMWARM Project
30	14.11.2008	Nagar	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Included in the IAMWARM Project
31	14.11.2008	Senkurichi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Included in the IAMWARM Project
				PAGE 111

32	14.11.2008	Padur	Desilting work is required and capacity of the tank has to be increased	Included in the IAMWARM Project
33	18.11.08	Elanthampattu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
34	18.11.08	Siruvathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
35	18.11.08	Manapakkam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
36	18.11.08	Semmedu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
37	18.11.08	Thiruvamur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
38	18.11.08	Veerperumanallur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
				PAGE 112

39	18.11.08	Sirugramam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
40	18.11.08	Vizur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
41	18.11.2008	Kattuchellur	Sluice repair is needed	Included in the IAMWARM Project
42	18.11.2008	Mathiyanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Included in the IAMWARM Project
43	18.11.2008	Koo. Kallakurichi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required Weir repair	Included in the IAMWARM Project
44	18.11.2008	Mattigai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
45	18.11.2008	Senthanadu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
46	18.11.2008	Manalur	Additional weir is required. Field channel lining is needed	Included in the IAMWARM Project
				PAGE 113

47	18.11.2008	Kalathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Threashing floor is required	Included in the IAMWARM Project
48	18.11.2008	Ankanur	Field channel lining is required	Included in the IAMWARM Project
49	18.11.2008	Vellaiyur	Weir repair work is requested	Included in the IAMWARM Project
50	18.11.2008	Sirupakkam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
51	10.12.08	Elumedu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
52	10.12.2008	Thiruvathigai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
53	10.12.08	C N Palayam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs	Included in the IAMWARM Project
54	11.12.08	P N Palayam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
				PAGE 114

55	11.12.08	Pandarakottai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs	Included in the IAMWARM Project
56	13.12.2008	Neyvanai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested	Included in the IAMWARM Project
57	13.12.2008	Adanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair Eviction to be removed	Included in the IAMWARM Project
58	13.12.2008	Pachaplayam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair	Included in the IAMWARM Project
59	13.12.2008	U. Sellur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair	Included in the IAMWARM Project
60	13.12.2008	Emam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
				PAGE 115

61	16.12.08	Vilangalpattu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs Providing retaining wall	Included in the IAMWARM Project
62	16.12.08	Ramapuram Devan Eri	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Weir repairs Threshering floor	Included in the IAMWARM Project
63	16.12.08	Thottapattu	Desilting the tank Strengthening of bund Providing retaining wall in Weeker section of the bund. Improvement to Supply channel Weir Repaired Encroachment is to be removed	Included in the IAMWARM Project
64	16.12.08	Varkkalpattu	Desilting the tank Strengthening of bund Improvement to Supply channel Providing revetment Providng new sluice Weir Repaired Providing lining the supply channel	Included in the IAMWARM Project
65	16.12.08	Gunamangalam	Desilting the tank Strengthening of bund Improvement to Supply channel Repair to sluice Providing lining the supply channel	Included in the IAMWARM Project
				PAGE 116

66	16.12.2008	S. Malayanur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
67	16.12.2008	Pu. Kolanavadi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
68	16.12.2008	U. keeranur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Eviction is to be removed	Included in the IAMWARM Project
69	16.12.2008	Ulundur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Eviction is to be removed	Included in the IAMWARM Project
70	16.12.2008	Sembimadevi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Eviction is to be removed	Included in the IAMWARM Project
71	16.12.2008	A. Puthur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
				PAGE 117

72	17.12.08	Natham	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
73	17.12.08	Semakottai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair Retaining Wall Threashing floor	Included in the IAMWARM Project
74	17.12.2008	Kattu Edaiyar	Left Bank of Canel breached during the year 200-08, 2008-09. Retaining wall is needed for a length of 50m. O & M is needed for about 3km. Sluice is to be required.	Included in the IAMWARM Project
75	17.12.2008	Sikkadu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed	Included in the IAMWARM Project
76	17.12.2008	Adhaiyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Right Bank of Canel breached during the year 200-08, 2008-09. Retaining wall is needed for a length of 50m. O & M is needed for about 3km. Sluice is to be r	Included in the IAMWARM Project
				PAGE 118

77	17.12.2008	Kunjaram	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Retaining wall requested	Included in the IAMWARM Project
78	17.12.2008	Eriyur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Weir Repair is requested	Included in the IAMWARM Project
79	17.12.2008	Veeramangalam	Tank bund to be strengthened Supply channel improvements is requested. Eviction is to be removed	Included in the IAMWARM Project
80	17.12.2008	Vadakurumbur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested	Included in the IAMWARM Project
81	18.12.08	Manamthavizn thapudur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
82	18.12.08	LN Puram	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed	Included in the IAMWARM Project
				PAGE 119

83	18.12.08	Poongunam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Eviction is to be removed Threshing floor	Included in the IAMWARM Project
84	18.12.08	Chettipattadai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
85	18.12.2008	Koovadu	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested	Included in the IAMWARM Project
86	18.12.2008	Pinnalvadi	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir Repair is requested Threashing floor is required	Included in the IAMWARM Project
87	18.12.2008	M. Kunnathur	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed weir repair is required Threashing floor	Included in the IAMWARM Project
88	18.12.2008	Alangiri	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
				PAGE 120

89	18.12.2008	Salapakkam	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is needed Weir repair	Included in the IAMWARM Project
90	19.12.08	Vali Odai	Tank bund to be strengthened Supply channel improvements is requested. Sluice repair is need Providing shutter	Included in the IAMWARM Project
91	19.12.08	Naduveerapattu Old	Check dam provided near Naduveerapattu across Gadilam river Bed dam provided across nariyan odai Tank bund to be strengthened Providing shutter Providng threshing floor Weir Repair Providing shutter arrangement in infall point of nariyan odai.	Included in the IAMWARM Project
92	19.12.08	Naduveerapattu New	Check dam provided near Naduveerapattu across Gadilam river Bed dam provided across nariyan odai Tank bund to be strengthened Providing shutter Providng threshing floor Weir Repair Providing shutter arrangement in infall point of nariyan odai.	Included in the IAMWARM Project

PAGE 121

1.5 IRRIGATION INFRASTRUCTURE

	Name of the Sub Basin : Gadilam										
Sl. No	Anicuts	Village	Block	Taluk	District	Direct Ayacut Area in Ha					
Ι	Ulundurpet S	ection									
1	KattuEdaiyur	KattuEdaiyur	Ulundurpet	Ulundurpet	Villupuram						
2	Memalur	Memalur	Thirukoilur	Thirukoilur	Villupuram						
3	Alur	Alur	Thirukoilur	Thirukoilur	Villupuram						
4	Mohalar	Mohalar	Thirukoilur	Thirukoilur	Villupuram						
5	Arunkurukkai	Arunkurukkai	T.V. Nallur	Thirukoilur	Villupuram						
6	Thamal	Thamal	Ulundurpet	Ulundurpet	Villupuram						
7	Puthananthal	Puthananthal	Ulundurpet	Ulundurpet	Villupuram						
8	S. Malayanur	S. Malayanur	Ulundurpet	Ulundurpet	Villupuram						
9	Anganur	Anganur	Ulundurpet	Ulundurpet	Villupuram	18.61					
10	Pachapalayam	Pachapalayam	Thirnavalur	Ulundurpet	Villupuram						
11	T. Kalathur	T. Kalathur	Thirnavalur	Ulundurpet	Villupuram						
		-	Page 123			-					

1.5.1. LIST OF ANICUTS

Π	Panruti Section	Panruti Section								
12	Thiruvathigai	Thiruvathigai	Panruti	Panruti	Cuddalore	134.17				
	-do-	-do-	Annagramam	Panruti	Cuddalore	1191.88				
	Cuddalore Section									
13	Vanamadevi	Vanamadevi	Cuddalore	Cuddalore	Cuddalore	339.54				
14	Thiruvanthipuram	Thiruvanthipuram	Cuddalore	Cuddalore	Cuddalore					

Page 124

1.5.2 LIST OF TANKS (Separate statement for Non System Tanks) SYSTEM - NIL

SI. NO	Name of Tank	Village	Block	Taluk	District	Ayacut	Capacity in Mcum
	Villupuram District						
1	Yal Tank	Yal	Rishivanthiyam	Sankarapuram	Villupuram	65.28	13.34
2	Melpangur	Melpangur	Rishivanthiyam	Sankarapuram	Villupuram	56.50	9.23
3	Peral	Peral	Rishivanthiyam	Sankarapuram	Villupuram	54.66	12.66
4	Sathaputhur Tank	Sathaputhur	Rishivanthiyam	Sankarapuram	Villupuram	43.12	11.14
5	Pavandur Tank	Pavandur	Rishivanthiyam	Sankarapuram	Villupuram	45.29	12.23
6	Pasar Tank	Pasar	Rishivanthiyam	Sankarapuram	Villupuram	124.97	33.96
7	Rishivandiyam Tank	Rishivandiyam	Rishivanthiyam	Sankarapuram	Villupuram	73.97	17.40
8	Vengalam Tank	Vengalam	Rishivanthiyam	Sankarapuram	Villupuram	45.14	12.38
9	Munivazhai	Munivazhai	Rishivanthiyam	Sankarapuram	Villupuram	51.99	18.35
10	Kunniyur Tank	Kunniyur Tank	Rishivanthiyam	Sankarapuram	Villupuram	49.10	21.65
			Page 125				

Name of the Sub Basin: GADILAM

11	Thimmalai Tank	Thimmalai	Thiyagathurugam	Sankarapuram	Villupuram	68.99	18.18
12	Panappadi	Panappadi	Thirukoilur	Thirukoilur	Villupuram	58.62	13.58
13	Kattu Edaiyar	Kattu Edaiyar	Ulundurpet	Ulundurpet	Villupuram	154.06	65.00
14	memalur	memalur	Thirukoilur	Thirukoilur	Villupuram	63.82	21.43
15	Kattusellur	Kattusellur	Ulundurpet	Ulundurpet	Villupuram	79.24	7.96
16	Alur	Alur	Thirukoilur	Thirukoilur	Villupuram	70.13	25.63
17	Periyakurukkai	Periyakurukkai	Ulundurpet	Ulundurpet	Villupuram	47.70	16.92
18	Mohalar	Mohalar	Thirukoilur	Thirukoilur	Villupuram	61.83	40.32
19	Sikkadu	Sikkadu	Ulundurpet	Ulundurpet	Villupuram	44.72	8.50
20	Adaiyur	Adaiyur	Ulundurpet	Ulundurpet	Villupuram	45.72	16.13
21	Kunjaram	Kunjaram	Ulundurpet	Ulundurpet	Villupuram	116.19	34.36
22	Eraiyur	Eraiyur	Ulundurpet	Ulundurpet	Villupuram	54.28	51.95
23	Veeramangalam	Veeramangalam	Ulundurpet	Ulundurpet	Villupuram	41.63	8.58
			Page 126				

24	Vadakurumbur	Vadakurumbur	Ulundurpet	Ulundurpet	Villupuram	86.64	17.50
25	S. Malaiyanur	S. Malaiyanur	Ulundurpet	Ulundurpet	Villupuram	58.05	11.97
26	Koovadu	Koovadu	Ulundurpet	Ulundurpet	Villupuram	91.09	18.80
27	Neivainai	Neivainai	Ulundurpet	Ulundurpet	Villupuram	61.57	12.76
28	Pinnalvadi	Pinnalvadi	Ulundurpet	Ulundurpet	Villupuram	63.02	15.97
29	Aurnkurukkai	Aurnkurukkai	T V. Nallur	Thirukoilur	Villupuram	78.06	16.15
30	Damal	Damal	Ulundurpet	Ulundurpet	Villupuram	51.02	10.60
31	Kiliyur	Kiliyur	Ulundurpet	Ulundurpet	Villupuram	50.12	9.72
32	M. Kunnathur	M. Kunnathur	Ulundurpet	Ulundurpet	Villupuram	64.10	12.78
33	Puthanandal	Puthanandal	Ulundurpet	Ulundurpet	Villupuram	51.00	74.10
34	Nathamur	Nathamur	Ulundurpet	Ulundurpet	Villupuram	82.43	10.40
35	Athur	Athur	Thirunavalur	Ulundurpet	Villupuram	43.53	9.00
36	Adanur	Adanur	Thirunavalur	Ulundurpet	Villupuram	53.40	10.99
			page 127				

37	Kalamarudur	Kalamarudur	Thirunavalur	Ulundurpet	Villupuram	142.51	117.32
38	Orathur	Orathur	Thiruvanvalur	Ulundurpet	Villupuram	109.31	22.50
50	Oradinar		1 III uvalivalui	Orundurpet	v mupuram	107.51	22.00
39	Pa. Killanur	Pa. Killanur	Thiruvanvalur	Ulundurpet	Villupuram	44.72	10.00
40	Pachapalayam	Pachapalayam	Thiruvanvalur	Ulundurpet	Villupuram	41.83	5.12
41	U. Sellur	U. Sellur	Thiruvanvalur	Ulundurpet	Villupuram	42.92	10.58
42	Pandur	Pandur	Thiruvanvalur	Ulundurpet	Villupuram	82.43	19.92
43	Arali	Arali	Thiruvanvalur	Ulundurpet	Villupuram	58.04	12.10
44	Sennangur	Sennangur	Thiruvanvalur	Ulundurpet	Villupuram	70.79	19.57
45	Nagar	Nagar	Thiruvanvalur	Ulundurpet	Villupuram	47.00	9.70
46	Sengurichi	Sengurichi	Thiruvanvalur	Ulundurpet	Villupuram	53.75	12.06
47	Padur	Padur	Thirunavalur	Ulundurpet	Villupuram	245.75	50.58
48	Mathiyanur	Mathiyanur	Thirunavalur	Ulundurpet	Villupuram	46.62	10.40
49	Koo. Kallakurichi	Koo. Kallakurichi	Thirunavalur	Ulundurpet	Villupuram	53.89	26.90
			page 128				

			1				1
50	Mattigai	Mattigai	Thirunavalur	Ulundurpet	Villupuram	46.20	16.11
51	Sendanadu	Sendanadu	Thirunavalur	Ulundurpet	Villupuram	78.23	9.15
52	Manalur.	Manalur.	Thirunavalur	Ulundurpet	Villupuram	118.62	13.36
53	T. Kalathur	T. Kalathur	Thirunavalur	Ulundurpet	Villupuram	131.53	23.10
54	Anganur	Anganur	Ulundurpet	Ulundurpet	Villupuram	79.70	12.57
55	Emam	Emam	Ulundurpet	Ulundurpet	Villupuram	43.18	17.38
56	Vellaiyur	Vellaiyur	Ulundurpet	Ulundurpet	Villupuram	123.08	25.30
57	Pu. Konalavadi	Pu. Konalavadi	Ulundurpet	Ulundurpet	Villupuram	46.40	25.50
58	U. Keeranur	U. Keeranur	Ulundurpet	Ulundurpet	Villupuram	56.18	11.57
59	Ulundur	Ulundur	Ulundurpet	Ulundurpet	Villupuram	55.04	11.15
60	Sirupakkam	Sirupakkam	Ulundurpet	Ulundurpet	Villupuram	48.70	10.15
61	Sembiyanmadevi	Sembiyanmadevi	Ulundurpet	Ulundurpet	Villupuram	47.90	9.87
62	Alangiri	Alangiri	Ulundurpet	Ulundurpet	Villupuram	53.43	10.20
			page 129				

63	Salappakkam	Salappakkam	Ulundurpet	Ulundurpet	Villupuram	41.11	10.37
64	A. Puthur	A. Puthur	Ulundurpet	Ulundurpet	Villupuram	59.80	51.95
			Total			4419.64	
	Cuddalore Distirct						
65	Manamthaviznthaputhur tank	Manamthaviznthaputhur	Panruti	Panruti	Cuddalore	62.17	12.50
66	Natham tank	Natham	Panruti	Panruti	Cuddalore	259.04	53.32
67	Sirugrammam tank	Sirugrammam	Panruti	Panruti	Cuddalore	191.50	78.83
68	Veeraperumanallur tank	Veeraperumanallur	Panruti	Panruti	Cuddalore	259.03	106.63
69	Thiruvamur tank	Thiruvamur	Panruti	Panruti	Cuddalore	30.60	18.67
70	Elanthampattu tank	Elanthampattu	Panruti	Panruti	Cuddalore	156.29	26.05
71	Semmedu tank	Semmedu	Panruti	Panruti	Cuddalore	49.56	20.40
72	Vizur Zemberi tank	Vizur	Panruti	Panruti	Cuddalore	58.04	23.89
73	Semakottai tank	Semakottai	Panruti	Panruti	Cuddalore	70.85	14.58
74	Manapakkam tank	Manapakkam	Panruti	Panruti	Cuddalore	57.51	23.27
			page 130				

75	Siruvathur tank	Siruvathur	Panruti	Panruti	Cuddalore	214.26	88.20
76	Pandarakottai tank	Pandarakottai	Annagramam	Panruti	Cuddalore	41.25	16.97
77	L.N.Puram tank	L.N.Puram	Panruti	Panruti	Cuddalore	122.65	25.25
78	Poongunam tank	Poongunam	Panruti	Panruti	Cuddalore	86.29	17.76
79	Chettipattadai tank	Thiruvathigai	Panruti	Panruti	Cuddalore	274.52	113.84
80	Elumedu tank	Elumedu	Annagramam	Panruti	Cuddalore	117.41	48.33
81	P.N.Palayam tank	P.N.Palayam	Annagramam	Panruti	Cuddalore	68.62	14.12
82	C.N.Palayam tank	C.N.Palayam	Annagramam	Panruti	Cuddalore	50.2	20.67
83	Thottapattu tank	Thottapattu	Cuddalore	Cuddalore	Cuddalore	66.8	7.20
84	Varakkalpattu tank	Varakkalpattu	Cuddalore	Cuddalore	Cuddalore	70.45	13.50
85	Gunamangalam tank	Gunamangalam	Cuddalore	Cuddalore	Cuddalore	252.63	26.85
86	Eidanur tank	Eidanur	Annagramam	Cuddalore	Cuddalore	135.22	22.87
87	Valiodai tank	Ariyirunthamangalam	Annagramam	Cuddalore	Cuddalore	272.47	39.00
			Page 131				

88	Naduveerapattu Old tank	Naduveerapattu	Cuddalore	Cuddalore	Cuddalore	40.91	34.00
89	Naduveerapattu New tank	Naduveerapattu	Cuddalore	Cuddalore	Cuddalore	106.88	34.00
90	Vilangalpattu tank	Vilangalpattu	Cuddalore	Cuddalore	Cuddalore	78.90	16.00
91	Ramapuram Devan Eri	Ramapuram	Cuddalore	Cuddalore	Cuddalore	77.67	32.00
						3271.72	
		Grand		7691.36			

Page 132

1.5.3 LIST OF SUPPLY CHANNEL

SI. NO	Name of Supply Channel	Length in M	Village	Block	Taluk	District
1	Yal	1500	Yal	Rishivanthiyam	Sangarapuram	Villupuram
2	Melpangur	1500	Melpangur	Rishivanthiyam	Sangarapuram	Villupuram
3	Peral	1500	Peral	Rishivanthiyam	Sangarapuram	Villupuram
4	Sathaputhur	1500	Sathaputhur	Rishivanthiyam	Sangarapuram	Villupuram
5	Pavandur	2500	Pavandur	Rishivanthiyam	Sangarapuram	Villupuram
6	Pasar	2500	Pasar	Rishivanthiyam	Sangarapuram	Villupuram
7	Rishivandiyam	1850	Rishivandiyam	Rishivanthiyam	Sangarapuram	Villupuram
8	Vengalam	2800	Vengalam	Rishivanthiyam	Sangarapuram	Villupuram
9	Munivazhai	2200	Munivazhai	Rishivanthiyam	Sangarapuram	Villupuram
10	Kunniyur	1700	Kunniyur	Rishivanthiyam	Sangarapuram	Villupuram
11	Thimmalai	1500	Thimmalai	Thiyagathuruga	Sangarapuram	Villupuram
12	Panappadi	-	Panappadi	Thirukoilur	Thirukoilur	Villupuram
13	Kattu Edaiyar	2700	Kattu Edaiyar	Ulundurpet	Ulundurpet	Villupuram
14	memalur	4000	memalur	Thirukoilur	Thirukoilur	Villupuram
15	Kattusellur	2000	Kattusellur	Ulundurpet	Ulundurpet	Villupuram
16	Alur	2000	Alur	Thirukoilur	Thirukoilur	Villupuram
17	Periyakurukkai	2000	Periyakurukkai	Ulundurpet	Ulundurpet	Villupuram
18	Mohalar	1500	Mohalar	Thirukoilur	Thirukoilur	Villupuram
19	Sikkadu	2000	Sikkadu	Ulundurpet	Ulundurpet	Villupuram
20	Adaiyur	2000	Adaiyur	Ulundurpet	Ulundurpet	Villupuram
21	Kunjaram	2000	Kunjaram	Ulundurpet	Ulundurpet	Villupuram
22	Eraiyur	2000	Eraiyur	Ulundurpet	Ulundurpet	Villupuram
			Page 133			

Name of the Sub Basin: GADILAM

23	Veeramangalam	1500	Veeramangalam	Ulundurpet	Ulundurpet	Villupuram
24	Vadakurumbur	2000	Vadakurumbur	Ulundurpet	Ulundurpet	Villupuram
25	S. Malaiyanur	1100	S. Malaiyanur	Ulundurpet	Ulundurpet	Villupuram
26	Koovadu	2000	Koovadu	Ulundurpet	Ulundurpet	Villupuram
27	Neivainai	2000	Neivainai	Ulundurpet	Ulundurpet	Villupuram
28	Pinnalvadi	2000	Pinnalvadi	Ulundurpet	Ulundurpet	Villupuram
29	Aurnkurukkai	2000	Aurnkurukkai	T V. Nallur	Thirukoilur	Villupuram
30	Damal	3000	Damal	Ulundurpet	Ulundurpet	Villupuram
31	Kiliyur	2000	Kiliyur	Ulundurpet	Ulundurpet	Villupuram
32	M. Kunnathur	1500	M. Kunnathur	Ulundurpet	Ulundurpet	Villupuram
33	Puthanandal	2000	Puthanandal	Ulundurpet	Ulundurpet	Villupuram
34	Nathamur	2000	Nathamur	Ulundurpet	Ulundurpet	Villupuram
35	Athur	3600	Athur	Thirunavalur	Ulundurpet	Villupuram
36	Adanur	2000	Adanur	Thirunavalur	Ulundurpet	Villupuram
37	Kalamarudur	3600	Kalamarudur	Thirunavalur	Ulundurpet	Villupuram
38	Orathur	5000	Orathur	Thirunavalur	Ulundurpet	Villupuram
39	Pa. Killanur	2000	Pa. Killanur	Thirunavalur	Ulundurpet	Villupuram
40	Pachapalayam	2700	Pachapalayam	Thirunavalur	Ulundurpet	Villupuram

41	U. Sellur	1500	U. Sellur	Thirunavalur	Ulundurpet	Villupuram
42	Pandur	3000	Pandur	Thirunavalur	Ulundurpet	Villupuram
43	Arali	2000	Arali	Thirunavalur	Ulundurpet	Villupuram
44	Sennangur	1500	Sennangur	Thirunavalur	Ulundurpet	Villupuram
45	Nagar	1000	Nagar	Thirunavalur	Ulundurpet	Villupuram
46	Sengurichi	2000	Sengurichi	Thirunavalur	Ulundurpet	Villupuram
47	Padur	4700	Padur	Thirunavalur	Ulundurpet	Villupuram
48	Mathiyanur	3000	Mathiyanur	Thirunavalur	Ulundurpet	Villupuram
49	Koo. Kallakurichi	2000	Koo. Kallakurichi	Thirunavalur	Ulundurpet	Villupuram
50	Mattigai	2000	Mattigai	Thirunavalur	Ulundurpet	Villupuram
51	Sendanadu	2000	Sendanadu	Thirunavalur	Ulundurpet	Villupuram
52	T. Kalathur	1500	T. Kalathur	Thirunavalur	Ulundurpet	Villupuram
53	Emam	2000	Emam	Ulundurpet	Ulundurpet	Villupuram
			Page 134			

54	Pu. Konalavadi	2000	Pu. Konalavadi	Ulundurpet	Ulundurpet	Villupuram
55	U. Keeranur	1500	U. Keeranur	Ulundurpet	Ulundurpet	Villupuram
56	Ulundur	2000	Ulundur	Ulundurpet	Ulundurpet	Villupuram
57	Sirupakkam	2000	Sirupakkam	Ulundurpet	Ulundurpet	Villupuram
58	Sembiyanmadevi	1500	Sembiyanmadevi	Ulundurpet	Ulundurpet	Villupuram
59	Alangiri	2000	Alangiri	Ulundurpet	Ulundurpet	Villupuram
60	Salappakkam	1500	Salappakkam	Ulundurpet	Ulundurpet	Villupuram
61	A. Puthur	1500	A. Puthur	Ulundurpet	Ulundurpet	Villupuram
	Supply Channel			Cuddalore District		
62	Manamthaviznthaputhur tank	4700	Manamthaviznthaputhur	Panruti	Panruti	Cuddalore
63	Natham tank	4000	Natham	Panruti	Panruti	Cuddalore
64	Sirugrammam tank	1500	Sirugrammam	Panruti	Panruti	Cuddalore
65	Veeraperumanallur tank	4000	Veeraperumanallur	Panruti	Panruti	Cuddalore
66	Thiruvamur tank	2000	Thiruvamur	Panruti	Panruti	Cuddalore
67	Elanthampattu tank	1200	Elanthampattu	Panruti	Panruti	Cuddalore
68	Semmedu tank	-	Semmedu	Panruti	Panruti	Cuddalore
69	Vizur Zemberi tank	-	Vizur	Panruti	Panruti	Cuddalore
70	Semakottai tank	3000	Semakottai	Panruti	Panruti	Cuddalore

71	Manapakkam tank	2200	Manapakkam	Panruti	Panruti	Cuddalore
72	Siruvathur tank	4200	Siruvathur	Panruti	Panruti	Cuddalore
73	Pandarakottai tank	-	Pandarakottai	Annagramam	Panruti	Cuddalore
74	L.N.Puram tank	7700	L.N.Puram	Panruti	Panruti	Cuddalore
75	Poongunam tank	3600	Poongunam	Panruti	Panruti	Cuddalore
76	Chettipattadai tank	22100	Thiruvathigai	Panruti	Panruti	Cuddalore
77	Elumedu tank	6500	Elumedu	Annagramam	Panruti	Cuddalore
78	P.N.Palayam tank	2500	P.N.Palayam	Annagramam	Panruti	Cuddalore
79	C.N.Palayam tank	-	C.N.Palayam	Annagramam	Panruti	Cuddalore
80	Thottapattu tank	1100	Thottapattu	Cuddalore	Cuddalore	Cuddalore
81	Varakkalpattu tank	-	Varakkalpattu	Cuddalore	Cuddalore	Cuddalore
82	Gunamangalam tank	1800	Gunamangalam	Cuddalore	Cuddalore	Cuddalore
83	Eidanur tank	1500	Eidanur	Annagramam	Panruti	Cuddalore
			Page 135			

84	Valiodai tank	2000	Ariyirunthamangalam	Annagramam	Panruti	Cuddalore
85	Naduveerapattu Old tank	2300	Naduveerapattu	Cuddalore	Cuddalore	Cuddalore
86	Naduveerapattu New tank	2300	Naduveerapattu	Cuddalore	Cuddalore	Cuddalore
87	Vilangalpattu tank	3500	Vilangalpattu	Cuddalore	Cuddalore	Cuddalore
88	Ramapuram Devan Eri	-	Ramapuram	Cuddalore	Cuddalore	Cuddalore
89	Thiruvanthipuram Anicut		Thiruvanthipuram	Cuddalore	Cuddalore	Cuddalore

Total length of Supply channel

211150

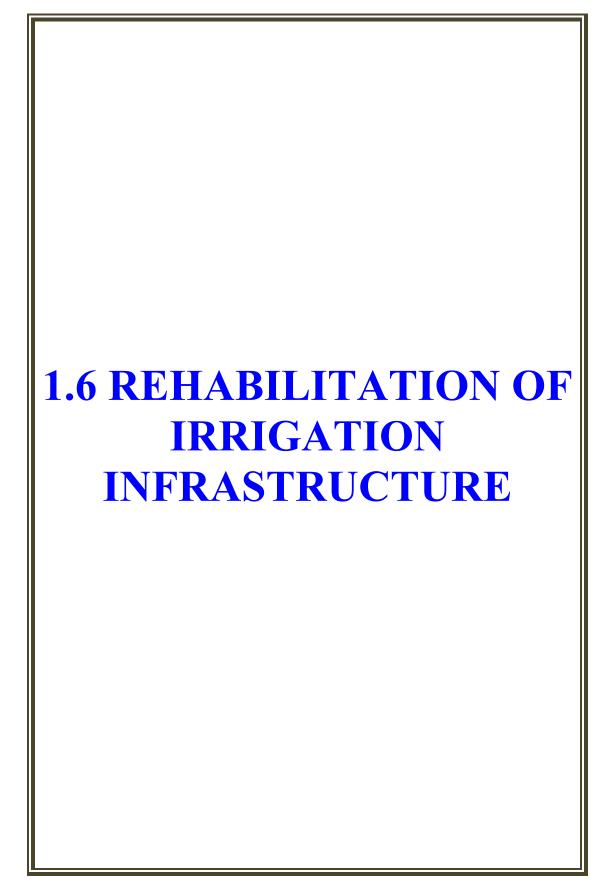
1.5.4 List of Tanks / Anicuts Executed under various Schemes (Viz, Part II Scheme, NABARD, WRCP I etc.,) Since 2000 NAME OF SUB BASIN : GADILAM

Sl. No	Name of Anicut / Tanks	Ayacut	Scheme in which executed	Amount	Details of Components executed	Remarks
Ι	Ulundurpet Section					
1	Padur Tank	245.25	NABARD	66.82	Bund, Sluice and weir repair work have been completed	
2	Vellaiyur Tank	123.08	Part Scheme II	12.00	Bund, Sluice and weir repair work have been completed	
3	Panapadi Tank	58.62	NABARD	52.00	Bund, Sluice and weir repair work have been completed. Anicut is newly consturcted.	
4	Manalur Tank	118.62	NABARD	10.00	Bund, Sluice and weir repair work have been completed. Anicut is newly consturcted.	
5	Anganur Tank	61.08	NABARD	10.00	Bund, Sluice and weir repair work have been completed. Anicut is newly consturcted.	
II	Panruti Section					
6	Elumedu	117.41	MLA	10.00	Lining of field channel have been completed	
			Page 137			

7	Sirugramam	191.5	Part Scheme II	28.00	Bund work have been completed Field channel newly consturcted.
8	Elanthambattu	156.29	NABARD	24.48	Bund work have been completed Field channel newly consturcted.
9	Manapakkam	57.51	NABARD	18.46	Bund work have been completed Field channel newly consturcted.
10	Thiruvamur	30.6	MLA	10.00	-
11	Semmedu	49.56	MLA	10.00	Weir repair work have been completed
Ш	Cuddalore Section				
12	Vilangalpattu Tank	78.9	MLA	10.00	Field channel newly consturcted.
13	Eidanur Tank	135.22	Part Scheme II	20.00	Bund,Repair work Have been completted Field channel newly

1.5.5 ABSTRACT ON THE DETAILS OF IRRIGATION INFRASTRUCTURE AVAILABLE AND WORKS TAKEUP UNDER IAMWARM PROJECT

NAN	ME OF SUB BASIN : G	ADILA	Μ										
SI.		ANICUT		•	SYSTE	M TANK	•	NON S	YSTEM TANK		ANY SUPPLY C	OTHER HANNEL	
No		NOS	SUPPLY CHANNEL IN	DIRECT AYACUT	NOS	SUPPLY CHANNEL	DIRECT AYACUT	NOS	SUPPLY CHANNEL IN	AYACUT	LENGTH	DIRECT AYACU	REMARKS
1	Available Infrastructure in Sub basin	14	52.10	1684.20	-	-	-	91	211.15	7672.75			
2	Infrastructure excluded in iamwarm project since works carried out	-	-	-	-	-	-	13	38.5	1413.61	-	-	
3	Infrastructures that does not require any rehabilitation works		-	-	-	-	-	-	-	-	-	-	Total length of
4	works taken up in iamwarm project.	-	-	-	-	-	-	-	-	-	-	-	supply channels
	a) Works taken up under other schemes but also taken up in IAMWARM Project	5	-	-	-	-	-	8	37.90	816.99	-	-	263.25 km
	b) Works proposed in IAMWARM Project alone		52.10	1684.20	-	-	-	78	172.65	6855.76			


1 Certified that the Panchayat Union Tanks are not considered in this project.

2 Certified that the executed under various scheme (Viz. WRCP I, NABARD, PART II Schemes etc.,) since 2000 were not proposed in this project.

DETAILS OF WORKS COMPLETED IN TANKS UNDER OTHER SCHEMES - PROPOSED UNDER IAMWARM

SI. No	Name of Tank	Components executed under other schemes	Components proposed under IAMWARM
1	Sirugramam	a) Standardisation of Tank Bund completed	a) Reconstruction of Sluice - 2 Nos.
			b) Repairs to Weir - 1 No.
			c) Desilting of Supply Channel - 1500 m
2	Elanthampattu	a) Standardisation of Tank Bund completed	a) Reconstruction of Sluice - 1 Nos.
			b) Repairs to Sluice -1 No.
			c) Desilting of Supply Channel - 1200 m
3	Thiruvamur	-	a) Reconstruction of Sluice - 2 Nos.
		-	b) Reconstruction of Weir - 1 No.
		-	c) Desilting of Supply Channel - 2000 m
4	Semmedu	a) Repairs to Weir completed	a) Reconstruction of Sluice - 1 Nos.
			b) Standardisation of bund proposed
		-	
5	Manapakkam	a) Standardisation of Tank Bund completed	a) Reconstruction of Sluice - 2 Nos.

		-	b) Weir Repair - 1 No. c) Desilting of Supply Channel - 2200 m
6	Elumedu	a) Lining of field channels completed	a) Reconstruction of Sluice - 4 Nos.
			b) Repairs to weir - 1 No.c) Desilting of Supply Channel - 2200 m
			d) Standardisation of bund proposed
7	Eidanur	a) Standardisation of Tank Bund completed	a) Repair to Sluice 2 Nos.
		b) Desilting of Supply channel completed	
8	Villangalpattu	a) Field channel lining work completed	a) Standardisation of Bund proposed
			b) Reconstruction of Sluice - 1 Nos.
			c) Repairs to weir - 1 No.
			d) Desilting of supply channel

1.6 REHABILITAION OF IRRIGATION INFRASTRUCTURE OF THE GADILAM SUB BASIN

1.6.1 Structural Status & Deficiencies in the system.

The following are the present structural condition of the Gadilam Sub Basin system.

- 1. This system is a old system existing for more than 100 years as such requires Rehabilitation of tanks and its supply channels.
- 2. The tanks and its supply channels are heavily silted up which require strengthening of tank bund and improvements to supply channels.
- 3. The damaged (or) dilapidated condition of the sluices, weirs of tanks and head sluices of supply channels need repairs.
- 4. The damaged condition of the Anicuts and its supply channels which requires rehabilitation works.

In order to improve the conveyance and operational efficiency in irrigation. It is now proposed to improve and modernize the irrigation Infrastructures in Gadilam sub basin.

- 1. Repairs are proposed in this estimate for 13 Nos. of Anicuts.
- 2. Strengthening of tank bund by earthwork excavation using machineries.
- 3. Desilting the supply channels by earthwork excavation using machineries.
- 4. Providing Bed bars to maintain the bed level and inner slopes of the supply channels
- 5. Repairing Restoring the traditional water bodies (i.e. tanks)
 - a. Restoring the capacity of the tanks, supply channels by desilting
 - b. Strengthening the tank bund with free board of 1.50m with consolidation by power roller for effective storing the water and conveying it to the entire command area and also for conveying agriculture inputs to the field.
 - c. Reconstruction of Collapsed weirs.
 - d. Repairs to the damaged weirs
 - e. Reconstruction of collapsed sluices
 - f. Repairs to the damaged sluices.
 - g. Providing Model Sections and retaining walls in selective area of the tanks.
 - h. Providing S.G shutter / plug arrangements to sluices, Head sluices, scour vents etc.,
 - i. Fixed boundary stones in the tanks to prevent encroachment.
 - j. Removing, Repairing and refixing in position of the existing S.G. shuttering arrangements and providing locking arrangements etc.,
 - k. Provisions has been made for turfing in the rear side slope of the entire tank bund

l. Provision of lining in the field channels for the length of 50 m immediately downstream of irrigation sluices has been made.

Desilting the Supply Channel :-

There are 91 tanks situated within Gadilam sub basin catchment area a Lesser quantum of water flows to the tanks and balance water is over flanked and flows into agricultural lands.

1.6.2 Outcome of the Project.

- 1. Enhancing in conveyance efficiency from 53% to 56%
- 2. The present Gap area of 1400.02. ha, is covered as fully irrigated area
- 3. The irrigation infrastructure development works proposed in the sub basin are as detailed below:

a)	Rehabilitation works for tanks under IAMWARM alone	– 78 Tanks
b)	Rehabilitation works for tanks taken under other schemes but also	
	taken up under IAMWARM	- 8 Tanks
c)	Rehabilitation works for supply channels	
	taken up under IAMWARM	- 262.65 Kms.
d)	Rehabilitation works for anicuts	
	taken up under IAMWARM	- 13 No.

6.1.4. Anicut Components:

There are 14 Anicuts situated across Gadilam River in Gadilam Sub Basin. 11 Anicuts are situated in Villupuram District for which only minor repairs and skin wall protection are proposed under the IAMWARM Project.

Three Anicuts are situated in Cuddalore District in Gadilam River namely,

- 1. Thiruvathigai Anicut
- 2. Vanamadevi Anicut
- 3. Thiruvanthipuram Anicut

and rehabilitation of these three anicuts are proposed.

1. Thiruvathigai Anicut.

Thiruvathigai Anicut is situated in Panruti Taluk of Cuddalore District which feeds an ayacut (Direct) of 1191.88 Ha. The anicut has to be rehabilitated as the anicut is not having any apron and cutoff wall on the U/S anicut and the D/S apron is badly damaged. Hence the anicut was designed to discharge 49,000 cusecs considering the existing section of the anicut and it is proposed to provide the following

- a) Construction of additional scour vent
- b) Construction of U/S cutoff wall and apron
- c) Extending the D/S apron with necessary cutoff wall as per design
- d) Construction of launching apron.

The cost of rehabilitation of Thiruvathigai Anicut is Rs. 328.33 Lakhs under Package VIII

2. Vanamadevi Anicut.

The following works are proposed for rehabilitation of Vanamadevi Anicut costing

Rs.57.29 Lakhs under Package IX

- a) Formation of left side Flood bank on U/S side
- b) Formation of Right side flood bank on D/S side
- c) Construction of retaining wall at the entry point of supply channel
- d) Protecting the D/S apron by providing Talus.

3. Thriuvanthipuram Anicut:

The Thiruvanthipuram Anicut is the tail end anicut of Gadilam River and is situated 4km U/S of Confluence point with sea. The anicut proposed to rehabilitate with necessary U/S cutoff wall, D/S cutoff wall and aprons as per the design to prevent sea water intrusion and also to protect the anicut from further damages due to floods. The cost of rehabilitation of Thiruvanthipuram Anicut is Rs. 235.00 Lakhs under Package VII.

1.6.2. TANK DETAILS V	WITH FREE BOARD PROVIDED
-----------------------	--------------------------

Sl.No.	Name of the Tank	Maximum	Free	Length of	
		Height of Bund	Provided Previously	Provided now	Bund
I	Sangarapuram Section				
1	Yal	3.50	1.00	1.50	1050
2	Melapangur	4.20	1.02	1.50	1200
3	Peral	4.00	1.05	1.50	1175
4	Sathaputtur	3.80	0.98	1.50	1200
5	Pavandur	4.84	1.05	1.50	1300
6	Pasar	5.10	1.10	1.50	1500
7	Rishivanthiyam	5.20	1.20	1.50	1600
8	Vengalam	4.80	1.10	1.50	1150
9	Munivzhai	3.90	0.95	1.50	1200
10	Kunniyur	3.80	0.98	1.50	1000
11	Thimmalai	4.20	1.02	1.50	1320
	Page 143	I	I		<u> </u>

п	Ulundurpet Section				
12	Kattu edaiyur	4.70	1.00	1.50	1390
13	Alur	4.29	1.05	1.50	1630
14	Memalur	3.10	0.90	1.50	1760
15	Mohalar	5.50	1.10	1.50	900
16	Arunkurukkai	3.40	0.90	1.50	1620
17	Dhamal	3.70	0.95	1.50	1600
18	M. Kunnathur	5.10	1.20	1.50	1200
19	Kiliyur	4.80	1.10	1.50	1250
20	Nathamoor	5.10	1.10	1.50	1250
21	Periyakurukkai	3.80	0.95	1.50	1150
22	Puthananthal	3.10	0.92	1.50	1510
23	Athur	4.87	1.10	1.50	675

24	Pachapalayam		4.88	1.05	1.50	2000
25	Adanur		3.93	1.00	1.50	1800
26	Neivanai		4.63	1.05	1.50	1290
27	Koovadu		5.04	1.20	1.50	1240
28	Pa. killanur		5.16	1.20	1.50	2700
29	Orathur	1.8	4.08	0.95	1.50	2400
30	Kalamaruthur	2.4	3.98	0.95	1.50	2700
31	Pandur		4.60	1.05	1.50	3000
32	Arali	2.4	5.40	1.10	1.50	955
33	U. Sellur	2.4	4.23	1.00	1.50	2300
34	Semmanagur	2.4	16.45	1.00	1.50	1242
35	U. Keeranur	2.1	3.98	0.98	1.50	1180
36	Ulundur	1.8	4.49	1.00	1.50	1209
37	Nagar	2.1	5.36	1.15	1.50	1492
38	Mathiyanur	1.5	5.13	1.15	1.50	1370

39	Koo. Kallakurichi	2.7	5.63	1.20	1.50	1325
40	Mattigai	2.4	5.03	1.02	1.50	1600
41	Senthanadu	1.5	5.1	1.05	1.50	1060
42	Kalattur	3	5.00	1.05	1.50	2600
43	Sengurichi	8	3.80	0.95	1.50	1300
44	Pu. Konanalavadi	2.7	4.39	0.98	1.50	1140
45	Sirupakkam	2.4	4.36	0.98	1.50	630
46	A Puthur	3	4.31	0.95	1.50	700
47	Kunjaram		4.84	0.98	1.50	1295
48	Eraiyur	1.8	4.80	1.00	1.50	1250
49	Adhaiyur	3	4.90	1.05	1.50	1230

50	Sikkadu	2.1	4.73	1.00	1.50	960
51	Sempiyamadevi	2.4	5.30	1.20	1.50	582
52	Veeramangalam	2.4	4.84	1.05	1.50	1010
53	Pinnalavadi	2.4	4.78	1.05	1.50	1124
54	S. Malaiyanur	2.4	5.21	1.15	1.50	2298
55	Vadukurmbur	2	4.37	1.00	1.50	1750
56	Salapakkam	3	6.60	1.30	1.50	920
57	Alangiri	2.4	5.43	1.15	1.50	870
58	Kattusellur	1.8	4.26	1.10	1.50	1380
59	Emam	2.1	4.48	1.10	1.50	1060
111	Panruti Section					
60	Natham		2.90	0.80	1.25	2700
61	Semakotti		2.96	0.85	1.25	1500
62	Manamthavizhnthaputhu r		2.92	0.80	1.25	1500
63	L.N. Puram		2.47	0.90	1.25	1700
64	Poongunam		2.28	0.90	1.25	1550
65	P.N.Palayam		2.68	0.85	1.25	1700
66	Veeraprumanallur		2.68	0.90	1.25	1600
67	Sirugramam		2.95	0.90	1.25	1900
68	Siruvathur		3.78	1.00	1.50	2800

69	Manapakkam	2.85	0.88	1.25	1250
70	Semmedu	2.82	0.85	1.25	600
71	Vizur zamberi	2.82	0.90	1.25	1500
72	Thiruvamur	3.10	0.90	1.50	750
73	Chetipattadai	2.88	0.85	1.25	3834
74	Pandarakotti	2.71	0.85	1.25	1600
75	Elumedu	2.38	0.85	1.25	2100
76	C N Palayam	1.92	0.75	1.25	1200
	Cuddalore Section				
77	Elanthampattu	2.90	0.80	1.25	2100
78	Ramapuram Devan Eri	3.05	0.90	1.50	600
79	Vilangalpattu Tnk	3.19	0.88	1.50	775
80	Naduveerapatu Tank	2.89	0.90	1.25	720
81	Thottapattu Tank	3.35	0.88	1.50	1500
82	Varakalpattu tank	3.39	0.85	1.50	1400
83	Gunamangalam Tank	3.40	0.95	1.50	800
84	Eaidanur	3.05	0.95	1.50	1600
85	Vali Odai Tank	3.35	0.90	1.50	600
86	Naduveerapatu old Tank	3.15	0.90	1.50	720

For
 For

1.6.3.WRO COST TABLE

NAME OF THE SUB BASIN: GADILAM

Sl. No	Description of work	Length in 'M'	Quantity	Amount in Lakhs	Remarks
<u>1. T</u>	ank Component				
1	Standardisation of tank Bund	113163 Rm	1000290 M ³	590.73	
2	Desilting of Supply Channel	206750 Rm	743184 M ³	174.87	
3	Repairs to Sluice		4 Nos.	8.01	
4	Reconstruction of Sluice		144 Nos.	393.50	
5	Repairs to Weir		41 Nos.	158.87	
6	Reconstruction of Weir		34 Nos.	222.22	
7	Providing New Shutter		148 Nos.	40.47	
8	Providing Measuring Device		178 Nos.	18.01	
9	Providing Bed Bar		477 Nos.	7.09	
10	Providing Lining to field channel	8600 Rm	172 Nos.	165.76	
	(50 m length D/s)				
	Sub Total			1779.53	
<u>1. N</u>	on Tank Component				
1	Improvements to Flood Bank	3120 Rm	120841M ³	70	
	Anicut Repairs		8 Nos	747.95	
3	Retaining Wall	372 Rm	2	26.28	
4	Desilting of Supply Channel	55900 Rm	349824 M ³	83.95	
5	Providing Bed Bar		280 Nos.	4.24	
6	Construction of Culvert		1 Nos.	3.94	
7	Providing New Shutter		2 Nos.	1.12	
8	Providing Measuring Device		14 Nos.	1.40	
	Sub Total			938.65	
	Environment cell			16.70	
	Ground water			Nil	
1)	<u> </u>		_	955.35	
	Tank component		=	1779.53 938.65	
	Non tank component Environment cell		=	938.05 16.70	
5)	Grand Total		-	2734.88	

GADILAM SUB BASIN COMPONENTWISE ABSTRACT

PACKAGE 1 to 9

		Tank	Bund	Im	iprove Slu		to		ter for uice	Impr	oveme	ents to	weir		utter Weir	S	upply	Channe	əl	Bec	l Bar	Mea De	suring evice	Lining (Channel	A	nicut			
SI. No	Pack age	Propo sed Lengt h	Amoun t in Lakhs	be	Amou nt in Lakhs	No. of sluic es to be repai red	Amo unt in Lakh s	Nos.	Amou nt in Lakhs	No. of weirs to be recon struct ed	Amou nt in Lakhs	No, of weirs to be repai red	Amou nt in Lakhs	No s.	Amo unt in Lak hs	Lengt h to be desilte d	Amou nt in Lakhs	Lengt h of propo sed retaini ng wall(m)	Amou nt in Lakhs	Nos	Amo unt in lakhs	Nos	Amou nt in Lakhs	Nos.	Amou nt in Lakhs	Nos.			LS	Total Amount in Lakhs
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1	Ι		175.70	40	120.31	-	-	40	8.00	19	68.24	5	12.68	-	-	55150	25.69	-	-	136	2.08	56	6.85	56.00	55.58	5	62.73	3.9 4		541.80
2	II	30664	158.86	35	77.84	-	-	35	7.00	1	9.07	13	50.00	-	-	45400	21.91	-	-	110	1.43	39	3.47	39.00	38.42	4	131.05			499.05
3	III	14837	82.63	17	45.00	-	-	17	3.40	-	-	10	37.60	-	-	23500	11.80	-	-	61	0.81	25	1.79	19.00	18.46	1	3.32			204.81
4	IV	8650	40.49	15	39.43	1	2.91	16	6.31	5	29.16	3	22.64	-	-	17400	10.62	-	-	41	0.59	19	1.90	19.00	14.15	-	-			168.20
5	V	9150	52.45	10	27.59	3	5.10	13	5.13	3	42.87	4	18.31	-	-	21000	27.15	-	-	35	0.56	13	1.30	12.00	12.00	-	-			192.46
6	VI	8400	46.08	14	49.59	-	-	14	5.52	5	63.29	-	-	-	-	31100	68.74	-	-	56	1.06	14	1.40	14.00	14.14	-	-			249.82
7	VII	7115	34.52	13	33.74	-		13	5.11	1	9.59	6	17.64	-	-	13200	8.96	-	-	38	0.56	13	1.30	13.00	13.03	1	235.00			359.45
		Page	No. 15	0-1																										

8	VIII	-	-	-	-	-	-	2	1.12	-	-	-	-	-	-	29800	44.43	105	10.13	149	2.55	7	0.70		1	328.32	387.25
9	IX	-	-	-	-	-	-	-		-	-	-	-	-	-	26100	39.52	267	16.15	131	1.69	7	0.70		1	57.28	115.34
	Total		590.73	144	393.50	4	8.01	150	41.59	34	222.22	41	158.87			262650	258.82	372	26.28	757	11.33	193	19.41		13	817.7	2718.18

Envi

Gra

16.70

2734.88

COMPONENTWISE ABSTRACT

PACKAGE NO I

		Та	ınk Bun	d			Sluice	1			utter Sluice			Weir	,		Shu fc We	or		oply Ch	anne	I	Bed Culv	Bar/ vert		surin evice		ning annel	A	nicut	
SI. No.	Name of Tank	Total Length	Propos ed Length	nt in	No. of Slu ice	sluic es to be	nt in Lakhs	sluic es to	t in Lak	Nos.	Amo unt in Lakh s	al No. of	s to be	Amou nt in Lakhs	weir s to	in Lakh	Nos	Am ou nt in La kh s	Length to be desilte d	Lakhs	lho2	ou nt in Lak	Nos.	Amo unt in lakh s	No	Amo unt in Lak hs	of	Amou nt in Lakhs			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1	Yal Tank	1540	1540	7.20	2	2	7.43	-	-	2	0.40	1	1	1.39	-	-	-	-	2900	1.32	-	-					2	-	-	-	17.74
2	Melpangur	1150	1150	5.57	2	1	4.35	-	-	1	0.20	-	-	-	1	5.47	-	-	500	0.29	-	-					2		-	-	15.88
3	Peral	1360	1360	8.34	1	1	6.58	-	-	1	0.20	-	-	-	-	-	-	-	2900	0.77	-	-	Culve rt 3.94				1		-	-	19.82
4	Sathaputhur Tank	1000	1000	5.30	2	1	3.34	-	-	1	0.20	1	1	1.99	-	-	-	-	2000	0.76	-	-					2		-	-	11.59
5	Pavandur Tank	1120	1120	5.76	2	1	4.32	-	-	1	0.20	1	1	1.22	-	-	-	-	2000	1.18	-	-					2		-	-	12.68
6	Pasar Tank	1000	1000	5.26	2	1	6.58	-	-	1	0.20	-	-	-	1	1.81	-	-	2000	0.48	-	-					2		-	-	14.33
7	Rishivandiya m Tank	1220	1220	6.23	2	2	8.85	-	-	2	0.40	-	-	-	1	1.81	-	-	3050	0.39	-	-					2		-	-	17.68
8	Vengalam Tank	1000	1000	4.89	2	1	6.58	-	-	1	0.20	-	-	-	1	1.73	-	-	2000	0.48	-	-					2		-	-	13.88
9	Munivazhai	1000	1000	4.89	2	1	4.32	-	-	1	0.20	-	-	-	1	1.86	-	-	2300	0.59	-	-					2		-	-	11.86

10	Kunniyur Tank	850	850	4.58	2	1	3.37	-	-	1	0.20	1	1	1.02	-	-	-	-	1700	2.43	-	-			2	
11	Thimmalai Tank	1450	1450	1.82	1	-	3.37	-	-	1	0.20	1			-	-	-	-	1500	1.21	-	-			1	
12	Kattu Edaiyar	1390	1390	6.57	4	3	7.69	-	-	3	0.60	1	1	18.72	-	-	-	-	2700	1.17	-	-			4	
13	memalur	1760	1760	8.05	2	2	4.36	-	-	2	0.40	1	1	1.76	-	-	-	-	4000	1.52	-	-			2	
14	Kattusellur	1380	1380	6.45	2	1	2.35	-	-	1	0.20	1	1	5.56	-	-	-	-	2000	1.17	-	-			2	
15	Alur	1630	1630	7.49	3	2	4.04	-	-	2	0.40	1	1	1.79	-	-	-	-	2000	0.97	-	-			3	
16	Periyakuruk kai	1150	1150	5.56	2	2	4.35	-	-	2	0.40	1	1	0.76	-	-	-	-	2000	0.97	-	-			2	
17	Mohalar	900	900	4.52	2	2	4.40	-	-	2	0.40	1	1	4.69	-	-	-	-	1500	0.78	-	-			2	
18	Sikkadu	960	960	7.00	2	1	2.46	-	-	1	0.20	1	1	0.39	-	-	-	-	2000	0.95	-	-			2	

-	-	11.60	
-	-	6.60	
1	10.79	45.54	
1	33.38	49.47	
-	-	15.73	
1	5.83	20.52	
-	-	12.04	
1	9.53	24.32	
-	-	11.00	

19	Adaiyur	1230	1230	8.81	2	1	2.55	-	-	1	0.20	1	1	0.90	-	-	-	-	2000	0.94	-	-			2	
20	Kunjaram	1295	1295	6.12	3	3	7.34	-	-	3	0.60	1	1	10.04	-	-	-	-	2000	0.97	-	-			3	
21	Eraiyur	1250	1250	6.00	2	1	2.40	-	-	1	0.20	1	1	1.77	-	-	-	-	2000	0.97	-	-			2	
	Veeramanga lam	1010	1010	4.47	1	-	-	-	-	-		1	1	5.53	-	-	-	-	1500	0.82	-	-			1	
23	Vadakurumb ur	1750	1750	12.18	2	2	4.63	-	-	2	0.40	1	1	5.82	-	-	-	-	1500	1.09	-	-			2	
24	S. Malaiyanur	2298	2298	10.22	2	2	3.91	-	-	2	0.40	1	1	1.91	-	-	-	-	1100	0.78	-	-			2	
25	Koovadu	1240	1240	8.53	3	3	4.00	-	-	2	0.40	1	1	1.21	-	-	-	-	2000	0.97	-	-			3	
26	Neivainai	1290	1290	5.71	2	2	4.42	-	-	2	0.40	1	1	1.77	-	-	-	-	2000	0.78	-	-			2	

-	-	13.40	
-	-	25.07	
-	-	11.34	
-	-	10.82	
-	-	24.12	
1	3.20	20.42	
	-	15.11	
-	-	13.08	

2	27	Pinnalvadi	1124	1124	8.18	2	1	2.32	-	-	1	0.20	-	-	-	-	-	-	-	2000	0.95	-	-					2		-	-	11.65
		Measuring device.															-							136	2.08	56	6.85					8.93
		Total	34347.00	34347.00	175.70	56	40.00	120.31			40.00	8.00	20	19	68.24		12.68			55150.00	25.69		3.94	136	2.08	55	6.85	56	55.58	5	62.73	541.80

Gr

541.80

COMPONENTWISE ABSTRACT

PACKAGE NO II

		Та	ank Bu	Ind			luice				nutter for luice			Wei			r	utte for 'eir		oply C	hann	el	Bed	d Bar		asuring evice		ning annel	A	nicut	
SI. No.	Name of Tank	Total Lengt h	Prop osed Lengt h	Amou nt in Lakhs		No. of sluice s to be recon struct ed		No. of sluic es to be repai red	A m ou nt in La kh s	N os	Amo unt in Lakh s	To tal No of we ir	No. of weir s to be reco nstr ucte d	Amo unt in Lakh s	No, of weir s to be repai red	Amo unt in Lakh s	No	nt in	Lengt h to be desilt	unt in Lakh	pro pos	Am ou nt in La kh s		Amo unt in lakh s	No s.	Amou nt in Lakhs	No of Slui ces	Amou nt in Lakhs	No s.	Amou nt in Lakhs	Tc Am in L
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	3
1	Aurnkurukka i	1620	1620	7.47	2	2	3.54	-	-	2	0.40	1	-	-	1	5.54	-	-	2000	1.47	-	-					2	-	1	22.34	40
2	Damal	1600	1600	7.50	1	1	2.26	-	-	1	0.20	2	-	-	1	7.02	-	-	3000	1.85	-	-					1		1	8.60	27
3	Kiliyur	1250	1250	6.02	3	3	6.84	-	-	3	0.60	1	-	-	1	4.35	-	-	1500	0.98	-	-					3		-	-	18
4	M. Kunnathur	1200	1200	5.80	2	1	2.61	-	-	1	0.20	1	-	-	1	5.94	-	-	2000	1.07	-	-					2		-	-	15
5	Puthanandal	1510	1510	7.12	2	2	4.35	-	-	2	0.40	1	-	-	1	2.97	-	-	2000	0.88	-	-					2		1	5.10	20
6	Nathamur	1250	1250	6.02	2	2	4.23	-	-	2	0.40	1	-	-	1	4.48	-	-	2000	0.98	-	-					2		-	-	16
7	Athur	675	675	3.61	1	1	2.27	-	-	1	0.20	1	-	-	1	4.41	-	-	3600	0.98	-	-					1		-	-	11

32
0.76
27.43
8.79
5.62
20.82
6.11
1.47

8	Adanur	1800	1800	8.31	2	2	4.41	-	-	2 0.40	3	-	-	1	0.83	-	-	2000	0.99	-	-			2	-	-	14.94
9	Kalamarudur	2700	2700	6.08	4	2	5.17	-	-	2 0.40	1	-	-	1	2.41	-	-	3600	1.76	-	-			4	-	-	15.82
10	Orathur	2500	2500	16.68	2	2	5.36	-	-	2 0.40	1	-	-	-	-	-	I	5000	2.34	-	-			2	-	-	24.78
11	Pa. Killanur	2700	2700	12.22	4	3	7.00	-	-	3 0.60	2	-	-	-	-	-	I	2000	0.89	-	-			4	-	-	20.71
12	Pachapalayam	2000	2000	8.97	2	2	4.08	-	-	2 0.40	1	1	9.07	-	-	-	I	2700	1.13	-	-			2	1	95.02	118.67
13	U. Sellur	2300	2300	10.22	2	2	4.41	-	-	2 0.40	1	-	-	1	9.94	-	I	1500	0.68	-	-			2	-	-	25.65
14	Pandur	1200	1200	20.64	2	2	4.85	-	-	2 0.40	2	-	-	-	-	-	-	3000	1.36	-	-			2	-	-	27.25
15	Arali	955	955	6.85	2	2	4.79	-	-	2 0.40	2	-	-	-	-	-	-	2000	0.98	-	-			2	-	-	13.02
16	Sennangur	1242	1242	5.88	2	2	2.68	-	-	2 0.40	1	-	-	1	0.73	-	-	1500	0.74	-	-			2	-	-	10.43

17	Nagar	1492	1492	6.90	1	1	2.62	-	-	1	0.20	1	-	-	1	0.68	-	-	1000	0.50	-	-					1		-	-	10.90
18	Sengurichi	1300	1300	6.11	1	1	2.22	-	-	1	0.20	1	-	-	-	-	-	-	2000	0.96	-	-					1		-	-	9.49
19	Mathiyanur	1370	1370	6.46	2	2	4.15	-	-	2	0.40	2	-	-	1	0.70	-	-	3000	1.37	5	-					2		-	-	13.08
	Measuring device.																						110	1.43	39	3.47	-				4.90
	Total	30664	30664	158.86	39	35	77.84			35	7.00	26	1	9.07	13.00	50.00			45400	21.91			110	1.43	39	3.47	39	38.42	4	131.05	499.05

COMPONENTWISE ABSTRACT

PACKAGE NO III

		Та	ank Bu	ınd		ę	Sluice			1	utter for uice			W	eir		Shu fo We	r	Sup	oply Cha	anne		Bec	l Bar		suring vice		ning annel	An	icut	
SI. No	Name of Tank	l otal	Propo sed Lengt h	Amoun t in Lakhs	No. of Slu ice	sluic es to be reco	Amo unt in Lakh s	No. of sluic es to be repai red	A m ou in La kh s	N os	Amo unt in Lakh		No. of weir s to be reco nstr ucte d		be	Amou nt in Lakhs	Nos	Am ou nt in La kh s	Longth	nt in Lakhs	pro pos	Am ou nt in Lak	Nos.	Amou nt in lakhs		Amou nt in	of Slu		Nos.	Amou nt in Lakh s	Total Amount in Lakhs
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	26	27	28
1	Koo. Kallakurichi	1325	1325	5.16	2	2	4.83	-	-	2	0.40	1	-	-	1	14.47	-	-	2000	0.79	-	-					2	-	-	-	25.65
2	Mattigai	1600	1600	12.01	2	2	4.87	-	-	2	0.40	2	-	-	1	1.61	-	-	2000	0.75	-	-					2		-	-	19.64
3	Sendanadu	1060	1060	5.58	1	1	2.35	-	-	1	0.20	1	-	-	1	3.89	-	-	2000	0.87	-	-					1		-	-	12.89
4	T. Kalathur	2600	2600	12.71	3	2	5.23	-	-	2	0.40	1	-	-	1	1.31	-	-	1500	0.78	-	-					3		1	3.32	23.75
5	Emam	1060	1060	5.58	1	1	2.81	-	-	1	0.20	3	-	-	1	4.91	-	-	2000	1.17	-	-					1		-	-	14.67
6	Pu. Konalavadi	1140	1140	8.38	2	1	2.92	-	-	1	0.20	1	-	-	1	0.81	-	-	2000	0.98	-	-					2		-	-	13.29
7	U. Keeranur	1150	1150	5.92	2	2	6.45	-	-	2	0.40	1	-	-	1	4.51	-	-	1500	0.79	-	-					2		-	-	18.07

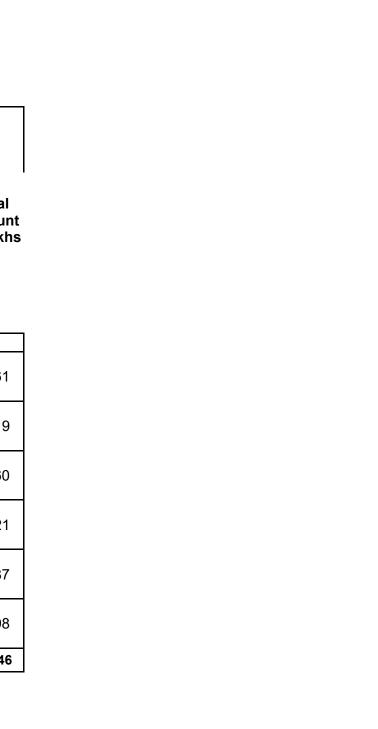
8	Ulundur	1200	1200	6.16	1	1	2.89	-	-	1	0.20	1	-	-	-	-	-	-	2000	0.97	-	-					1		-	-	10.22
9	Sirupakkam	630	630	3.38	1	1	2.52	-	-	1	0.20	1	-	-	1	1.27	-	-	2000	0.98	-	-					1		-	-	8.35
10	Sembiyanmade vi	582	582	3.25	1	1	2.52	-	-	1	0.20	1	-	-	-	-	-	-	1500	0.78	-	-					1		-	-	6.75
11	Alangiri	870	870	4.72	1	1	2.52	-	-	1	0.20	1	-	-	1	0.18	-	-	2000	0.99	-	-					1		-	-	8.61
12	Salappakkam	920	920	4.62	1	1	2.52	-	-	1	0.20	1	-	-	1	4.64	-	-	1500	0.98	-	-					1		-	-	12.96
13	A. Puthur	700	700	5.16	1	1	2.57	-	-	1	0.20	1	-	-	-	-	-	-	1500	0.97	-	-					1		-	-	8.90
	Measuring device.																						61	0.81	25	1.79					2.60
	Total	14837	14837	82.63	19	17	45.00			17	3.40	16			10	37.60			23500	11.80			61	0.81	25	1.79	19	18.46	1	3.32	204.81

COMPONENTWISE ABSTRACT

PACKAGE NO IV

		Та	ink B	und			Sluice	9		i	utter for luice			Weir				utter Weir	Sup	oply Cł	nanne	el	Ве	ed Bar		ining nannel	Measur	ing Device	
SI. No	Name of Tank	Total Leng th	Prop osed Leng th	Amou nt in Lakhs	of Slu ice	_		ces	in Lakh s	N os	Amo unt in Lakh s	-	No. of weirs to be recon struct ed	Amou nt in Lakhs	No of we irs to be re pa	Amou	No s.		Lengt h to be desilt ed	Amou nt in	prop ose	ou nt in La kh s	No s.	Amou nt in	ы	Amou nt in Lakhs	Nos.	Amount in Lakhs	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	
1	Manamthaviz nthaputhur tank	1500	1500	6.95	2	2	6.41	-	-	2	0.79	1	1	5.96	-	-	-	-	4700	2.66	-	-	10	0.14	2	1.99	2	0.20	2
2	Natham tank	2700	2700	12.52	3	3	8.83	-	-	3	1.18	2	2	12.48	-	-	-	-	4000	2.28	-	-	9	0.12	3	3.05	3	0.30	4
3	Sirugrammam tank	-	-	-	4	2	3.47	-	-	2	0.79	1	-	-	1	12.32	-	-	1500	1.19	-	-	4	0.07	4	2.00	4	0.40	
4	Veeraperuman allur tank	1600	1600	7.43	3	3	8.48	-	-	3	1.18	2	-	-	1	7.96	-	-	4000	2.28	-	-	9	0.12	3	3.01	3	0.30	÷
5	Thiruvamur tank	750	750	3.55	2	2	4.16	-	-	2	0.79	-	1	5.96	-	-	-	-	2000	1.13	-	-	5	0.07	2	2.03	2	0.20	,

30
25.10
40.76
20.24
30.76
17.89


	Total	8650	8650	40.49	19	15	39.43	1	2.91	16	6.31	8	5	29.16	3	22.64			17400	10.62			41	0.59	19	14.15	19	1.90	16
;	Vizur Zemberi tank	1500	1500	7.14	1	1	1.87	-	-	1	0.39	2	1	4.76	1	2.36	-	-	-	-	-	-	-	-	1	1.03	1	0.10	1
	Semmedu ank	600	600	2.90	1	1	2.39	-	-	1	0.40	-	-	-	-	-	I	-	-	-	-	-	-	-	1	1.04	1	0.10	6
(Elanthampattu ank	-	-	-	3	1	3.82	1	2.91	2	0.79	-	-	-	-	-	-	-	1200	1.08	-	-	4	0.07	3	-	3	0.30	8

8.97	
6.83	
17.65	
168.20	

COMPONENTWISE ABSTRACT

PACKAGE NO V

		Та	nk Bı	und		Sluice					utter for uice	Weir						utte for 'eir		oply Cl	nanne	əl	Bed Bar		Measuring Device		Lining		
SI. No.	Name of Tank	Total Leng th	Prop osed Leng th	Amou nt in Lakhs	No.	sluic es to be reco	unt	ces		N os		No. of wei r	we irs to be re co		Wê ire	Amo unt	No s.	un t in	be desilt	Amou nt in Lakhs	prop ose	ou nt in La kh	No	Amo unt in lakh s	Nos		No of	Amount in Lakhs	Total Amount in Lakhs
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Semakkottai	1500	1500	6.93	2	1	2.39	1	2.98	2	0.79	1	-	-	1	4.52	-	-	3000	1.70	-	-	7	0.10	2	0.20	2	2.00	19.61
2	Manapakkam	-	-	-	2	2	4.67	-	-	2	0.79	1	-	-	1	4.09	-	-	2200	2.34	-	-	6	0.10	2	0.20	1	1.00	12.19
3	Siruvathur	2800	2800	18.28	5	2	4.16	2	2.12	4	1.58	1	1	17.06			-	-	4500	4.83	-	-	10	0.17	4	0.40	4	4.00	48.60
4	Pandarakkottai	1600	1600	7.37	3	2	4.15	-	-	2	0.79	2	-	-	2	9.70	-	-	-	-	-	-	-	-	2	0.20	2	2.00	22.21
5	LN. Puram	1700	1700	10.93	1	1	4.54	-	-	1	0.39	1	1	12.84	-	-	-	-	7700	13.00	_	-	4	0.07	1	0.10	1	1.00	41.87
6	Poongunam	1550	1550	8.94	2	2	7.68	-	-	2	0.79	1	1	12.97	-	-	-	-	3600	5.28	-	-	8	0.12	2	0.20	2	2.00	35.98
	Total	9150	9150	52.45	15	10	27.59	3	5.1	13	5.13	7	3	42.87	4	18.31			21000	27.15			35	0.56	13	1.30	12	12.00	192.46

COMPONENTWISE ABSTRACT

PACKAGE NO VI

		Та	Tank Bund			;			1	utter for uice	Weir						utter Weir						d Bar	Measurir g Device		J			
SI. No.	Name of Tank	Total Leng th	Prop osed Leng th	Amou nt in Lakhs	al No.	be reco	Amou nt in Lakh s	No. of slui ces to be repa ired	ou nt in La kh	N os	Lakh	al No.	to be recon	Amou nt in Lakhs	of we irs to	Am ou nt in La kh s	No	unt in	Lengt h to be desilt ed	Amou nt in Lakhs	ose	ou nt in La kh	No	Amou nt in lakhs	No s.	Amou nt in Lakhs	No of Sluices	Amou nt in Lakh s	Total Amount in Lakhs
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Chettipattadai	3400	3400	23.08	5	5	19.62	-	-	5	1.97	2	2	32.24	-	-	-	-	22100	63.34	-	-	36	0.77	5	0.50	5	5.00	141.52
2	Elumedu	2100	2100	9.49	4	4	14.94	-	-	4	1.58	2	1	3.62	-	-			6500	3.90	-	-	14	0.19	4	0.40	4	4.05	34.12
3	PN Palayam	1700	1700	7.93	3	3	11.62	-	-	3	1.18	1	1	15.41	-	-			2500	1.50	-	-	6	0.10	3	0.30	3	3.05	38.04
4	CN Palayam	1200	1200	5.58	2	2	3.41	-	-	2	0.79	1	1	12.02	-	-	-	-	-	-	-	-	-	-	2	0.20	2	2.04	22.00
	Total	8400	8400	46.08	14	14	49.59			14	5.52	6	5	63.29					31100	68.74			56	1.06	14	1.40	14	14.14	249.82

COMPONENTWISE ABSTRACT

PACKAGE NO VII

		Та	nk Bı	und	Sluice					1	utter for uice	Moir						utter Weir	Sup	oply Ch	nanne	əl	Bed Bar		Measurin g Device		Lin Cha		A	nicut	
SI	Tank/Anicut	Total Leng th	Prop osed Leng th	Amou nt in Lakhs	Tot al No. of Slu ice s	sluic es to	Amou nt in Lakh s			os	in Lakh	ai	No. of weirs to be recon struct ed	unt	weirs	l IN I akh	No	unt	Lengt h to be desilt ed	Amou nt in Lakhs	ose	Am ou nt in La kh	No s.	Amo unt in lakhs	No s.		No of Sluice s			Amount in Lakhs	Total Amount in Lakhs
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1	Thottapattu tank	1500	1500	7.68	1	1	2.61	-	-	1	0.39		-	-	1	3.23	-	-	1100	0.70	-	-	7	0.09	1	0.10	1	1.00	-	-	15.80
2	Varakkalpattu tank	1400	1400	7.03	2	2	5.93	-	-	2	0.79		-	-	1	2.28	-	-	-	-	-	-			2	0.20	2	2.01	-	-	18.24
3	Gunamangala m tank	800	800	3.58	2	2	5.81	-	-	2	0.79		-	-	1	3.15	-	-	1800	0.95	-	-	7	0.10	2	0.20	2	2.01	-	-	16.59
4	Eidanur tank	-	-	-	2	2	4.20	-	-	2	0.79		-	-	-		-	-	-	-	-	-	-		2	0.20	2	2.01	-	-	7.20
5	Valiodai tank	600	600	3.43	2	2	5.26	-	-	2	0.79		-	-	1	2.44	-	-	2000	1.54	-	-	6	0.10	2	0.20	2	1.99	-	-	15.75
6	Naduveerapatt u Old Tank	720	720	3.46	1	1	2.31	-	-	1	0.39		-	-	-	-	-	-	2500	1.84	-	-	5	0.07	1	0.10	1	1.00	-	-	9.17
7	Naduveerapatt u New tank	720	720	2.88	1	1	2.31	-	-	1	0.39	1	1	9.59	-	-	-	-	2300	1.32	-	-	6	0.10	1	0.10	1	1.00	-	-	17.69
8	Vilangalpattu tank	775	775	2.84	1	1	2.63	-	-	1	0.39		-	-	1	4.13	-	-	3500	2.61	-	-	7	0.10	1	0.10	1	1.00	-	-	13.80

I U	Ramapuram Devan Eri	600	600	3.62	1	1	2.68	-	-	1	0.39		-	-	1	2.41	-	-	-	-	-	-	-	-	1	0.10	1	1.01	-	-	10.21
1111	Thiruvanthipu ram Anicut																												1	235.00	235.00
	Total	7115	7115	34.52	13	13	33.74			13	5.11	1	1	9.59	6	17.64			13200	8.96			38	0.56	13	1.30	13.00	13.03	1.00	235.00	359.45

GADILAM SUB BASIN

COMPONENTWISE ABSTRACT

PACKAGE NO VIII

		Та	nk	Bund			Sluice)		·	utter for luice		١	Neir			r f	utte ior eir	Su	pply C	hann	el	Bec	d Bar		asuri ng evice	A	nicut	
SI. No.		Tot al Len gth	os ed	Amou nt in Lakhs	No. of Slu	sluic es to be	nt in	ces to	in	N os	in Lakh	of wei	of weirs to be reco	Amou nt in Lakhs	of we irs to	Am ou nt in La kh s	No s.	Am ou nt in La kh s	Lengt h to be desilt ed		prop ose	in Lakh s	Nos.	Amou nt in lakhs	No	Amo unt in Lakh s	No	ntin	Total Amount in Lakhs
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	26	27	28
1	Thiruvathigai Anicut																										1	328.33	328.33
2	Muthukrishana- puram channel									1	0.59								6800	9.79	20	2.25	34	0.58	1	0.10	-	-	13.31
3	Agaram Channel																		4200	7.82	30	2.70	21	0.36	1	0.10	-	-	10.98
4	Palur Channel									1	0.53								6400	9.67	-	1	32	0.55	1	0.10	-	-	10.85
5	Sitharasur Channel																		2400	3.03	-	-	12	0.21	1	0.10	-	-	3.34
6	Kilarungunam Channel																		4600	6.67	15	1.66	23	0.39	1	0.10	-	-	8.82
7	Thotti Channel																		1200	1.29	10	0.89	6	0.10	1	0.10	-	-	2.38
8	Natham Channel																		4200	6.16	30	2.63	21	0.36	1	0.10	-	-	9.25
	Total									2	1.12								29800	44.43	105	10.13	149	2.55	7	0.70			387.26

Page No. 150-18

Gra

387.26

GADILAM SUB BASIN

COMPONENTWISE ABSTRACT

PACKAGE NO IX

		Та	nk E	Bund			Sluice	•			nutter for luice			Weir	•		r 1	utte for 'eir		pply C	hann	el	Be	d Bar		asuring evice	A	nicut	
SI. No.		al Len	ed	Amou nt in Lakhs	No. of	sluic es to be	Amou nt in Lakhs	ces to	Amo unt in Lakh s	N os	l III I akh	NO.	weir s to be	Amou nt in Lakhs	we irs to	Am ou nt in		Am ou nt in La kh s	Lengt h to be	Amou nt in Lakhs	prop ose	in Lakh s	No s.	Amou nt in lakhs	No s.	Amo unt in Lakh s	No s.	Amou nt in Lakhs	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Melpathi Channel																		6200	10.22	70	4.30	31	0.39	1	0.10	-	-	15.01
2	Kudithangi Channel																		4800	7.47	50	3.00	24	0.31	1	0.10	-	-	10.88
3	Vaidipakkam Channel																		2500	3.06	30	1.80	13	0.17	1	0.10	-	-	5.13
4	Nesanoor Channel																		5400	8.64	70	4.19	27	0.34	1	0.10	-	-	13.27
5	Vanamadevi																		3800	6.40	30	1.80	19	0.24	1	0.10	-	-	8.54
6	Thirumanikuzhi Chennel																		2000	2.40	10	0.61	10	0.14	1	0.10	-	-	3.25
7	Otteri Chennel																		1400	1.33	7	0.45	7	0.10	1	0.10	-	-	1.98
8	Vanamadevi Anicut									`																	1	57.29	57.29
	Total																		26100	39.52	267	16.15	131	1.69	7	0.7	1	57.29	115.35

Page No. 150-19

Gr 115.35

NAME OF THE SUB BASIN : GADILAM

SI.		I Year(2009	9-2010)	II Year(20	10-2011)	Tota	al
No.	Description of work	Qty	Amt.	Qty	Amt. in Lakhs	Quantity (Componen	Amount
<u>1. T</u>	ank Component						
1	Standardisation of tank Bund	500000 M ³	295.28	500290 M ³	295.45	1000290 M ³	590.73
2	Desilting of Supply Channel	400000 M ³	88.10	393993 M ³	86.77	793993 M ³	174.87
3	Reconstruction of Sluice	80 Nos	218.61	64 Nos	174.89	144 Nos	393.50
4	Repairs to Sluice	2 Nos	4.00	2 Nos	4.01	4 Nos	8.01
5	Field channel in sluices	85 Nos	81.92	87 Nos	83.84	172 Nos	165.76
6	Improvements to weirs	21 Nos	81.37	20 Nos	77.50	41 Nos	158.87
7	Reconstruction of weir	20 Nos	130.72	14 Nos	91.50	34 Nos	222.22
8	New shutters	70 Nos	19.14	78 Nos	21.33	148 Nos	40.47
9	Providing Measuring Device	85 Nos	8.55	94 Nos	9.46	179 Nos	18.01
10	Bed bar	250 Nos	3.72	227 Nos	3.37	477 Nos	7.09
	Sub total		931.41		848.12		1779.53
	Non tank component						
1	Improvements to flood bank	60000 M ³	34.64	60841 M ³	35.13	120841 M ³	69.77
2	Anicut repairs	8 Nos	460.28	5 Nos	287.67	13 Nos	747.95
3	Desilting of Supply Channel	170000 M ³	40.80	179824 M ³	43.15	349824 M ³	83.95
4	Retaining wall	200 Nos	14.13	172 Nos	12.15	55900 Nos	26.28
5	Bed bar	140 Nos	2.14	140 Nos	2.10	280 Nos	4.24
6	Culvert	-		1 No	3.94	1 No	3.94
7	Shutter	1 No	0.56	1 No	0.56	2 Nos	1.12
8	Measuring Device	7 Nos	0.70	7 Nos	0.70	14 Nos	1.40
			553.25		385.40		938.65
	Environmental		8.35		8.35		16.70
	Sub Total		561.60		393.75		955.35

Tank Component	931.41	848.12	1779.53
Non tank component	561.60	393.75	955.35
Total	1493.01	1241.87	2734.88

Page 150

2734.88

Package No. I

	Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Yal Tank	17.74
2	Melpangur	15.88
3	Peral	19.83
4	Sathaputhur Tank	11.59
5	Pavandur Tank	12.67
6	Pasar Tank	14.33
7	Rishivandiyam Tank	17.67
8	Vengalam Tank	13.88
9	Munivazhai	11.86
10	Kunniyur Tank	11.60
11	Thimmalai Tank	6.60
12	Kattu Edaiyar	34.75
13	memalur	16.09
14	Kattusellur	15.73
15	Alur	14.69
16	Periyakurukkai	12.04
17	Mohalar	14.79
18	Sikkadu	11.00
19	Adaiyur	13.40
20	Kunjaram	25.07
21	Eraiyur	11.34
22	Veeramangalam	10.82
23	Vadakurumbur	24.12
24	S. Malaiyanur	17.23
25	Koovadu	15.11
26	Neivainai	13.08
27	Pinnalvadi	11.65
	Bed bar and Measuring device	8.81
	Lining for field channel (50m length D/S of sluices)	55.58
	Total	
	Non Tank Component	
1	Kattu Edaiyar	10.79
2	memalur	33.38
3	Alur	5.83
4	Mohalar	9.53
5	S. Malaiyanur	3.20
	Sub Total	
	Grand Total	541.68

Package No. II

SI.No	Tank Components Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Aurnkurukkai	18.42
2	Damal	18.83
3	Kiliyur	18.79
4	M. Kunnathur	15.62
5	Puthanandal	15.72
6	Nathamur	
7	Athur	16.11
8	Adanur	11.47
		14.94
9	Kalamarudur	15.82
10	Orathur	24.78
11	Pa. Killanur	20.71
12	Pachapalayam	23.65
13	U. Sellur	25.65
14	Pandur	27.25
15	Arali	13.02
16	Sennangur	10.43
17	Nagar	10.90
18	Sengurichi	9.49
19	Mathiyanur	13.08
	Bed bar and Measuring device	4.90
	Lining for field channel (50m length D/S of sluices)	38.42
	Total	368.00
	Non Tank Component	
1	Aurnkurukkai	22.33
2	Damal	8.60
3	Puthanandal	5.10
4	Pachapalayam	95.02
	Sub Total	131.05
	Grand Total	499.05

Page 152.

Package No. III

	Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Koo. Kallakurichi	25.65
2	Mattigai	19.64
3	Sendanadu	12.89
4	T. Kalathur	20.43
5	Emam	14.67
6	Pu. Konalavadi	13.29
7	U. Keeranur	18.07
8	Ulundur	10.22
9	Sirupakkam	8.35
10	Sembiyanmadevi	6.75
11	Alangiri	8.61
12	Salappakkam	12.96
13	A. Puthur	8.90
	Bed bar and Measuring device	2.60
	Lining for field channel (50m length D/S of sluices)	18.46
	Total	201.49

Non Tank Component

1	T. Kalathur	3.32
	Sub total	3.32
	Grand Total	204.81

Package No. IV

	Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Manamthaviznthaputhur tank	25.1
2	Natham tank	40.76
3	Sirugrammam tank	20.24
4	Veeraperumanallur tank	30.76
5	Thiruvamur tank	17.89
6	Elanthampattu tank	8.97
7	Semmedu tank	6.83
8	Vizur Zemberi tank	17.65
	Total	168.20

Non Tank Component

.- NIL -.

Package No. V

	Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Semakottai tank	21.61
2	Manapakkam tank	13.19
3	Siruvathur tank	52.6
4	Pandarakottai tank	24.21
5	L.N.Puram tank	42.87
6	Poongunam tank	37.98
	Total	192.46

Non Tank Component .- NIL -.

Package No. VI

	Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Chettipattadai tank	146.52
2	Elumedu tank	38.17
3	P.N.Palayam tank	41.09
4	C.N.Palayam tank	24.04
1	Total	249.82

Non Tank Component .- NIL -.

Package No. VII

	Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Thottapattu tank	15.80
2	Varakkalpattu tank	18.24
3	Gunamangalam tank	16.59
4	Eidanur tank	7.20
5	Valiodai tank	15.75
6	Naduveerapattu Old Tank	9.17
7	Naduveerapattu New tank	17.69
8	Vilangalpattu tank	13.80
9	Ramapuram Devan Eri	10.21
	Total	124.45

Non Tank Components

1	Rehabilitation of Thiruvanthipuram Anicut	235.00
	Sub total	235.00
	Grand Total	359.45

Page 157

Gadilam Sub Basin Package No. VIII

Tank Component .- NIL -.

	Non Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
1	Rehabilitation of Thiruvathigai Anicut	328.33
2	Muthukrishnapuram Channel	13.31
3	Agaram Channel	10.98
4	Palur Channel	10.85
5	Sittharasur Channel	3.34
6	Kilarungunam Channel	8.82
7	Thotti Channel	2.38
8	Natham Channel	9.25
	Total	387.26

Gadilam Sub Basin Package No. IX

Tank Component	
NIL	

	Non Tank Component	
SI.No	Name of Tank/Anicut/Reservoir	Amount in Lakhs
	Thiruvathigai Anicut	
1	Melpathi Channel	15.01
2	Kudithangi Channel	10.88
3	Vaidipakkam Channel	5.13
4	Nesanoor Channel	13.27
5	Rehabilitation of Vanamadevei Anicut	57.29
6	Thirumanikuzhi Chennel	3.25
7	Vanamadevi Chennel	8.54
8	Otteri Chennel	1.98
	Total	115.35

PACKAGE - I 1.6.9.Construction Methodology

NAME OF THE SUB BASIN: GADILAM

SI.	Description of										v	Vorking	Months									
No	Item	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Tota	1
								Rain	-													
1	Earth Work Bund	23550	23550	23550	23550	23550				23550	141300	14140	14140	14140	14140	14140	17670	17670	17670	17662	423972	m3
2	Earth Work Channel	10950	10950	10950	10950	10950				10950	65700	6570	6570	6570	6570	6570	8220	8220	8220	8226	197136	m3
3	Earth Work Foundation	395	395	395	395	395				395	2370	980	980	980	980	980	2370	2370	2370	2359	19109	m3
4	Cement Concret 1:4:8	135	135	135	135	135				135	810	81	81	81	81	81	104	104	104	103	2440	m3
5	PCC 1:3:6	148	148	148	148	148				148	888	89	89	89	89	89	113	113	113	112	2672	m3
6	P.C.C. 1:2:4	344	344	344	344	344				344	2064	207	207	207	207	207	258	258	258	258	6195	m3
7	RCC 1:11/2:3	261	261	261	261	261				261	1566	157	157	157	157	157	197	197	197	196	4704	m3
8	Steel	38	38	38	38	38				38	228	23.00	23.00	23.00	23.00	23.00	30	30	30	30	691	мт
9	RR Masonry	103	103	103	103	103				103	618	62	62	62	62	62	77.00	77.00	77.00	77	1854	m3
10	RSDP	64	64	64	64	64				64	384	39	39	38	38	38	49	49	49	50	1157	m2

PACKAGE NO 1 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

		E	QUIPMEN	NTS REQ	UIRED IN		RS			MA	TERIAL	REQUIR	ED	
NUMBER	0.90 0.90 m3/1 m3	c excavat or +	Tippers / Lorries	Power	У	Water	e mixer	D	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - I	2	2	8	2	2	2	5	5	1541.2 68	2607.7 2	228	729	4066.2	797

1.6.7.PACKAGE -1

Calculation of machineries Requirement

Hydraulic excavator & 4 Tippers / Lorries for bund earthwork.	12 Hours / Day		
(2 No x 8 loads / hour x 12 Hr x 5 m	13 / trip)	960 m3	/ Day
Hydraulic excavator for desilting supply channel.	12 Hours / Day		
(2 No x 20 m3 /hour x 10 Hr))	400 m3	/ Day
For 1 month (25 Working days)	25 x 960 m3	24000 m3	/ month
Total quantity of earth work	141	300+65700 =2070	000 m3
Working period for earth work		6 month.	
Machineries required for earth work:	1)Tank bund	l Earthwork = 14	1300 m3
	2) Supply (channel Earthwo	rk = 65700 m3
1. Hydraulic excavator . + 0.90 m3/1 m3 - = 2 nos			
2. Hydraulic excavator . + 0.30 m3/1 m3 - = 2 nos			
2. Tippers / Lorries = 8 nos			

3. Power roller 8-	10 T = 2 nos			
4. Vibratory comp . (1+ 0.90 m widt				
5. Truck mounted . (10000 -15000 I	Water lorries . itres) = 2 nos			
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of c	oncrete	5328 m3		
Mixer machine re	equired	5 nos for 1	4 days / months	6 month

PACKAGE - II 1.6.9.Construction Methodology

NAME OF THE SUB BASIN: GADILAM

SI.	Description										V	Vorking N	Nonths										
No	of Item	1	2	3	4	5	6	7	8	9			10	11	12	13	14	15	16	17	18	Tota	ıl
							Rain	iy se	ason														
1	Earth Work Bund	22200	22200	22200	22200	22200				22200	133200	111000	13300	13300	13300	13300	13300	16650	16650	16650	16651	377301	m3
2	Earth Work Channel	11200	11200	11200	11200	11200				11200	67200	56000	6800	6800	6800	6800	6800	8340	8340	8340	8330	190550	m3
3	Earth Work Foundation	730	730	730	730	730				730	4380	3650	437	437	437	437	437	545	545	545	545	12395	m3
4	Cement Concret 1:4:8	68	68	68	68	68				68	408	340	41	41	41	41	41	52	52	52	55	1164	m3
5	P.C.C. 1:2:4	190	190	190	190	190				190	1140	950	114	114	114	114	114	143	143	143	143	3232	m3
6	PCC 1:3:6	172	172	172	172	172				172	1032	860	103	103	103	103	103	131	131	130	130	2929	m3
7	RCC 1:11/2:3	135	135	135	135	135				135	810	675	81	81	81	81	81	104	103	103	103	2303	m3
8	Steel	38	38	38	38	38				38	228	190	23	23	23	23	23	30	30	30	29	652	МТ
9	RR Masonry	31	31	31	31	31				31	186	155	18	18	18	18	18	25	25	25	24	530	m3
10	RSDP	30	30	30	30	30				30	180	150	18	18	18	18	18	23	23	22	21	509	m2
-																							-

PACKAGE NO 2 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

		EQ		TS REQI	JIRED IN	NUMBE	RS			МА	TERIAL	REQUIR	ED	
DACKACE	ic	Hydraul ic excavat or + 0.30 m3/1 m3		Power	compac	d Water	Concret e mixer machin e	е	Cement	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - II	2	2	8	2	2	2	3	3	1008	1588.7 4	190	367	2683.8	265

1.6.7.PACKAGE - 2 Calculation of machineries Requirement

12 Hours / Day	
x 5 m3 / trip)	960 m3 / Day
ly 12 Hours / Day	
10 Hr)	400 m3 / Day
25 x 960 m3	24000 m3 / month
111000+56000 =1	67000 m3
	6 month.
<: 1)Tank bund Ear	thwork = 111000 m3
•	thwork = 111000 m3 nel Earthwork = 56000 m3
•	
•	
•	
	x 5 m3 / trip) ly 12 Hours / Day 10 Hr)

Mixer machine r	equired	3 nos for 14 days	/ months	6 month
Total quantity of o	concrete	2825 m3		
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
5. Truck mounted . (10000 -15000				
4. Vibratory comp . (1+ 0.90 m wid				

PACKAGE - III 1.6.9.Construction Methodology

	D										Wo	rking M	lonths									
'SI.NO	Description of Item	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Tota	al
							Rai	ny se	eason													
1	Earth Work Bund	11460	11460	11460	11460	11460				11460	68760	6875	6875	6875	6875	6875	8590	8590	8590	8589	137494	m3
2	Earth Work Channel	5325	5325	5325	5325	5325				5325	31950	3195	3195	3195	3195	3195	3995	3995	3995	3992	63902	m3
3	Earth Work	210	210	210	210	210				210	1260	126	126	126	126	126	157	157	157	157	2518	m3
4	Cement Concret	39	39	39	39	39				39	234	19	19	19	19	19	15	15	15	15	389	m3
5	PCC 1:3:6	117	117	117	117	117				117	702	70	70	70	70	70	88	88	88	87	1403	m3
6	PCC 1:2:4	58	58	58	58	58				58	348	35	35	35	35	35	43	43	43	44	696	m3
7	RCC 1:11/2:3	17	17	17	17	17				17	102	10	10	10	10	10	12	12	12	12	200	m3
8	Steel	12	12	12	12	12				12	72	7	7	7	7	7	9	9	8	8	141	МΤ
9	RR Masonry										0										0	m3
10	RSDP	13	13	13	13	13				13	78	8	8	8	8	8	10	10	10	9	157	m2

1386

-0	50		50							~ -				4.0			
 58	58	58	58	58		58	348	35	35	35	35	35	43	43	43	44	696

PACKAGE NO 3 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

SUR BASIN. EQUIPMENTS MATERIAL PACKAGE **REQUIRED IN** REQUIRED NUMBER NUMBERS Hydra Vibrat Truck ulic mounted Concr ory Tipper Power compa Concr excava Water ete Metel Metel 20 ete Cement IN Sand in Steel in **RR IN** Hydraulic excavator s/ 40MM. in MM. in tor + roller ctor lorries mixer + 0.90 m3/1 m3 -Lorrie vibrat М.Т. m3 M.T. m3 8- 10 T 0.30 (1+ (10000 machi m3 m3 or. s 0.90 m 15000 m3/1 ne m3 width) litres) Package - III 2 624 72 211 1037 2 8 1 1 4 1 1 385 1

NAME OF THE

1.6.7.PACKAGE -3

Calculation of machineries Requirement

Hydraulic excavator & 4 Tippers / Lorries for bund earthwork.	12 Hours / Day							
(2 No x 8 loads / hour x 12 Hr x	5 m3 / trip)	960 m3 / Day						
Hydraulic excavator for desilting supply channel.	12 Hours / Day							
(2 No x 20 m3 /hour x 10	Hr)	400 m3 / Day						
For 1 month (25 Working days)	25 x 960 m3	24000 m3 / month						
Total quantity of earth work	68760+31950 =	100710 m3						
Working period for earth work	6 month.							
Machineries required for earth work:	1)Tank bund Ea	rthwork = 68760 m3						
	2) Supply cha	nnel Earthwork = 31950 m3						
1. Hydraulic excavator . + 0.90 m3/1 m3 - = 1 no								
2. Hydraulic excavator . + 0.30 m3/1 m3 - = 1 no								
2. Tippers / Lorries = 4 nos								
3. Power roller 8- 10 T = 1 no								
4. Vibratory compactor . (1+ 0.90 m width) = 1 no								

5. Truck mounted (10000 -15000 lite				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of c	concrete	1386 M3		
Mixer machine r	equired	2 nos for 14 day	ys / months	6 month

PACKAGE - IV 1.6.9.Construction Methodology

NAM F OF

											Wor	king Mo	onths									
SI.No	Description of Item	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Tota	al
								Rair	•													
1	Earth Work Bund	6000	6500	6000	6000	6000				5678	36178	3500	3400	3500	3000	4688	5000	4500	4500	4089	72355	m3
	Earth Work Supply Channel	5000	5000	4500	4500	5500				3198	27698	3000	2800	2750	2700	2599	3500	3500	4000	2849	55396	m3
3	Earth Work Foundation	800	750	800	700	725				458	4233	400	500	425	450	342	525	550	450	591	8466	m3
4	Cement Concret 1:4:8	65	65	70	70	75				60	405	35	35	40	45	47	50	50	55	48	810	m3
5	PCC 1:3:6 Plain			3	3	4				3	13			2	2	3		2	2	2	26	m3
6	P.C.C. 1:2:4		210	210	200	250				187	1057		100	130	150	148	150	120	120	138	2113	m3
7	RCC 1:11/2:3		30	20	25	25				28	128		15	15	15	19	15	15	20	13	255	m3
8	Steel		20	15	25	25				18	103	10	10	10	10	11	15	10	10	17	206	мт
9	RR Masonry		20	25	25	10				18	98	10	5	5	10	19	10	10	15	14	196	m3
10	RSDP		30	25	25	20				50	150		15	15	20	28	20	20	20	18	306	m2

PACKAGE NO 4 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

		EG	QUIPMEN	TS REQI	JIRED IN	NUMBE	RS			MA	TERIAL	REQUIR	ED	
NUMBER	0.90 0.90 m3/1 m3	c excavat or +	Tippers / Lorries	Power	Vibrator y compac tor (1+ 0.90 m width)	d Water	Concret e mixer machin e	Concret e vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - IV	1	1	4	1	1	1	2	2	353	755	103	365	1078	117

1.6.7.PACKAGE - 4

Calculation of machineries Requirement

Hydraulic excavator & 4 Tippers / Lorries for bund earthwork.	12 Hours / Day	
(2 No x 8 loads / hour x 12 Hr x	5 m3 / trip)	960 m3 / Day
Hydraulic excavator for desilting supply channel.	12 Hours / Day	
(2 No x 20 m3 /hour x 10) Hr)	400 m3 / Day
For 1 month (25 Working days)	25 x 960 m3	24000 m3 / month
Total quantity of earth work	118900+35000 =	153900 m3
Working period for earth work		6 month.
Machineries required for earth work:	1)Tank bund Ear	thwork = 118900 m3
	2) Supply chan	nel Earthwork = 35000 m3
1. Hydraulic excavator . + 0.90 m3/1 m3 - = 2 nos		
2. Hydraulic excavator . + 0.30 m3/1 m3 - = 2 nos		
. + 0.30 m3/1 m3 - = 2 nos		

5. Truck mounted . (10000 -15000 I				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of c	oncrete	4686 m3		
Mixer machine re	equired	4 nos for 14 day	/s / months	6 month

PACKAGE - V 1.6.9.Construction Methodology

NAM F OF

	-									W	orkin	g Mon	ths								
SI.No	¹ Description of Item	1	2	3	4	6	7	8	9		10	11	12	13	14	15	16	17	18	Т	otal
						Rair	ıy sea	ason													
1	Earth Work Bund	3000	5000	8000	8000				14500	30500	1500	4500	5000	5000	8000	8000	6000	6000	4390	127390	m3
2	Earth Work Supply Channel	5000	8000	10000	10000				15000	38000	3000	5000	6000	8000	8000	10000	8000	5000	6759	155759	m3
3	Earth Work Foundation		300	350	500				850	1500	100	300	250	250	500	500	500	424		7124	m3
4	Cement Concret 1:4:8		34	40	56				115	189	12	34	23	23	56	56	56	35		819	m3
5	PCC 1:3:6 Plain		5	8	10				30	43	5	8	7	7	10	10	10	10	6	189	m3
6	PCC 1:2:4		85	100	200				250	435	50	70	100	100	140	120	150	150	39	2289	m3
7	RCC 1:11/2:3		20	40	40				10	70	10	15	15	10	15	20	20	15	14	334	m3
8	Steel		13	20	35				30	63	5	20	15	15	10	20	20	15	12	328	МТ
9	RR Masonry			40	35				40	80	15	15	15	20	15	20	20	20	20	400	m3
10	RSDP			40	45				53	93			30	25	37	20	25	20	27	460	m2

737

PACKAGE NO 5 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

		EQ	QUIPMEN		JIRED IN	NUMBEI	RS			MA	TERIAL	REQUIR	ED	
NUMBER	0.90 0.90 m3/1 m3	c excavat or +	Tippers / Lorries	Power	Vibrator y compac tor (1+ 0.90 m width)	d Water	Concret e mixer machin e	Concret e vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - V	1	2	4	1	1	1	1	1	70	230	35	81	306	4

1.6.7.PACKAGE - 5

Calculation of machineries Requirement

	12 Hours / Day						
our x 12 H	r x 5 m3 / trip)	9	60 m3 / Day				
ing supply	12 Hours / Day						
m3 /hour x	10 Hr)	4	00 m3 / Day				
days)	25 x 960 m3	240	00 m3 / month				
vork	30500+38000 = 68	3500 m3					
work	6 month.						
rth work:	1)Tank bund Earthwo	rk = 30500 m	3				
	2) Supply channel E	arthwork = 🗧	38000 m3				
1 no							
2 nos							
4 no							
1 no							
1 no							
	ing supply m3 /hour x days) vork work rth work: 1 no 2 nos 4 no 1 no	Iz Hours / Day our x 12 Hr x 5 m3 / trip) ing supply 12 Hours / Day m3 /hour x 10 Hr) days) 25 x 960 m3 vork 30500+38000 = 68 work 2) Supply channel E 1 no 2 nos 4 no 1 no	I2 Hours / Day our x 12 Hr x 5 m3 / trip) ing supply 12 Hours / Day m3 /hour x 10 Hr) days) 25 x 960 m3 vork 30500+38000 = 68500 m3 work 6 month. rth work: 1)Tank bund Earthwork = 30500 m 2) Supply channel Earthwork = 3 1 no 1 no 1 no				

5. Truck mounted . (10000 -15000 I				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of c	concrete	737 m3		
Mixer machine re	equired	1 no for 14 days /	months	6 month

PACKAGE - VI 1.6.9.Construction Methodology

NAME OF THE SUB BASIN: GADILAM

SI. No	Description of Item		Working Months																					
		1	2	3	4		5	6	7	8	9			10	11	12	13	14	15	16	17	18	Tota	al
									Rain	-														
1	Earth Work Bund	7000	7000	6500	6800	10000	7000				7900	28400	35200	4500	4000	4000	4100	4510	5250	5000	5000	5880	84440	m3
2	Earth Work Supply Channel	18000	15500	16000	16500	10000	16600				18200	67700	84200	10000	10500	10500	10000	9402	12500	12500	12600	12809	201611	m3
3	Earth Work Foundation	280	270	295	250	800	280				312	1157	1407	170	160	165	170	178	210	200	205	228	3373	m3
4	Cement Concret 1:4:8		80	80	85	90	80				94	254	339	40	45	40	40	44	50	55	40	64	837	m3
5	PCC 1:3:6 Plain				10	20	13					0	10				5	6			5	6	45	m3
6	PCC 1:2:4			290	280	300	290				299	589	869			200	190	190		195	195	190	2319	m3
7	RCC 1:11/2:3			30	30	30	53		0	0	0	0	60	0	0	0	30	41	0	0	30	41	345	m3
8	Steel			30	45	35	20				12	42	87			20	15	19			25	29	215	МТ
9	RR Masonry			80	80	45	90				69	149	229			55	50	55		50	50	60	639	m3
10	RSDP			150	150	45	100				100	250	400			75	75	100		50	150	50	1000	m2

440

843 1278

PACKAGE NO 6 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

		EQ	QUIPMEN	TS REQI	JIRED IN	MATERIAL REQUIRED								
NUMBER	0.90 0.90 m3/1 m3	c excavat or +	Tippers / Lorries	Power	Vibrator y compac tor (1+ 0.90 m width)	d Water	Concret e mixer machin e	Concret e vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - V	1	3	4	1	1	1	1	1	70	230	35	81	306	4

1.6.7.PACKAGE - 6

Calculation of machineries Requirement

NAME OF THE

Hydraulic excavator & 4 Lorries for bund earl		12 Hours / Day		
(2 No x 8 loads	/ hour x 12 H	r x 5 m3 / trip)	9	60 m3 / Day
Hydraulic excavator for de channel.	silting supply	12 Hours / Day		
(2 No x 2	20 m3 /hour x	10 Hr)	4	00 m3 / Day
For 1 month (25 Work	ing days)	25 x 960 m3	240	00 m3 / month
Total quantity of ear	th work	35200+84200 = 11	9400 m3	
Working period for ea	rth work		6 month.	
Machineries required for	earth work:	1)Tank bund Earthwo	rk = 35200 m	13
		2) Supply channel E	Earthwork =	84200 m3
1. Hydraulic excavator . + 0.90 m3/1 m3 -	= 1 no			
2. Hydraulic excavator . + 0.30 m3/1 m3 -	= 3 nos			
2. Tippers / Lorries	= 4 no			
3. Power roller 8- 10 T	= 1 no			
4. Vibratory compactor . (1+ 0.90 m width)	= 1 no			

5. Truck mounted . (10000 -15000 I				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of c	concrete	1278 m3		
Mixer machine re	equired	1 no for 14 days /	months	6 month

PACKAGE - VII 1.6.9.Construction Methodology

NAM F OF

	Description of Hom									W	/orking	g Mon	ths								
SI.No	Description of Item	1	2	3	4	6	7	8	9		10	11	12	13	14	15	16	17	18	Т	otal
						Rair	ny sea	ason													
1	Earth Work Bund	3100	3200	3200	3000				2600	12100	1900	2200	1800	1750	2000	2250	1850	2000	3600	49150	m3
	Earth Work Supply Channel	7000	6500	8000	7500				9200	30700	5200	4000	4250	4300	4900	5000	6000	5750	5919	123419	m3
3	Earth Work Foundation		500	500	400				460	1460	325	225	250	250	333	350	340	320	379	6552	m3
4	Cement Concret 1:4:8		50	55	75				47	152	30	28	36	25	25	35	35	40	33	713	m3
5	PCC 1:3:6 Plain		150	135	150				159	444	87	70	72	75	75	95	90	95	79	1935	m3
6	PCC 1:2:4		350	345	330				365	1060	160	160	175	170	205	200	200	215	255	4555	m3
7	RCC 1:11/2:3		30	30	35				44	104	20	10	10	20	25	20	20	20	25	457	m3
8	Steel		20	15	15				18	53	10	8	9	10	10	10	10	12	15	240	МТ
9	RR Masonry				6	(6	6				3	3				6	36	m3
10	RSDP				10				11	11				5	5			6	5	64	m2

PACKAGE NO 7 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE

		EC	QUIPMEN	TS REQI	JIRED IN	NUMBE	RS			МА	TERIAL	REQUIR	ED	
NUMBER	0.90 m3/1 m3	c excavat or +	Tippers / Lorries	Power	compac	Truck mounte d Water lorries (10000 - 15000 litres)	e mixer	Concret e vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - VII	1	1	4	1	1	1	2	2	95	282	53	54	473	5

1.6.7.PACKAGE - 7

Calculation of machineries Requirement

NAME OF THE

	12 Hours / Day		
ur x 12 H	r x 5 m3 / trip)	9	60 m3 / Day
ig supply	12 Hours / Day		
13 /hour x	10 Hr)	4	00 m3 / Day
lays)	25 x 960 m3	240	00 m3 / month
ork	12100+ 30700 = 4	2800 m3	
vork		6 month.	
th work:	1)Tank bund Earthwo	rk = 12100 m	13
	2) Supply channel E	Earthwork = 🗧	30700 m3
no			
4 no			
1 no			
1 no			
	ng supply n3 /hour x days) ork work th work: th work: 1 no 4 no 1 no	I2 Hours / Day ur x 12 Hr x 5 m3 / trip) ng supply 12 Hours / Day 13 /hour x 10 Hr) days) 25 x 960 m3 ork 12100+ 30700 = 4 vork	Indext 12 Hours / Day ur x 12 Hr x 5 m3 / trip) 9 ing supply 12 Hours / Day ing sup

5. Truck mounted . (10000 -15000 I				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of c	concrete	1760 m3		
Mixer machine re	equired	2 no for 14 days /	months	6 month

PACKAGE - VIII 1.6.9.Construction Methodology

NAM F OF

	Decemination of Itom										Woi	king M	onths									
51.NO	^I Description of Item	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Tota	al
							Rai	ny se	eason													
1	Earth Work Bund	2000	2000	3000	3000	3000				1275	14275	1500	1500	1500	1500	1600	3000	3000	2675		30550	m3
2	Earth Work Channel	10000	15000	15000	15000	20000				16600	91600	9000	9000	9000	9000	10000	10000	10000	10000	15500	183100) m3
3	Earth Work Foundation	400	500	500	300	400				350	2450	150	250	250	200	370	300	350	300	270	4890	m3
4	Cement Concret 1:4:8	30	25	20	30	25				50	180	20	15	10	15	29	25	25	20	20	359	m3
5	PCC 1:3:6	250	350	400	350	350				400	2100	200	200	300	300	300	300	300	300	284	4584	m3
6	PCC 1:2:4		200	210	200	190				254	1054	100	100	100	127	100	150	125	100	152	2108	m3
7	RCC 1:11/2:3		100	95	90	100				111	496	50	45	50	50	53	50	50	60	88	992	m3
8	Steel		20	30	10	10				10	80		5	5	15	14	10	10	10	10	159	мт
9	RR Masonry				30	35				20	85		10	10	10	12	10	10	10	13	170	m3
10	RSDP		280	300	250	250				235	1315		165	170	175	147	165	150	150	193	2630	m2

58	58	58	58	58				58	348	35	35	35	35	35	43	43	43	44	696
----	----	----	----	----	--	--	--	----	-----	----	----	----	----	----	----	----	----	----	-----

PACKAGE NO 8 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE

		EQ		TS REQI	JIRED IN	NUMBE	RS			МА	TERIAL	REQUIR	ED	
DACKAGE	Hydraul ic excavat or + 0.90 m3/1 m3 -	ic	Tinnors	Power		d Water	e mixer machin	Concret e vibrator	Cement	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - VIII	1	3	4	1	1	1	3	3	1151	1752.4	190	3285	3285	131

1.6.7.PACKAGE -8

Calculation of machineries Requirement

NAME OF THE

Hydraulic excavator & 4 Tippers / 12 Hours / Day Lorries for bund earthwork. (2 No x 8 loads / hour x 12 Hr x 5 m3 / trip) 960 m3 / Day Hydraulic excavator for desilting supply 12 Hours / Day channel. (2 No x 20 m3 /hour x 10 Hr) 400 m3 / Day For 1 month (25 Working days) 25 x 960 m3 24000 m3 / month Total quantity of earth work 14275+91600 = 105875 m3 Working period for earth work 6 month. Machineries required for earth work: 1)Tank bund Earthwork = 14275 m3 2) Supply channel Earthwork = 91600 m3 1. Hydraulic excavator + 0.90 m3/1 m3 -= 1 no 2. Hydraulic excavator + 0.30 m3/1 m3 -= 3 noS2. Tippers / Lorries = 4 nos 3. Power roller 8- 10 T = 1 no 4. Vibratory compactor (1+ 0.90 m width) = 1 no

5. Truck mounted (10000 -15000 lite				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of o	concrete	3830 M3		
Mixer machine r	equired	3 nos for 14 day	ys / months	6 month

PACKAGE - IX 1.6.9.Construction Methodology

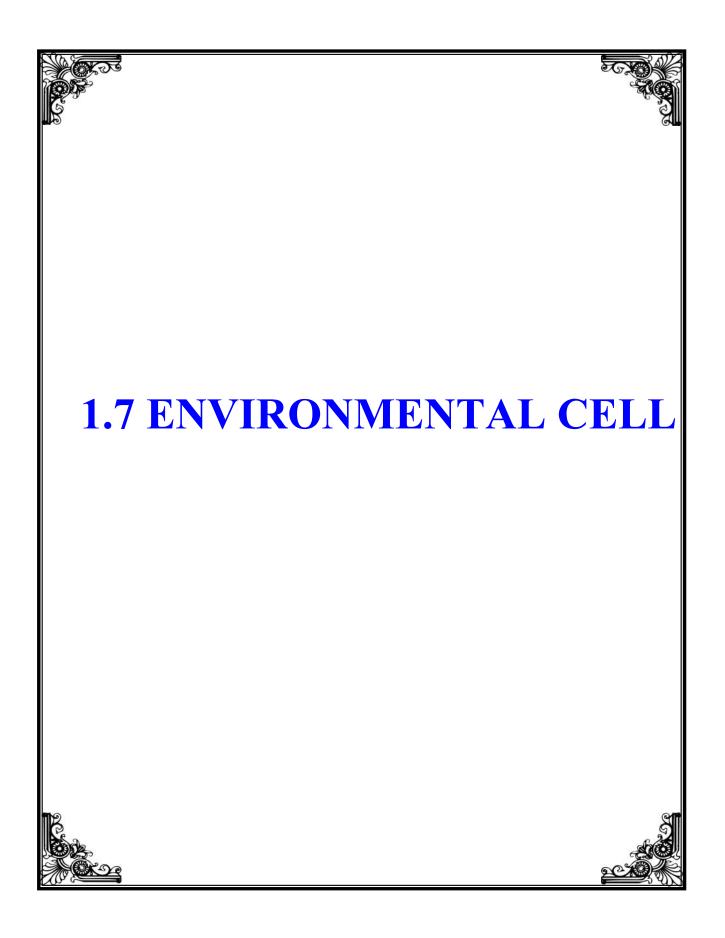
NAM F OF

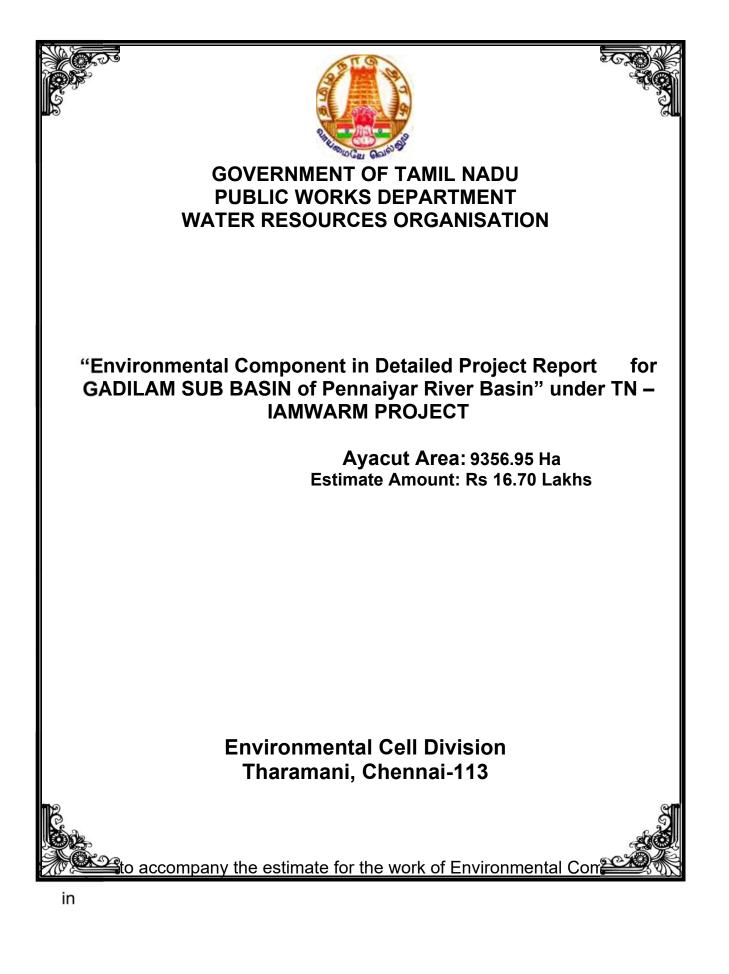
SLNG	Description of Itom										Wo	king M	lonths									
'SI.NO	l Description of Item	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Tota	al
							Rai	ny se	eason													
1	Earth Work Bund	2500	2500	2300	2000	2500				3155	14955	1500	1500	1400	1400	1600	2000	1800	1500	2255	29910	m3
2	Earth Work Channel	14000	13500	13800	13500	14500				14000	83300	8300	8400	8350	8300	8330	10500	10450	10300	10494	166724	, m3
3	Earth Work Foundation	65	70	70	65	65				72	407	40	40	35	40	48	50	50	50	53	813	m3
4	Cement Concret 1:4:8		10	20	19	10				20	79		5	10	15	9	5	10	10	14	157	m3
5	PCC 1:3:6			5	10	10				10	35			7	5	5		5	5	8	70	m3
6	PCC 1:2:4			120	120	120				121	481		60	60	60	61	60	60	61	60	963	m3
7	RCC 1:11/2:3																					m3
8	Steel										0											
9	RR Masonry										0											
10	RSDP										0											

PACKAGE NO 9 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE SUB BASIN: GADILAM

		EQ		TS REQI	JIRED IN	NUMBE	RS			МА	TERIAL	REQUIR	ED	
DACKACE	ic	Hydraul ic excavat or + 0.30 m3/1 m3			Vibrator y compac tor (1+ 0.90 m width)	mounte	e mixer	Concret e vibrator	Cement	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - IX	1	3	4	1	1	1	3	3	128	267.75	0	71	464	0


1.6.7.PACKAGE -9


Calculation of machineries Requirement

NAME OF THE

Hydraulic excavator & 4 Tippers / Lorries for bund earthwork.	12 Hours / Day			
(2 No x 8 loads / hour x 12 Hr x	5 m3 / trip)	960 m3 / Day		
Hydraulic excavator for desilting supply channel.	^y 12 Hours / Day			
(2 No x 20 m3 /hour x 10	(2 No x 20 m3 /hour x 10 Hr)			
For 1 month (25 Working days)	25 x 960 m3	24000 m3 / month		
Total quantity of earth work	14955+83300 =	= 98255 m3		
Working period for earth work	6 month.			
Machineries required for earth work: 1)Tank bund Earthwork = 14955 m3				
	2) Supply cha	nnel Earthwork = 83300 m3		
1. Hydraulic excavator . + 0.90 m3/1 m3 - = 1 no				
2. Hydraulic excavator . + 0.30 m3/1 m3 - = 3 noS				
2. Tippers / Lorries = 4 nos				
3. Power roller 8- 10 T = 1 no				

5. Truck mounted Water lorries (10000 -15000 litres) = 1 no				
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day
Total quantity of concrete		3830 M3		
Mixer machine required		3 nos for 14 days / months		6 month

Detailed Project Report for GADILAM SUB BASIN of Pennaiyar River Basin" under TN – IAMWARM PROJECT

Estimate Amount: Rs 16.70 Lakhs

Under TNWRCP, with World Bank assistance, special emphasis was given for the first time to assess the Environmental Status and degradation caused for all River basins in Tamil Nadu. Soil Assessment study has been conducted by **Environment Protection Training and Research Institute (EPTRI), Hyderabad**. This institute has identified the Environmental issues, mitigatory measures and given their recommendations on the following issues.

Environmental Issues :		- Soil Erosion, Sand Mining
		- Water Pollution due to Industries
		- Encroachment of river and tank beds
		- Poor solid waste management
ii)	Social Issues:	- Dry Land Agriculture
		- Reduction in Livestock
		- Women empowerment-SHG's
		- No storing facilities.
		- Health problems due to industrial water
		pollution
iii)	Mitigatory Measures: be controlled and regula	
		- Livestock services delivery and
		management
		-Common storage facilities may be
		established
iv)	Agency:	 The above measures can be improved By the combined working of Environmental Cell wing and Animal Husbandry Department.

The Environmental Cell of WRO assessed the Environmental impact on the quality of Surface and Ground water and Soil by collecting water & soil samples and testing them, preparation of Micro level Environmental Status Reports for all the River basins with the World Bank assistance for these works up to March 2004. Also few Awareness programs & workshops were conducted to create Awareness on the Environmental issues & remedies among the public, farmers, Govt. officials and NGOs. Seminars were conducted to find out new techniques and methods developed recently to solve the Environmental problems.

Now under IAMWARM Project, focus is at each Sub Basin level to identify and prioritize the requirements for improvements to storage structures, rehabilitation, new schemes for water harvest, and diversification of crops. Any new schemes or rehabilitation of existing one, consideration of the Environmental issues pertaining to that area and remedial action to overcome the problems is must.

Accordingly, Environmental issues prevailing in the Gadilam Sub basin is taken up under IAMWARM Project.

PENNAIYAR RIVER

Pennaiyar River originates on the South Eastern slope of Chinnakesava Hills in Karnataka State. The river is called Dakshina Pinakini in Karnataka. The river enters into Tamil Nadu at Sakkarasam palli near Bagalur village of Hosur taluk. The total length of river is 432 Km and out of which 112 Km length of river is in Karnataka State and 320 Km is in Tamil Nadu, it confluences in Bay of Bengal at Cuddalore.

GADILAM SUB-BASIN

Gadilam river is a major flood carrier originating from the tank surplus of Marianur Tank and the drainage from Melaphazhengoor Reserve forest in Kallakurichi Taluk of Villupuram District. The Gadilam River sub basin is located between Latitude 79° 10'25" - 79° 50'30" and Longitude 11° 43'30" - 11° 55'45" and its surrounded by Vellar river basin on the South side, Varahanadhi basin on the North side and bay of Bengal on the East.

The Taluks covered in this Gadilam Sub basin are Sankarapuram, Thirukoilur and Ulundurpet in Villupuram district and Panruti & Cuddalore Taluks in Cuddalore District. The Gadilam Sub Basin area received an average annual rainfall of 920.79mm. The Gadilam sub basin is having 91 Nos. of non-system tanks and 14 Nos. of Anaicuts which is having a total ayacut 9356.95Ha. The river runs about 120Km and finally confluences into Bay of Bengal near Devenampattinam Village in Cuddalore District. Sesha Nadhi and Malattar are the tributaries of Gadilam River.

ENVIRONMENTAL PROBLEMS:

SOIL EROSION:

Soil erosion causes depletion of fertility through removal of valuable surface soil and lead to reduction in the effective arable soil depth and hence it is one of limiting factors for crop production.

SAND MINING:

One of the major problem in river basin related to Sand Mining as it poses major threat to River Bed. Sand quarrying for construction and other purposes is growing at an alarming rate which causes failure of Anicuts and Diversion structures, stagnation of water in the deep mined river bed causing consequent health hazards. This needs to be prevented by all means. Now the sand mining has come under the control of WRO.Sand is being collected only at the approved site and the Regular Territorial Division is closely monitoring.

INDUSTRIAL POLLUTION:

The effluent from industries located in this sub basin are let into ditches ,lands and water drains which ultimately reach the River or supply channels of tanks or lands. Special attention is needed for treating the effluent to avoid water pollution in the sub basin.

SOLID WASTE DISPOSAL:

The problem of Garbage collection and its disposal has assumed importance, in the context of rapid growth of population, urbanization, industrial growth and development. There is no organized scientific method of disposal in all the Municipalities and Panchayats in this sub basin.

AQUATIC WEEDS :

It is observed from the field officers in this basin area that the Aquatic weeds growth Ipomoea locally known as Kadal Palai is found to be in almost 80% of the tanks. According to the officials in the sub basin, the plant growth varies from 40% to 80% in various tanks. In general weeds growth restricts the water storage and loss in capacity of the tanks.

SEWAGE DISPOSAL LET INTO WATER BODIES:

More over in almost all the village no safe disposal of sewage or proper treatment method is adopted. This affect the near by water source directly or affecting the ground water potential indirectly. So, creating awareness among the Presidents of the local bodies is essential and to motivate them to adapt Solid waste management and Sewage management, wherever required, workshop including field visits, exclusively for them is to be conducted under the IAMWARM project.

ACTIVTIES PROPOSED:

<u>River Basin Monitoring:-</u>

To monitor the quality of water and soil and create database regarding the environmental status for the sub basin, the following activities are proposed at the sub basin level.

Collection and testing of water and soil samples:

Water samples will be collected and tested in the sub basin at identified sampling points regularly. Continuance of collection and testing of water samples is essential, as good and long range data will enable to understand the problems more precisely.

Hence, now it is proposed to collect and test water samples for a period of **Three years** to assess the environmental impact on the quality of surface water of this sub basin more accurately.

In addition to the above identified locations, water samples will also be collected from tanks and near by wells to estimate the level of pollution in selected locations, where sewage is directly let into tanks and Channels. These samples will be tested, to assess the impact on the quality of surface and ground water. Soil samples are to be collected from selected locations to assess the impact on the quality of soil due to various Environmental problems like use of chemical fertilizer and using the polluted water. From these locations numbers of samples at regular interval have to be collected and tested to determine precisely the impact on the degradation of the quality of the soil. Therefore testing soil samples are essential.

Under this item following provisions have been made.

1 Testing charges for the water& soil samples.

2 Provision of Labour charges, purchase of materials, conveyance, driver salary and computer operator.

Transfer of technical know-how for solid waste management system including source segregation, recycle of dry waste and linkage with user agencies.

Now a new scheme for solid waste management plan is under implementation in all municipalities and Panchayats. Under this scheme, collection tank for disposal and nondisposable garbage have been constructed in most of the local bodies. But recycling the waste and converting the solid waste into manure and production of energy from them are yet to be come up.

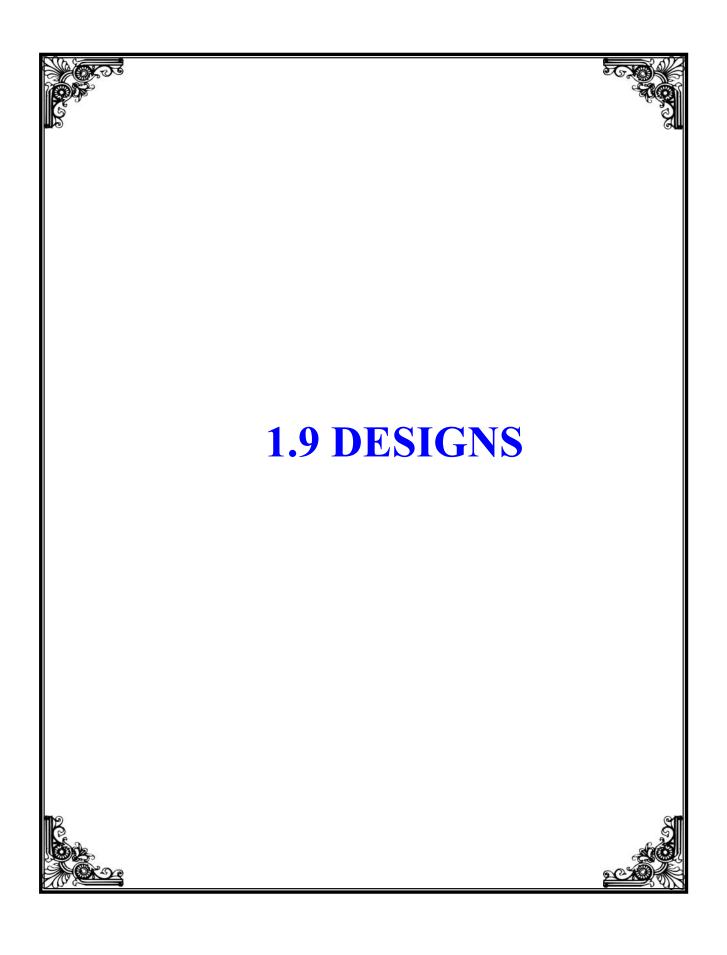
Hence demonstration and action programs are planned with user agencies and necessary field visits are programmed to transfer of technical know how for solid waste management system.

Conducting Awareness Programs.

Awareness Programs are necessary to create awareness among the public about environmental aspects and the action to be taken by them to remove or reduce the impacts due to the environmental problems. So far, no awareness Programs were conducted in this sub basin.Hence, to create and motivate the people, Awareness programmes are to be conducted in the villages where sewage is directly let into water bodies. It is also proposed to conduct awareness meetings in School/ Institutions during the study period of three years covering the following subjects in addition to placing Stickers, Tin sheets and Pamphlets containing messages about Environmental Awareness.

- Sanitation. Solid waste treatment.
- Sewage treatment and converting the same into Gas.
- Natural farming.
- Conversion of aquatic weeds into manure etc.

Mode of Execution:


All the works proposed are to be carried out by outsourcing through an Educational Institute.

Total Cost.

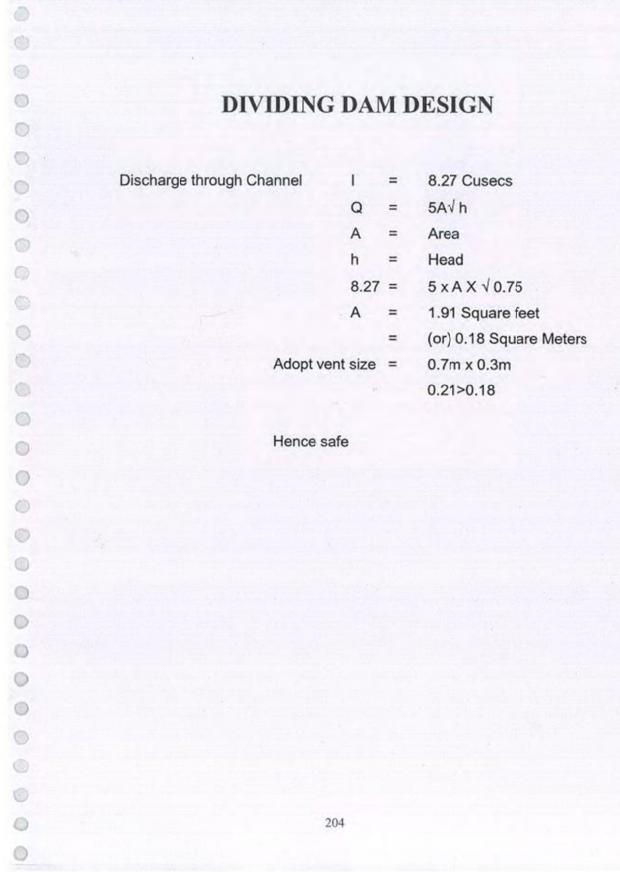
The total Proposal cost works out to Rs.16.70 Lakhs. (Rupees Sixteen Lakhs and Seventy Thousand only).

Assistant Engineer, PWD,WRO Environmental Cell Section-IV Chepauk, Chennai-5 Asst.Exe. Engineer, PWD, WRO, Environmental Cell Sub Division -II Chepauk, Chennai-5.

۲ CHANNEL DESIGN ChANNEL I (anicut to dividing dam) Discharge through channel = 12 Cusecs 0 As per Mannings formula, Velocity (V) = 1/n R^{2/3} S1/2 n = 0.025Bed width = 2M Full-supply depth = 0.3M Slope (S) = 1/800Area (A) = ((2+2.30)/2) x0.30 $= 0.645 \text{ M}^2$ 0 Wetted perimeter (P) = $2+2(\sqrt{(0.30)^2+(0.15)^2})$ = 2.67M Hydraulic Mean Depth R = A/P = 0.24MVelocity (V) = 1/0.25 *(0.36)***(1/800) = 0.62 M/S Discharge (Q) = A*V = 0.645*0.62 0 $= 0.40 M^3 / S$ 0 (or) = 14.21 Cusecs >12.00 Cusecs Hence safe ChANNEL I (Dividing dam to direct ayacut channel end) Discharge through channel = 8.27 Cusecs As per Munnings formula, Velocity (V) = 1/n R^{2/3} S1/2 n = 0.025 Bed width = 2M Full supply depth = 0.3M Slope (S) = 1/1000 Area (A) = $((2+2.30)/2) \times 0.30$ 0 201 0

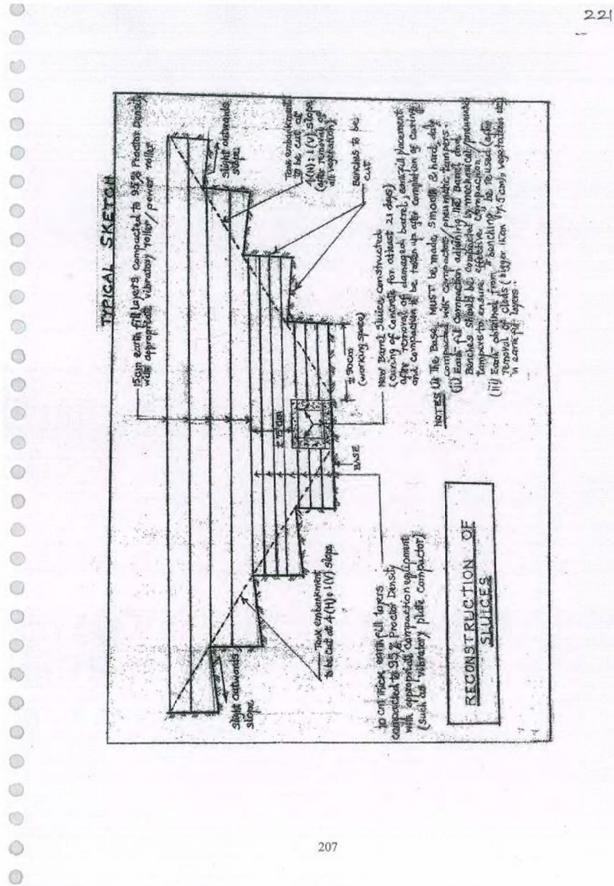
0

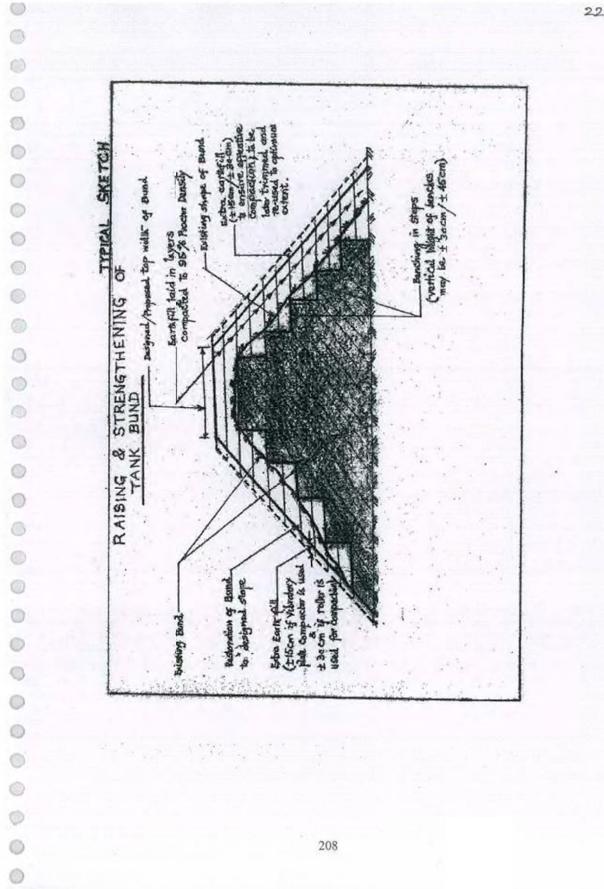
 $= 0.645 \text{ M}^2$ 0 Wetted perimeter (P) = $2+2(\sqrt{(0.30^{12}+(0.15)^2)})$ = 2.67M Hydraulic Mean Depth R = A/P = 0.24M0 Velocity (V) = 1/0.25 *(0.36)2/3*(1/1000)1/2 0 = 0.62 M/S Discharge (Q) = A*V 0 = 0.645*0.49 $= 0.32 M^3 / S$ (or)= 11.23 Cusecs >8.27 Cusecs Hence safe 0 ChANNEL I (Dividing dam to direct ayacut channel end) Discharge through channel = 3.44 Cusecs As per Mannings formula, Velocity (V) = 1/n R^{2/3} S1/2 0 n = 0.025 Bed width = 1.5M Full supply depth = 0.3M 0 Slope (S) = 1/1200 0 Arca (A) = ((1.5+1.830)/2) x0.30 $= 0.495 \text{ M}^2$ 0 Wetted perimeter (P) = $1.5+2(\sqrt{(0.30)^2+(0.15)^2})$ 0 = 2.17M Hydraulic Mean Depth R = A/P = 0.23MVelocity (V) = 1/0.25 *(0.36)2/3e(1/1200)1/2 = 0.43 M/S Discharge (Q) = A*V + 0.495*0.43 0 $= 0.21 M^3/S$ 0 (or) = 7.41 Cusecs > 3.44 Cusecs Hence safe . 0 0 202 0 0

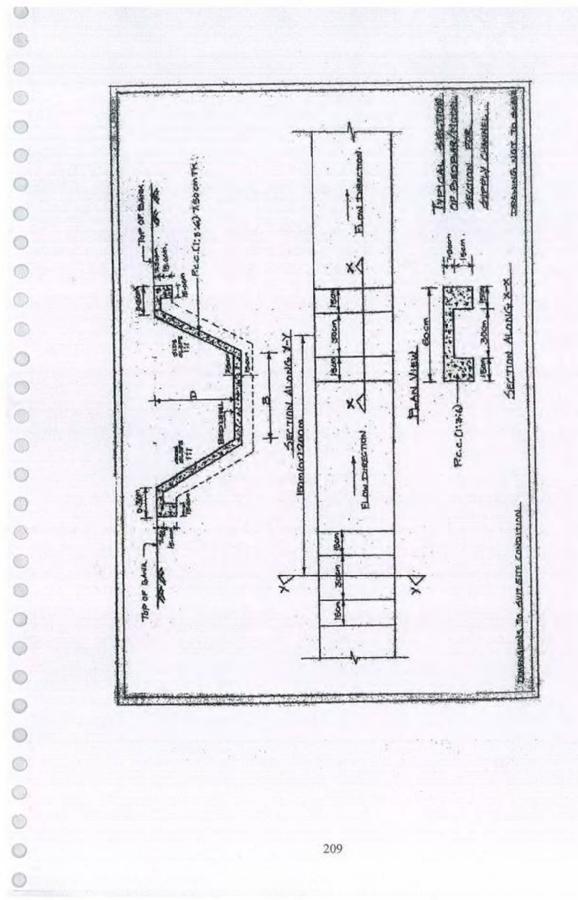

0

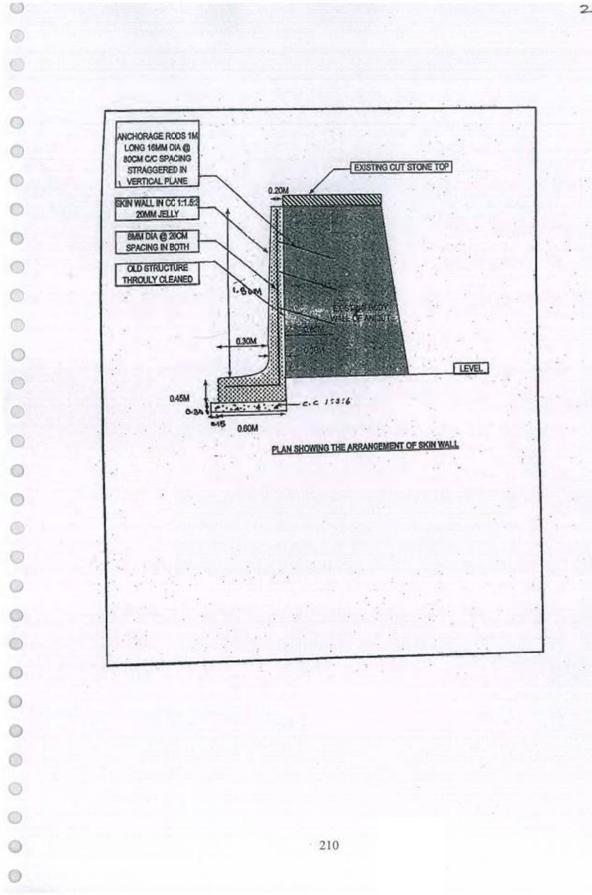
Hydraulic Calculation

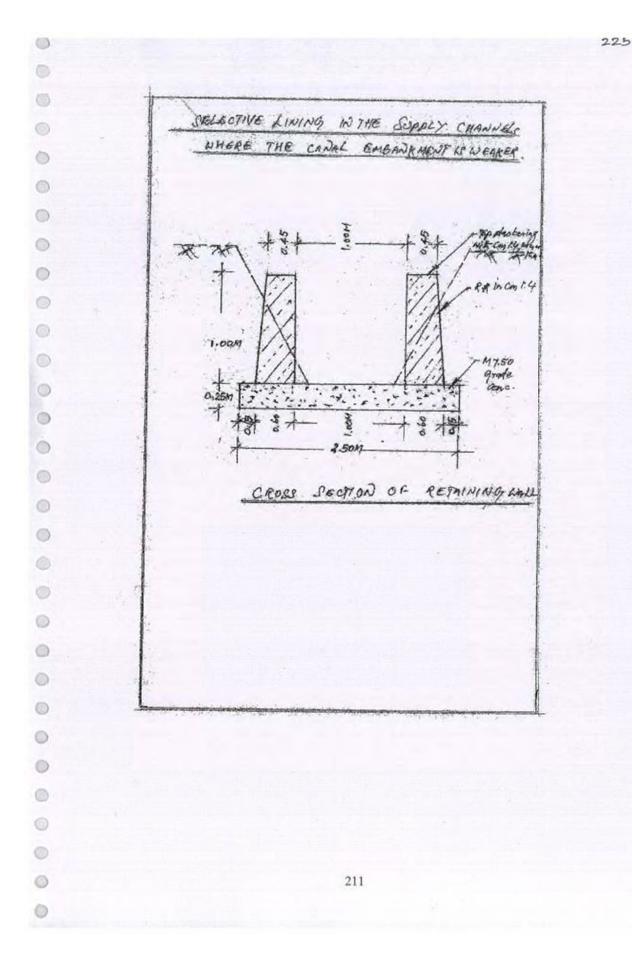
CHECK THE ADEQUANCY OF THE EXIXTING SUPPLY CHANNEL

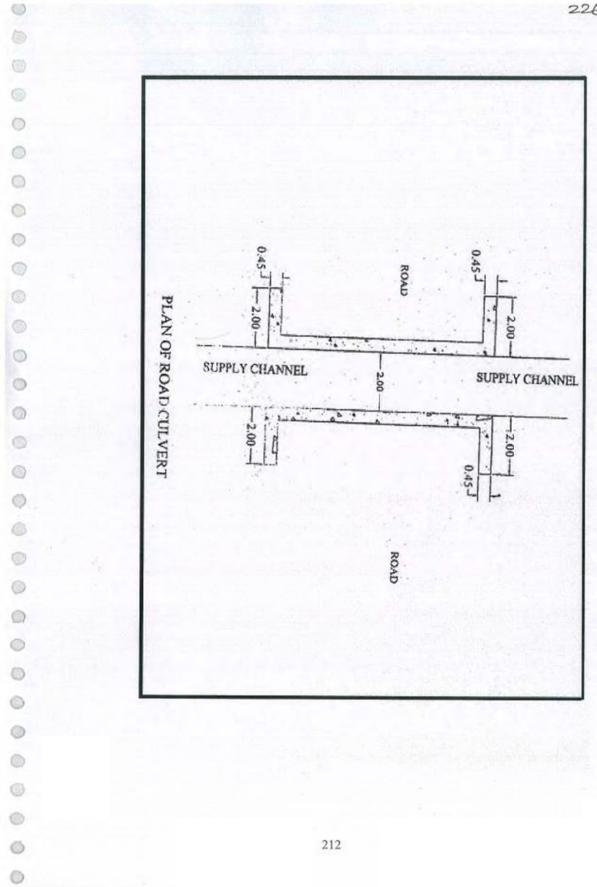

Figure Ayacut	· .	261.50 Acres	
Requirement of water		6 Acres/Mcft	
Hence the lotal requirement of water is	•	43.60 McR	
The proposed to give supply in 7 days	•	7 days	
E		43.60 × 10*	
Dereore the discharge required per second		7x24x60x60	
単 に		72 Cusecs	
add 20% for Evaporation & Transmission losses		14.42 Cusecs	
Tet 72 + 14.42		86.51 Cusecs	
2	or	2.45 cumecs	
	=	3.50 M	
DED WIDTH			
BIDE SLOPE-		1 IN 2000	
	•	0 025	
MUNINGS COEFFICIENT (N)		0025	
REE BOARD	· · · ·	0.50 M	
CEPTH OF WATER F.S.D		0.60 M	
4.50			1-00]
			1
0.50	/	*	
1 1 550	/ _:	Petr	
. 05	1 :1	~	
3.50	•		-27
5.50 EA 'A'		4.45 Sq m	1
ETTED PERIMETER "P"	× .	5.96 m	
		0 75 m	
DRAUUC MEAN RADIUS R = AF			
LOCITY - = 1/n x R= x S	•	0.74 m/sec	
		3.28 m ³ /sec	
CHARGE "Q" = V X A mylog discharge = 115.90 cusecs			
e carrying capacity of the existing supply channel is	115.90 cuse	cs against the required	


w canying capacity of the existing supply channel is the discharge of 86.51 cusecs




0		UNEDT		
0	ROAD CU	ROAD CULVERT DESIGN		
0				
0	Discharge through channel	-	12 Cusecs	
0	Channel bed level	=	138.950m	
0	Road level	=	139.650m	
0	Bed Width	=	2m	
	Full supply depth	=	0.3m	
0	Difference between Road level a			
0	Channel bed level	=	0.7m	
0	Velocity (V)	=	0.62 M/S	
0	Q	=	6A√ h	
0	А	=	Area	
	h	=	Head	
0	Discharge (Q)	=	6x[2x3.28)x(0.7x3.28)x√0.25]	
0		=	45.18 Cusecs > 12 Cusecs	
٢		Hence safe		
0	Velocity (V)	=	1.27 / (2 x 0.7)	
0		=	0.91 M/S > 0.62 M/S	
0	Velocity is within the permissible	limit.		
D				
0				
0				
0				
0		205		
0				
147				



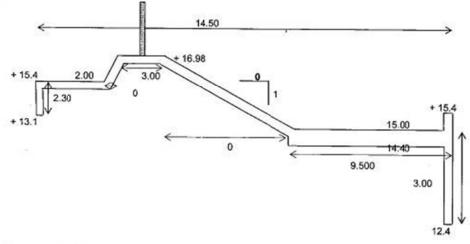


Crest level of Anicut	=	+	16.980	m		
Rear M.F.L	=	+	20.103	m	(From	RWL calculation)
Front M.F.L	=	+	20.500	m		
Crest Level	=	+	16.980	m		
Maximum Discharge	=		49000	c/s	=	1387.53 cumecs
Design discharge	=	490	000	c/s	=	1387.53 cumecs
Maximum Discharge thro' Anicut			49000.00	c/s	=	1387.51 cumecs
U/s bed level	=	+	15.40	m		
D/s bed level	=	+	15.40	m		
Exit gradient	1	in	5.00	1	=	0.2
Floor thickness at D/s end	=		0.60	m		
Floor thickness at U/s floor	=		0.60	m		
Thickness of Cut off wall	=		0.60	m		
Clear waterway thro' Anicut	=		158.53	m		
Discharge thro anicut Normal Scour Depth	=		1387.51 5.70	m³/ m	Sec	

Design of ANICUT

SI.No.			Item		Discharge thro' the Anicut
1	Discharge			cumecs	1387.51
2	Clear water way			m	158.53
3	Normal Scour Depth, R			m	5.70
4	Discharge intensity (q)			m ³ /s / m	8.75
5	D/s Water level			m	20.10
6	U/s Water level			m	20.50
7	U/s Scour Level	E.	U/s Water level - 1 R		14.80
8	D/s Scour Level	=	D/s Water level - 1.25 R		12.98
9	Depth of U/s cutoff	=	Max(U/s bed Lvl - U/s scoul	r Ivi,y/3+0.6)	2.30
	Provide				2.30
10	Depth of D/s cutoff	=	Max(D/s bed Lvl - D/s scoul	r lvl or y/2+0.6)	2.95
	Provide				3.00
	λ				0.73
	a				0.00
11	Exit Gradient, Ge				0.200
12	Head for exit gradient, H				1.58
13 13	Total Length of the floor require Total Length of the floor require		om surface		0.00 14.50

The Length of the Horizontal floor required under surface flow condition is more than the total length of horizontal floor required under Sub Surface flow condition. Hence the floor Length required under the Surface flow condition is adopted.


Exit gradient, G_e where, λ

$$= \frac{H}{d} \times \frac{1}{\pi \sqrt{\lambda}}$$
$$= \frac{1 + \sqrt{(1 + \alpha^2)}}{2}$$
$$= \underline{b}$$

d

α

Hydraulic Gradient Line

For static condition the U/s water level has been taken as FRL	=
For dynamic condition the U/s water level has been taken as FMFL	-

SI.No.		1	tem	Pile 1	Pile
1	Total length of the floor	b		14.50	14.50
	Depth of the pile	d		2.30	3.00
3	Thickness of the floor			0.60	0.60
4		a	= b / d	6.30	4.83
5		λ	= $(1 + \sqrt{1 + \alpha^2})/2$	3.69	2.97
6		¢ E	= $1 / \pi \cos(-1) ((\lambda - 2)/\lambda)$	34.85	39.43
7		40	= $1 / \pi \cos(-1) ((\lambda - 1)/\lambda)$	23.99	26.93
8		Ф с1	$= 100 - \phi E (\phi_{C2} = 0\%)$	65.16	0.00
9		ф D1	$= 100 - \phi_0 \qquad (\phi_{D2} = \phi_0)$	76.01	26.93
10		φ E1	= 100% $(\phi_{E2} = \phi_E)$	100.00	39.43

Page 2

TVI

16.98

20.50

3.Reservoir at FRL,	no tailwater,	with uplift condition

2

/

SLNO		DESCRIP	TION	1	FC	DRCE	L.A	MON	ENT
	Coefficient	length	depth	Unit wt.	V	н		+	-
Weight of	masonry								
1	0.5	0.158	1.580	2.4	0.299568		3.000667	0.898904	
2	1	2	1.580	2.4	7.584	·	1.948	14.77363	
3	0.5	0.948	1.580	2.4	1.797408		0.632	1.135962	
weight of v	water								
a	0.5	0.158	1.58	1	0.12482		3.053333	0.381117	
Water Pre	ssure								
	i 0.5	1.58	1.58	1		1.2482	0.526667		0.657385
uplift press	sure								
	0.5	3.106	1.58	1	-2.45374		2.070667		5.080878
				ΣV=	7.35206		Σ M =	17.1896	5.73826

Base width=	3.106
\overline{X} = $\Sigma M / \Sigma V =$	1.557571
e = b/2-X	0.004571
6e/b=	0.008831
Maximum stress	$= \Sigma V/b^{*}(1+6e/b)$
	= 2.38795 T/m ²
12-12-12-12-12-12-12-12-12-12-12-12-12-1	

Minimum	stress

b) T/m² = $\Sigma V/b^{*}(1-6e/b)$ = 2.34615 T/m² Т Maximum

STRESS		Maximum	Minimum
Condition I	Empty condition	4.220 T/m ²	2.014 T/m ²
Condition II	MWL condition	-0.781 T/m ²	-0.083 T/m ²
Condition III	FRL condition	2.388 T/m ²	2.346 T/m ²

5				Height of Sub soll Hydraulic gradient line above the datum							
U/s water level	D/s water	Head in	Lin Sheet pile 1			Sheet pile 2					
flow condition	in m	Level in m	m	∲ c1	¢ D1	Ý E1	∲ E2	\$ 02	¢ c2		
²				100	76.01	70.27	33.34	26.93	0		
Static	16.98	15.40	1.58	1.58 16.98	1.20 16.60	1.11 16.51	0.53 15.93	0.43 15.83	0 15.40		
Dynamic	20.50	20.10	0.40	0.40 20.50	0.30 20.40	0.28	0.13 20.24	0.11 20.21	0 20.10		

FLOOR THICKNESS

Static Condition

Max thickness at Toe for static cor Dynamic Condition	dition		1.0 m	_
Thickness of the floor required	0.8	0.8	1.0	1.0
Unbalanced head	1.02	1.11	1.28	1.31
Distance from centre of D/s pile	2.3	4.3	8.3	9.200

Distance at jump form (from mid d/s cut-off)	=	9.5 - 0.3 +	((16.84 - 15) x 0)	9.5
	=	9.2	m	9.2
Dynamic Head at jump formation	=	2.25	m	-81.2
Head considered for Dynamic flow	=	1.500		
	=	1.5004	m	
Thickness of the floor required	=	1.07171	m	

Thickness provided at toe

1.1 m

Page 4

λ.

Design of Anicut

Surface flow condition

Design Data:								
Crest of Anicut	=	+	16.980	m				
Rear M.F.L	=	+	20.103	m	(From RWL	calculatio	n)	
Front M.F.L	=	+	20.500	m				
Pond Level	=	+	16.980	m				
Maximum Discharge			49000	c/s	=		1387.53	cumecs
Design discharge	=		49000	c/s	=		1387.53	cumecs
U/s bed level	=	+	15.40	m				
D/s bed level	=	+	15.40	m				
Width of the River	=		160.00	m				
Exit gradient	1	in	5		=	0.2		
Floor thickness at D/s end	=		0.6	m				
Floor thickness at U/s floor	=		0.6	m				
Thickness of Cut off wall Discharge thro anicut	1		0.6 1387			m³/ Sec		From FMF
Design for surface flow condition	<u>1:</u>							
Clear waterway								
Clear waterway thro' Anicut		=	158.53	m	FROMM	FL CALCUL	ATION	
Total width of the barrage		=	160.00	m				
Scour depth and looseness facto	or							
Total width of weir	=		160.00					
Discharge intensity/Unit discharge	= q =		8.6721		m ³ /s/m			
Regime width, R		=	4.83	VQ				
		=	4.8	3 sqrt	(1387.53)			
		=	179.92	m				
Looseness Factor		=	Existing		all length me width		=	<u>160.00</u> 179.92
Namual Secure Depth		=	0.89	<	1			
Normal Scour Depth		_	4.25 - 1	- 42 /	61 4/2			
Scour Depth			1.35 x (m			
Silt factor, f			1.00					
2.Fixing Stilling basin level:								
and the second	387.53 m ³ /sec		is being	taker	as the flood	with con	centratio	n
hence Design Scour depth	101 100 m /ae		5 6983					85.) -

hence Design Scour depth

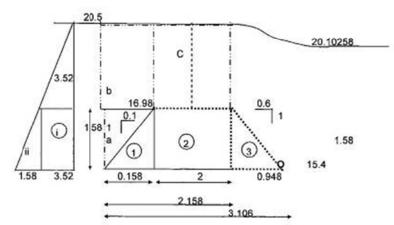
= 5.6983 m

Height of water in the upstream =	5.100	m
-----------------------------------	-------	---

.No.	lt	em		Discharge thro' the Anicu			
1	Discharge	cumecs		13	87.51		
2	Clear water way	m		1	58.53		
6	Discharge intensity (q)	m²/s			8.75		
3	D/s Water level (RWL)	m		2	0.10		
4	U/s Water level (FMFL)	m		20	0.500		
5	Velocity of approach, Va	= Q/A			1.52		
6	Velocity head, h _{va}	$\simeq V_a^2/2g$		-	0.12		
7	U/s Total Energy Line, U/s T.E.L	= FMFL + h _{va}		2	0.62		
8	D/s velocity, V _d	×			1.77		
9	Velocity head, h,d	$= V_d^2 / 2g$			0.16		
10	D/s Total Energy Line, D/s T.E.L	= RWL + h _{vd}		2	0.26		
11	Head loss, H _L	= U/s T.E.L - D/s T.E.L			0.36		
12	Postjump Depth, D ₂			3	2.98		
13	D/s specific energy, Erz	$= D_2 + V_2^2 / 2g$			3.42		
14	Froude's Number F2	$= V_2 / \sqrt{(g \times D_2)}$			0.54		
15	Prejump Depth corres to D ₂ (D ₁)	$= D_2/2 \times (-1 + \sqrt{(1+8F_2^2)})$			1.24		
16	Velocity (V ₁)	= q/D1			7.05		
17	Froude's Number, F1	$= V_1 / \sqrt{(g \times D_1)}$		3	2.02		
18	D/s specific energy, En	$= D_1 + V_1^2 / 2g$			3.78		
19	$E_{f1} - E_{f2} - H_L = 0$				0.00		
20		= D/s T.E.L - E ₁₂	1	1	6.84		
21	Length of the stilling basin	$= 5 \times (D_2 - D_1)$	1	4	8.70		
otal h	orizontal floor length required und	er surface flow condition:					
	Existing D/s Bed Level			=	15.40		
	Jump Formation level			=	16.84		
	Stilling Basindepth			=	Depth is not req		
	Depth provided Stilling Basin level				0.40		
	1.D/S floor length (hydraulic criteria)	(Pasin longth toutoff)		0 2026	15.00		
		ar slope 1: 0		9.3036	m		
	Width of body wall (from Stability ca			3.00	m		
	3. Length of U/S floor (Assumed)			2.00 14.304			
	However provide a length of Revised length of Basin		14.500 9.500				

Page 6

TUIS


Thiruvathigai Anicut

Stability Analysis of Check Dam HYDRAULIC PARTICULARS

Maximum flood discharge		1387.512 m3/sec	49000 c/s
Top of crest	+	16.980 m	
FMFL	+	20.500 m	
RWL	+	20.103 m	
Upstream bed level	+	15.40 m	
Downstream Bed level	+	15.40	
Head over Crest		3.52	
Down stream side slope		0.6 H to 1 V	
Upstream side slope		0.1 H to 1 V	
Top width		2 m	
1.5times width of weir		3	

The stability of body wall of the anicut was checked for the following conditions

- 1 Reservoir empty withoutEQ 2 Reservoir at MWL, with tailwater with uplift 3 Reservoir at FRL, no tail water with uplift

Stability analysis: 1.Reservoir empty without EQ

SLNO	1	DESCRIPTION					LA	MOMENT	
	Coefficient	length	depth	Unit wt.	v	н	+	+	
Weight	of masonry				1				
3	0.5	0.158	1.580	2.4	0.299568		3.000667	0.898904	
2	2 1	2	1.580	2.4	7.584	8	1.948	14.77363	
3	3 0.5	0.948	1.580	2.4	1.797408		0.632	1.135962	
	1 1			ΣV=	9.68098		ΣM=	16.8085	

Thiruvathigai Anicut

Base width=	3.106							
X= ΣM / ΣV =	1.73624							
$e = b/2 - \overline{X}$	0.18324	0.517667						
6e/b=	0.353973							
Maximum stress	= ΣV/b*(1+6e/b)							
	= 4.22015 T/m ²							
Minimum stress	= ΣV/b*(1-6e/b)							
	= 2.01358 T/m ²							
	- 2.01000 ////							

2.Reservoir at MWL, with tailwater, weir with uplift

4.702576		4:702\$76
5.10	2	+
5.10 L	2	

SLNO	DESCRIPTION				FC	ORCE	L.A	MON	IENT
	Coefficient	length	depth	Unit wt.	v	Н		+	-
Weight of	masonry								
1	0.5	0.158	1.580	2.4	0.299568		3.000667	0.898904	
1	2 1	2	1.580	2.4	7.584		1.948	14.77363	
3	3 0.5	0.948	1.580	2.4	1.797408		0.632	1.135962	
weight of	water						2		
a	1 0.5	0.158	1.58	1	0.12482		3.053333	0.381117	3
b	1	0.158	3.520	1	0.55616		3.027	1.683496	
c	1	1.000	3.520	1	3.52		2.448	8.61696	
Water Pre	essure								
	i 1	3.52	1.58	1		5.5616	0.79		4.393664
1	ii 0.5	1.58	1.58	1		1.2482	0.526667	2	0.657385
Uplift Pres	ssure	Ĩ							
1	1	3.106	4.702576	1	-14.6062		1.553		22.68343
2	0.5	3.106	0.40	1	-0.6172		2.070667		1.278016
				ΣV=	-1.3414	1	ΣM=	27.4901	29.0125
÷	Base width=				3.106				
		= V3/ M			1.134913				
	e = b/2 - X				0.418087				
	6e/b=				0.807637				
	Maximum stre	ess	=	ΣV/b*(1+6e					
			=	-0.7807	T/m ²				
	Minimum stre	55	-	ΣV/b*(1-6e	/b)				
			=	-0.0831	T/m ²				

BC weir

TVI6 Page 2

1

Design of Flexible Prot	tection										
Design Data:											
Rear M.F.L			+	20.103	m	(From RW	/L calcul	ation)			
Maximum Discharge		=	490	000.462	c/s		1387.5	3 cumed	s		
D/s bed level		=	+	15.40	m						
Scour Depth, R		=		5.70	m						
Downstream Block Pro	tection: (As p	er	clau	se 20.2.	of	IS 6966(p	art 1) - 1	989)			
The likely extent of scoul	r for D/s flexible	pro	tecti	ion	=	1.75 x R					
Design Depth of scour be	elow the floor lev	vel,	D		=	5.270					
Length of downstream bl	ock protection	83	1.5 ;	x D	-	7.90					
Hence Provide 5	Nos of CC BI	ock	s of	size 1.5	x 1	.5 x 0.9 m					
Downstream Launching Apron: (As per clause 20.3 of IS 6966(part I) - 1989)											
Length of launching apro	n				=	1.5	to	2.5	x D		
					=	7.90428	to	13.17			
Provide a len	gth of				-	11	m				
Slope of the River					=	1	in	450			
River Slope in m/km					=	2.22222	(Restrie	ted to 0	.4)		
Thickness of pitching (τ)				=	850	mm	(clause	e 20.3.4)		
Thickness of pitching rec	d for covering ti	hel	auno	ched slo	=	1.25 x τ				11	
					=	1062.5	mm 1.00		628	5880000	
				10	=	1.1	m		and	02880	1.60
										12.30	
Qty of stone required	12.2984*1.1					13.53	m ³				
Provide a slope of						2	in	1			
Length of launched portion	on					12.298	m				
Tk of stone at the inner e	edge shall corres	spor	nds	to the qu	uan	tity require	d for a th	of	τ		
0.85	*12.2984					10.45	m3				
Inner T	k					1.000	m				
Remaining Qty						3.07	m ³				
Quantity to be provided i	n the sloped por	rtior	1			3.0745	m ³				
Thickness required at the	e edge					0.559	m				
						0.60	m				
Provide an outer T	hickness of					1.60	m				
Quantity provided at the	Launched section	n				14.3	m3	>		13.53	
Hence the Quantity of I	Pitching provid	ed	is m	ore tha	n th	ne Require	d Quan	tity of P	itching.		
Upstream Protection											

M.F.L	= +	20.50 m (F	From R	WL calculation)
Maximum Discharge	=	49000 c/s	=	1387.51 cumecs

.

	U/s bed level	-	+	15.40	m						
	Scour Depth, R	-		5.70	m						
	Upstream Block Protectio	on: (As per clau	ise 2	0.2. of	IS	6966(par	t I) - 198	9)			
	The likely extent of scour for					1.25 x R		00.00			
	Design Depth of scour belo	w the floor level,	D		=	2.0					
	Upstream Launching Apr	on: (As per clau	use 2	20.3 of	IS	6966(par	t I) - 198	(9)			
	Length of launching apron				=	1.5	5 to	2.5	x D		
					=	3.03439	to	5.06			
	Provide a lengt	h of			=		5 m				
	Slope of the River				=		in	450			
	River Slope in m/km				=	2.22222	2 (Restr	icted to	0.4)		
	Thickness of pitching (τ)				=	850	'mm	(clau	se 20.3.4)	
	Thickness of pitching reqd	for covering the la	aunc	hed slo	=	1.25 x t	1985.2	2010-010		5	
34 1		-			=	1062.5	mm	1.	00 RQS	3068609	
					=	1.065	m		RTO.	2289/1	.60
										5.59	
	Qty of stone required	5.5902*1.065				5.95	5 m ³				
	Provide a slope of				=	2	2 in	1			
	Length of launched portion					5.590) m		1		
	Tk of stone at the inner edg	e shall correspon	nds t	o the qu	an	tity require	ed for a t	k of	τ		
	0.85	*5.5902				4.75	5 m3				
	Inner Tk					1.000) m				
	Remaining Qty					1.20) m ³				
	Quantity to be provided in t	he sloped portion	č –			1.20185	5 m ³				
	Thickness required at the e	dge				0.481	m				
						0.60	m				
	Provide an outer Thi	ckness of				1.60) m				
	Quantity provided at the La	unched section				6.5	5 m3	>		5.95	
	Hence the Quantity of Pitch	ing provided is m	ore	than the	R	equired Q	uantity o	f Pitchir	na.		

Hence the Quantity of Pitching provided is more than the Required Quantity of Pitching.

TVI 7

i.

۰.

THIRUVATHIGAI ANICUT

Fixing the FMFL

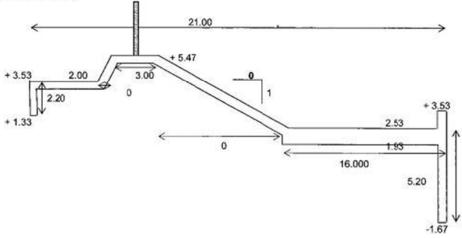
Fixing	the FMFL					
Design	Discharge		:		1387.51 m ³ /sec	49000 c/s
Crest L	evel		:		16.980 m	1387.51
Us Bed	level				15.400 m	1388
Assume	E FMFL		:		20.500 m	
RWL			:		20.103 m	
Height	of weir	=(16.98-15.4)	:		1.58	
Head of	ver crest		:		3.52 m	
	1.33 times	of design head			4.68 m	
Va=Q/A	A 1387.51238	850347/(160*(1.58+3.52))			1.7 m/s	
hv=head	d due to velloci	ty of approach Va2 /2g	:		0.15	
Effectiv	e head =	$He = Ho + Va^2/2g$:		3.67	
Total le	ength of struct	ure between abutments		•	160 m	
Length	of anicut port	tion			160 m	
Effectiv	e Length	Le=L-2(kp*n+Ka)he			158.53308 m	
		Ka =	0.2			
	Width of th	e weir			2 m	from stability
					3 m	Sharp crest
Discha	arge over the	check dam - The check dar	m functions as a	BC Weir		
Q = Q1	+ Q ₂ where					
Q1 = 2/	3*Cd1 *(2g)(0.5).	B*{(h+hv) ^(3/2) -hv(3/2)	free weir	equation		
Q1 = C	2 *(2g(h+hv))(0.	⁵⁾ * B*h ₁	drowned	weir equation		
Cd,					0.577	
Cd ₂					0.8	
h =	FMFL - RMF	L			0.39742446 m	
hv=					0.15 m	
B =	Clear water	way			158.533081 m	
Effectiv	e width B				158.533081 m	
h, =	depth of d/s	water level above crest			3.12 m	
Q1 =	2/3* 0.577 *	(2*9.81)^(0.5) * 158.5330805300	071* {(0.4+0.15)^(3	3/2) -0.15^(3/2)}=	93.3265013 m3/sec	
Q2.	0.8 *(2*9.81	* (0.4+0.15))^(0.5) *158.53 * 3.1	2 =		1294.67348 m ³ /sec	
Total di	scharge over	chack dam			1387.99998 m ³ /sec	
		check dani				
	ischarge throu	ugh over check dam			1388.00	

Sub surface Condition (Khosla's T Design Data:	neory)	lor /	Anicut			
Crest level of Anicut	=	+	5.465	m		
Rear M.F.L	=	+	6.303	m	(From	RWL calculation)
Front M.F.L	=	+	8.400	m		
Crest Level	=	+	5.465	m		
Maximum Discharge	=		49000	c/s	=	1387.53 cumecs
Design discharge	=	490	000	c/s	=	1387.53 curnecs
Maximum Discharge thro' Anicut			49000.00	c/s	=	1387.51 cumecs
U/s bed level	=	+	3.53	m		
D/s bed level	=	+	3.53	m		
Exitgradient	1	in	5.00		-	0.2
Floor thickness at D/s end	=		0.60	m	'	
Floor thickness at U/s floor	=		0.60	m		
Thickness of Cut off wall	π		0.60	m		
Clear waterway thro' Anicut	=		133.74	m		
Discharge thro anicut Normal Scour Depth	=		1387.51 6.38	m ³ / m	Sec	

SI.No.			Item		Discharge thro' the Anicut
1	Discharge		cu	mecs	1387.51
2	Clear water way		m		133.74
3	Normal Scour Depth, R		m		6.38
4	Discharge intensity (q)		m³	/s / m	10.38
5	D/s Water level		m		6.30
6	U/s Water level		m		8.40
7	U/s Scour Level	=	U/s Water level - 1 R		2.02
8	D/s Scour Level	=	D/s Water level - 1.25 R		-1.67
9	Depth of U/s cutoff	=	Max(U/s bed Lvl - U/s scour lvl,y	/3+0.6)	2.22
	Provide				2.20
10	Depth of D/s cutoff	=	Max(D/s bed Lvl - D/s scour lvl o	or y/2+0.6)	5.20
	Provide				5.20
Ì	λ				0.35
13	α				0.00
11	Exit Gradient, G,				0.200
12	Head for exit gradient, H				1.94
	Total Length of the floor requ Total Length of the floor requ		m surface		0.00 21.00

The Length of the Horizontal floor required under surface flow condition is more than the total length of horizontal floor required under Sub Surface flow condition. Hence the floor Length required under the Surface flow condition is adopted.

Exit gradient, G, where, λ α


$$d = \frac{1 + \sqrt{1 + \alpha^2}}{2}$$
$$= \frac{b}{2}$$

d

= <u>H</u> x <u>1</u>

d

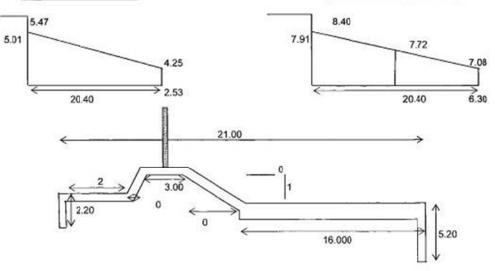
Hydraulic Gradient Line

SI.No. Item	Pile
For dynamic condition the U/s water level has been taken as FMFL	
For static condition the U/s water level has been taken as FRL	-

SI.No.		1	tem	Pile 1	Pile 2
1	Total length of the floor	b		21.00	21.00
2	Depth of the pile	d		2.20	5.20
3	Thickness of the floor			0.60	0.60
4		α	= b / d	9.55	4.04
5		λ	$= (1 + \sqrt{1 + \alpha^2})/2$	5.30	2.58
6		¢ε	= $1 / \pi \cos(-1) ((\lambda - 2)/\lambda)$	28.61	42.78
7		¢ο	= $1 / \pi \cos -1 ((\lambda - 1)/\lambda)$	19.88	29.02
8		\$ c1	= 100-\$ E (\$ c2 = 0%)	71.40	0.00
9		ф D1	= $100 - \phi_D$ ($\phi_{D2} = \phi_D$)	80.13	29.02
10		ф E1	= 100% (φ _{E2} =φ _E)	100.00	42.78

TVM 2

5.47


8.40

SI.No.	10.5-20-10-	ltem	Pile 1	Pile 2
11	(a) Correction at C for me	itual interference with pile		
	Correction factor	= 19 v (D/b') [(d+D) / b]	2.70 (+)%	1.59 (-)
	where,	D = Depth of interfering pile	4.60	1.60
		d = Depth of the pile	1.60	4.60
		b' = Distance between pile	19.80	19.80
		b = Total length of the floor	21.00	21.00
12	(b) Correction due to floo	or thickness		
	Correction factor	$= \frac{\phi_{D1} - \phi_{C1}}{\text{Depth of pile}} \times \frac{\text{Thickness of the floor}}{\text{the floor}}$	2.38 (+)%	4.23 (-)
	Pile 1	(80.125-71.395)/2.2*0.6)		
	Pile 2	(80.125-71.395)/2.2*0.6)		
13	(c) Correction due to slo	pe		
	The point is neither situate	d at the start nor end of the slope, hence	Nil	Nil
	Pressure at the points	¢ E1.2	100 %	36.95 %
		\$ D1,2	80.13 %	29.02 %
		¢ c1.2	76.48 %	0%

H.G.L for Static condition

H.G.L for dynamic condition

i.

S				Height o	f Sub soil Hy	draulic gra	idient line a	above the d	atum
flow condition	U/s water level D/s water		Head in	s	heet pile 1	Sheet pile 2			
N CO	in m	Level in m	m	¢ c1	¢ D1	φ _{E1}	∳ E2	¢ 02	¢ c2
10		100	80.13	76.48	36.95	29.02	0		
Static	5.47	3.53	1.94	1.935	1.55	1.48	0.72	0.56	0
5	0000000			5.47	5.08	5.01	4.25	4.09	3.53
nic				2.10	1.68	1.60	0.77	0.61	0
Dynamic	8.40	6.30	2.10	8.40	7.98	7.91	7.08	6.91	6.30

FLOOR THICKNESS

Dynamic Head

Distance from centre of D/s pile	2.3	4.3	8.3	15.700
Unbalanced head	1.80	1.88	2.03	2.30
Thickness of the floor required	1.3	1.4	1.5	1.7
Max thickness at Tee for static condi	tion		1.7 m	-
Dynamic Condition				
	-	2.57 m		
Level at jump formation		2.57 m 16 - 0.3 + ((2.57 - 2	.53)×0)	16.0
Level at jump formation		- 77 D	.53)×0)	16.0 15.7
Level at jump formation Distance at jump form (from mid d/s cut	-off) =	16 - 0.3 + ((2.57 - 2	.53)×0)	15.7
Level at jump formation Distance at jump form (from mid d/s cut Dynamic Head at jump formation	-off) = =	16 - 0.3 + ((2.57 - 2 15.7 m	.53)×0)	
Level at jump formation Distance at jump form (from mid d/s cut Dynamic Head at jump formation Head considered for Dynamic flow	-off) = = =	16 - 0.3 + ((2.57 - 2 15.7 m 4.09 m	.53)x0)	15.7

Thickness provided at toe

1.95 m

Design of Anicut

Surface flow condition

Crest of Anicut = + 5.465 m Rear M.F.L = + 6.303 m (From RWL calculation) Front M.F.L = + 8.400 m Pond Level = + 5.465 m Maximum Discharge = 49000 c/s = 1337.53 curnecs Design discharge = 49000 c/s = 1387.53 curnecs U/s bed level = + 3.53 m D/s bed level = + 3.53 m Exit gradient 1 in 5 ' = 0.2 Floor thickness at D/s floor = 0.6 m Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m ⁴ / Sec From Fl Design for surface flow condition: Clear waterway Clear waterway Clear waterway thro' Anicut = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m ³ /s/m Regime width, R = 4.83 vQ = 4.83 sqrt (1387.53) = 179.92 m Looseness Factor = $\frac{135.00}{\text{Regime width}} = \frac{135.00}{179.92}$ $\frac{10.75 < 1}{\text{Normal Scour Depth}} = 1.35 x (q'2 / f) 1/3$ = 6.3318 m Silt factor, f = 1.00 2.Fixing. Stilling basin level: The flood of 1387.53 m ³ /scc is being taken as the flood with concentration hence Design Scour depth = 6.3818 m	Design Data:								
Front M.F.L = + 8.400 m Pond Level = + 5.465 m Maximum Discharge = 49000 c/s = 1387.53 cumeos Design discharge = 49000 c/s = 1387.53 cumeos U/s bed level = + 3.53 m U/s bed level = + 3.53 m Width of the River = 135.00 m Exit gradient 1 in 5 ' = 0.2 Floor thickness at D/s end = 0.6 m Discharge thro anicut = 1387.51 m ⁴ / Sec From Fl Design for surface flow condition: Clear waterway Clear waterway Clear waterway thro' Anicut = 133.74 m Scour depth and looseness factor Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m ³ /s/m Regime width, R = 4.83 sqrt (1387.53) = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width = 1.35 x (q*2/f) 1/3 = 6.3818 m Sitt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ tesc is being taken as the flood with concentration	Crest of Anicut	-	+	5.465	m				
Pond Level = + 5.465 m Maximum Discharge = 49000 c/s = 1387.53 currecs Design discharge = 49000 c/s = 1387.53 currecs U/s bed level = + 3.53 m D/s bed level = + 3.53 m Width of the River = 135.00 m Exit gradient 1 in 5 ' = 0.2 Floor thickness at D/s end = 0.6 m Thickness at U/s floor = 0.6 m Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m ⁴ / Sec From Fl Design for surface flow condition: Clear waterway Clear waterway thro' Anicut = 133.74 m FROM MFL CALCULATION Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 m Scour depth and looseness factor Total width, R = 4.83 \sqrt{Q} = 4.83 \sqrt{Q} = 4.83 \sqrt{Q} = 4.83 \sqrt{Q} = 179.92 m Looseness Factor = $\frac{Existing overall length}{Regime width}$ = $\frac{135.00}{Regime width}$ Scour Depth = $0.75 < 1$ Normal Scour Depth Scour Depth = $1.35 \times (q^2/f) 1/3$ = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ reer is being taken as the flood with concentration	Rear M.F.L	=	+	6.303	m	(From RWI	calculatio	n)	
Maximum Discharge = 49000 c/s = 1387.53 currecs Design discharge = 49000 c/s = 1387.53 currecs U/s bed level = + 3.53 m D/s bed level = + 3.53 m Width of the River = 135.00 m Exit gradient 1 in 5 ' = 0.2 Floor thickness at D/s end = 0.6 m Floor thickness at U/s floor = 0.6 m Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m²/ Sec From Fl Design for surface flow condition: Clear waterway thro' Anicut = 133.74 m FROM MFL CALCULATION Clear waterway thro' Anicut = 135.00 m Scour depth and looseness factor Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m³/s/m Regime width, R = 4.83 sqrt (1387.53) = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width R = 0.75 < 1 Normal Scour Depth = 1.35 x (q*2 / f) 1/3 = 6.3818 m Sitt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m³/sec is being taken as the flood with concentration	Front M.F.L	1	•	8.400	m				
Design discharge=49000 c/s=1387.53 currecsU/s bed level=+3.53 mD/s bed level=+3.53 mD/s bed level=+3.53 mMMMMDis bed level=+3.53 mMMMMWidth of the River=135.00 mExit gradient1 in5 ' =0.2Floor thickness at D/s end=0.6 mMMMFloor thickness at U/s floor=0.6 mMMDischarge thro anicut=1387.51 m²/ SecFrom FillDesign for surface flow condition: Clear waterwayClear waterwayFROM MFL CALCULATIONTotal width of the barrage=135.00 mScour depth and looseneess factor Total width of weir=135.00Discharge intensity/Unit discharge = q =10.278 m³/s/mRegime width, R=4.83 vqt (1387.53)=179.92 mTotal sign overall length=Looseness Factor=Existing overall length=mass flactor, f=1.002.Fixing Stilling basin level: The flood of1387.53 m³/secis being taken as the flood with concentration	Pond Level	-	+	5.465	m				
Us bed level= +3.53 mD/s bed level= +3.53 mWidth of the River=135.00 mExit gradient1 in5 ' =0.2Floor thickness at D/s end=0.6 mFloor thickness at U/s floor=0.6 mDischarge thro anicut=1387.51 m²/ SecDesign for surface flow condition:Clear waterwayClear waterway=133.74 mTotal width of the barrage=131135.00 mScour depth and looseness factor=Total width of weir=10.278 m³/s/mRegime width, R=4.83 sqrt (1387.53)=179.92 mLooseness Factor=Existing overall length=135.00 Discharge back=0.75 < 1	Maximum Discharge			49000	c/s	=		1387.53	cumecs
D/s bed level= + 3.53 mWidth of the River= 135.00 mExt gradient1 inExt gradient1 infloor thickness at D/s end= 0.6 mFloor thickness at U/s floor= 0.6 mDischarge thro anicut= 1387.51 m²/ SecDesign for surface flow condition:Clear waterwayClear waterway <td< td=""><td>Design discharge</td><td>-</td><td></td><td>49000</td><td>c/s</td><td>=</td><td></td><td>1387.53</td><td>cumecs</td></td<>	Design discharge	-		49000	c/s	=		1387.53	cumecs
With of the River = 135.00 m Exit gradient 1 in 5 ' = 0.2 Floor thickness at D/s end = 0.6 m Floor thickness at U/s floor = 0.6 m Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m ⁴ / Sec From Fl Design for surface flow condition: Clear waterway Clear waterway Clear waterway thro' Anicut = 135.00 m Scour depth and looseness factor Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 m Scour depth and looseness factor Total width, R = 4.83 \sqrt{Q} = 4.83 sqrt (1387.53) = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width 179.92 m Looseness Factor = 1.35 x (q^2/f) 1/3 = 6.3818 m Sitt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ tesc is being taken as the flood with concentration	U/s bed level	3=	. 4	3.53	m				
Exit gradient 1 in 5 ' = 0.2 Floor thickness at D/s end = 0.6 m Floor thickness at U/s floor = 0.6 m Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m ³ / Sec From Fl Design for surface flow condition: Clear waterway Clear waterway thro' Anicut = 133.74 m FROM MFL CALCULATION Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m ³ /s/m Regime width, R = 4.83 vqt (1387.53) = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width = 1.35 x (q*2 / f) 1/3 = 6.3818 m Sitt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	D/s bed level	-		3.53	m				
Final term of the second seco	Width of the River	-	3	135.00	m				
Floor thickness at U/s floor = 0.6 m Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m ² / Sec From Fl Design for surface flow condition: Clear waterway Clear waterway thro' Anicut = 133.74 m FROM MFL CALCULATION Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m ³ /s/m Regime width, R = 4.83 $\sqrt[3]{Q}$ = 4.83 sqrt (1387.53) = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width = 1.35 x (q ² 2 / f) 1/3 = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Exit gradient	1	in	5		- =	0.2		
Thickness of Cut off wall = 0.6 m Discharge thro anicut = 1387.51 m ³ / Sec From Fi Design for surface flow condition: Clear waterway Clear waterway Clear waterway thro' Anicut = 133.74 m FROM MFL CALCULATION Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m ³ /s/m Regime width, R = 4.83 v/Q = 4.83 sqrt (1387.53) = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width = 135.00 Regime width = 1.35 x (q^2 / f) 1/3 = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Floor thickness at D/s end	-		0.6	m				
Discharge thro anicut = 1387.51 m ³ / Sec From FI Design for surface flow condition: Clear waterway Clear waterway Clear waterway thro' Anicut = 133.74 m FROM MFL CALCULATION Total width of the barrage = 135.00 m Scour depth and looseness factor Total width of weir = 135.00 Discharge intensity/Unit discharge = q = 10.278 m ³ /s/m Regime width, R = $4.83\sqrt{Q}$ = $4.83 \text{ sqrt} (1387.53)$ = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width 179.92 = $0.75 < 1$ Normal Scour Depth Scour Depth = $1.35 \text{ x} (q^2 2 / f) 1/3$ = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Floor thickness at U/s floor			0.6	m				
Clear waterwayClear waterway thro' Anicut=133.74 mFROM MFL CALCULATIONTotal width of the barrage=135.00 mScour depth and looseness factor=135.00Total width of weir=135.00Discharge intensity/Unit discharge = q =10.278 m³/s/mRegime width, R= $4.83\sqrt{Q}$ = $4.83\sqrt{Q}$ = $4.83 \operatorname{sqrt} (1387.53)$ =179.92 mLooseness Factor=Existing overall length=Regime width=179.92 mLoosenest Factor=0.75 < 1							m⁴/ Sec		From FMFL
Clear waterway thro' Anicut= 133.74 mFROM MFL CALCULATIONTotal width of the barrage= 135.00 mScour depth and looseness factorTotal width of weir= 135.00Discharge intensity/Unit discharge = q =10.278 m³/s/mRegime width, R= 4.83 $\sqrt[3]{Q}$ = 4.83 sqrt (1387.53)= 179.92 mLooseness Factor= Existing overall length regime widthRegime width= 0.75 < 1	Design for surface flow condition	on:							
Total width of the barrage= 135.00 mScour depth and looseness factor135.00Total width of weir= 135.00Discharge intensity/Unit discharge = q =10.278 m³/s/mRegime width, R= 4.83 $\sqrt[3]{Q}$ = 4.83 sqrt (1387.53)= 179.92 mLooseness Factor= Existing overall length = 135.00Regime width179.92 mLooseness Factor= 0.75 < 1	Clear waterway								
Scour depth and looseness factorTotal width of weir=135.00Discharge intensity/Unit discharge = q =10.278 $m^3/s/m$ Regime width, R= $4.83\sqrt{Q}$ =4.83 sqrt (1387.53)=179.92 mLooseness Factor=Existing overall length Regime width=0.75 < 1	Clear waterway thro' Anicut		=	133.74	m	FROM M	IFL CALCUL	ATION	
Total width of weir=135.00Discharge intensity/Unit discharge = q =10.278 $m^3/s/m$ Regime width, R= $4.83\sqrt{0}$ Q=4.83 sqrt (1387.53)=179.92 mLooseness Factor= $\underline{Existing overall length}$ =0.75 < 1	Total width of the barrage		=	135.00	m				
Discharge intensity/Unit discharge = $q = 10.278 \text{ m}^3/\text{s/m}$ Regime width, R = $4.83\sqrt{Q}$ = $4.83 \text{ sqrt} (1387.53)$ = 179.92 m Looseness Factor = Existing overall length = 135.00 Regime width 179.92 = $0.75 < 1$ Normal Scour Depth = $1.35 \times (q^2 / f) 1/3$ = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Scour depth and looseness fac	tor							
Regime width, R= $4.83\sqrt{Q}$ = $4.83 \text{ sqrt} (1387.53)$ = 179.92 m Looseness Factor=Existing overall length Regime width=179.92= $0.75 < 1$ Normal Scour Depth=Scour Depth=Silt factor, f==1.35 x (q^2 / f) 1/3 =6.3818mSilt factor, f=1002.Fixing Stilling basin level: The flood ofThe flood of1387.53 m ³ /sec	Total width of weir	=		135.00					
$= 4.83 \text{ sqrt} (1387.53)$ $= 179.92 \text{ m}$ Looseness Factor $= \frac{\text{Existing overall length}}{\text{Regime width}} = \frac{135.00}{179.92}$ $= 0.75 < 1$ Normal Scour Depth Scour Depth $= 1.35 \times (q^2 / f) 1/3$ $= 6.3818 \text{ m}$ Silt factor, f $= 1.00$ 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Discharge intensity/Unit discharge	e = q =		10.278		m ³ /s/m			
Looseness Factor $= \frac{179.92 \text{ m}}{\frac{\text{Existing overall length}}{\text{Regime width}}} = \frac{135.00}{179.92}$ $= 0.75 < 1$ Normal Scour Depth Scour Depth $= 1.35 \times (q^2 / f) 1/3$ $= 6.3818 \text{ m}$ Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Regime width, R		=	4.83	VQ				
Looseness Factor= $\frac{135.00}{\text{Regime width}}$ = 0.75 < 1			=	4.8	3 sqrt	(1387.53)			
Regime widthRegime widthRegime width179.92= $0.75 < 1$ Normal Scour Depth= $0.75 < 1$ Scour Depth= $1.35 \times (q^2 / f) 1/3$ = 6.3818 mSilt factor, f= 1.00 2.Fixing Stilling basin level:The flood of1387.53 m ³ /secis being taken as the flood with concentration			=	179.92	m				
Normal Scour Depth = 1.35 x (q^2 / f) 1/3 Scour Depth = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of The flood of 1387.53 m ³ /sec	Looseness Factor		=	Existing				-	
Scour Depth = 1.35 x (q ² / f) 1/3 = 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration			5	0.75	<	1			
= 6.3818 m Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Normal Scour Depth								
Silt factor, f = 1.00 2.Fixing Stilling basin level: The flood of The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Scour Depth		=	1.35 x (q^2/	f) 1/3			
2.Fixing Stilling basin level: The flood of 1387.53 m³/sec is being taken as the flood with concentration			=	6.3818		m			
The flood of 1387.53 m ³ /sec is being taken as the flood with concentration	Silt factor, f		-	1.00					
	2.Fixing Stilling basin level:								
hence Design Scour depth = 6.3818 m		1387.53 m ³ /se			taker	as the flood	with conc	entration	
	hence Design Scour depth		-	6.3818	n	n			

Page 5

ï

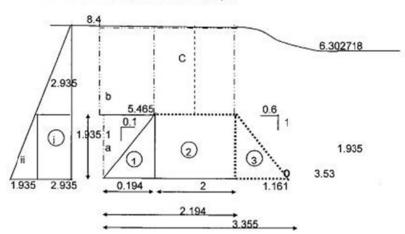
Height of water in the upstream	= 4.870	m

Hydraulic	jump calculations:	
-----------	--------------------	--

SI.No.	Ite	em		Discharge	thro' the Anicu
1	Discharge	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	cumecs	1	387.51
2	Clear water way		m	1	133.74
6	Discharge intensity (q)		m²/s		10.38
3	D/s Water level (RWL)		m		6.30
4	U/s Water level (FMFL)		m	2 9	8.400
5	Velocity of approach, Va	= Q/A			1.61
6	Velocity head, h _{va}	$= V_a^2/2g$			0.13
7	U/s Total Energy Line, U/s T.E.L	= FMFL + h _{va}			8.53
8	D/s velocity, V _d				3.60
9	Velocity head, h _{vd}	$= V_d^2/2g$	5		0.66
10	D/s Total Energy Line, D/s T.E.L	= RWL + h _{vd}			6.96
11	Head loss, HL	= U/s T.E.L - D/s	T.E.L		1.57
12	Postjump Depth, D ₂				4.06
13	D/s specific energy, Erz	$= D_2 + V_2^2 / 2g$			4.39
14	Froude's Number F ₂	$= V_2 / \sqrt{(g \times D_2)}$			0.41
15	Prejump Depth corres to D ₂ (D ₁)	$= D_2/2 \times (-1 + \sqrt{2})$	$(1+8F_2^2))$		1.06
16	Velocity (V1)	= q/D1			9.81
17	Froude's Number, F1	$= V_1 N (g \times D_1)$			3.04
18	D/s specific energy, En	$= D_1 + V_1^2 / 2g$			5.96
19	$E_{f1} - E_{f2} - H_{L} = 0$				0.00
20	Level at which jump formation	= D/s T.E.L - E _{f2}			2.57
21	Length of the stilling basin	$= 5 \times (D_2 - D_1)$			14.99
otal h	orizontal floor length required unde	er surface flow cond	lition:		
	Existing D/s Bed Level			-	3.53
	Jump Formation level			=	2.57
	Stilling Basindepth				0.958059004
	Depth provided				1.00
	Stilling Basin level				2.53
	1.D/S floor length (hydraulic criteria)			15.5920	0 m
		ar slope 1: 0			
	Width of body wall (from Stability ca	lculation at basin leve	N)		0 m
	3. Length of U/S floor (Assumed)		=	2.00 20.592	0 m m
	However provide a length of		21.000		104020
	Revised length of Basin		16.000		

Page 6

TVM4


Stability Analysis of Check Dam HYDRAULIC PARTICULARS

	1387.512 m3/sec	49000 c/s
+	5.465 m	
+	8.400 m	
+	6.303 m	
+	3.53 m	
+	3.53	
	2.935	
	0.6 H to 1 V	
	0.1 H to 1 V	
	2 m	
	3	
	* * * *	+ 5.465 m + 8.400 m + 6.303 m + 3.53 m + 3.53 2.935 0.6 H to 1 V 0.1 H to 1 V 2 m

The stability of body wall of the anicut was checked for the following conditions

1 Reservoir empty withoutEQ

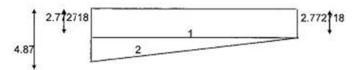
2 Reservoir at MWL, with tailwater with uplift 3 Reservoir at FRL, no tail water with uplift

Stability analysis: 1.Reservoir empty without EQ

SLNO		DESCRIP	TION		FORCE		LA	MOMENT	
	Coefficient	length	depth	Unit wt.	V	н	+	+	-
Weight	of masonry								
1	0.5	0.194	1.935	2.4	0.449307		3.2255	1.44924	
2	2 1	2	1.935	2.4	9.288		2.161	20.07137	
3	3 0.5	1.161	1.935	2.4	2.695842		0.774	2.086582	
			1250-14433	ΣV=	12.4331		ΣM=	23.6072	

Base width	=
X=	$\Sigma M / \Sigma V =$
e = b/2-X	
6e/b=	

3.355 1.89873 0.22148 0.396148


0.559083

BC weir

Thiruvanthipuram Anicut

Maximum stress	= ΣV/b*(1+6e/b)
	= 5.1747 T/m ²
Minimum stress	$= \Sigma V/b^{+}(1-6e/b)$
	= 2.23812 T/m ²

2. Reservoir at MWL, with tailwater, weir with uplift

SLNO		DESCR	IPTION	1000 CONT	FC	FORCE L.A		MON	MOMENT		
	Coefficient	length depth		Unit wt.	٧.	Н	0403497t	+	-		
Weight of I	masonry				0.0000000000000000000000000000000000000			6.	í		
10											
1	0.5	0.194	1.935				3.2255				
2		2	1.935		9.288		2.161				
3		1.161	1.935	2.4	2.695842		0.774	2.086582			
weight of w					3 1000 2000 2000 2000		175270				
а	0.5	0.194	1.935	1	0.187211		3.29				
b	1	0.194	2.935		0.567923		3.25775				
C	1	1.000	2.935	1	2.935		2.661	7.810035			
Water Pres	ssure										
1	1	2.935	1.935	1		5.679225	0.9675		5.49465		
ii	0.5	1.935	1.935	1		1.872113	0.645		1.207513		
Uplift Pres	sure										
1		3.355	2.772718	1	-9.30108	1	1.67725		15.60024		
2	0.5	3.355	2.10		-3.51767		2.236333		7.866675		
	0.0	0.000	2.10		-0.01101		2.200000		1.000075		
				ΣV=	3.30453		ΣM=	33.8833	30,1691		
A	Base width=			1000 C 1000 C 1000	3.355						
		M /ΣV =			1.123977						
	$\overline{e} = b/2 - \overline{X}$				0.553273						
	6e/b=				0.989607						
	Maximum str	ess		ΣV/b*(1+6e							
				1.95997							
	Minimum stre	ess		ΣV/b*(1-6e							
			=	0.01024	T/m ²						
2 Deserve	ir at FRL, no	tallurates									
5.Reservo	ir al FRL, no	tanwater,	3.355								
					-						
	1.935										
		-									
	-										
SLNO		DESCR	IPTION		FC	RCE	L.A	MON	IENT		
				BC we	eir				Page 2		
									5		

TVMJ

Thiruvanthipuram Anicut

	Coeffic	ient	length	depth	Unit wt.	V	н		+	
Neight of	masonry		-35000-1					5.5		C. (10
	1 2 3	0.5 1 0.5	0.194 2 1.161	1.935	2.4	9.288		3.2255 2.161 0.774	20.07137	
weight of	l water									
a		0.5	0.194	1.935	1	0.187211		3.29	0.615925	
Water Pre	essure									
	i	0.5	1.935	1.935	1		1.872113	0.645		1.207513
uplift pres	sure	0.5	3.355	1.935	1	-3.24548		2.236333		7.257972
					ΣV=	9.37488		Σ M =	24.2231	8.46548
	Base wi X= e = b/2: 6e/b= Maximu Minimu	∑ ∑ um stre	0.02	-	ΣV/b*(1+6e 2.81264 ΣV/b*(1-6e 2.7768	T/m ² /b)			(). 4	
	-	STRES	SS				imum	Minir	num	Í
	Condition I		_	Empty con	dition	5.175 T/m ²		2.238 T/m ²		
	Condition II		MWL condition		1.960 T/m ²		0.010 T/m ²			
	Conditi	on II		MWL cond	ition	1.960	1/m-	0.010	I/m	

Design of Flexible Prot	ection										
Design Data:											
Rear M.F.L		= -	+	6.303	m	(From RV	VL ca	Iculat	ion)		
Maximum Discharge			490	00.462					3 cumec	s	
D/s bed level		= -	+	3.53	m				12004000000		
Scour Depth, R		=		6.38	m						
Downstream Block Prot	ection: (As p	er cl	laus	933S.,,	. of	IS 6966(m	oart I	- 19	891		
The likely extent of scour						1.75 x R		000000			
Design Depth of scour be		÷.			=	8.395					
Length of downstream blo		100.00	.5 x	D		12.59					
Hence Provide 8	Nos of CC B	ocks	ofs	size 1.5			1				
Downstream Launching	Apron: (As p	oer cl	laus	e 20.3	of	IS 6966(r	oart I) - 19	89)		
Length of launching aproi	0.0000000000000000000000000000000000000				=	1.5		to	2.5	хD	5
					=	12.593		to	20.99	~ •	
Provide a leng	ath of				=	0.000	m	122			
Slope of the River	000000				=	1		in	450		
River Slope in m/km					=	2.22222	(Re	10.	ed to 0.4)		
Thickness of pitching (t)					=	850	mm		(clause		(4)
Thickness of pitching req		he la	unc	hed slo	. =	1.25 x t			10.000		17
					1062.5	mm		1.00	R	20808080
						1.1	m			RC	22200 1.6
											19.01
Qty of stone required	19.0066*1.1					20.91		m ³			
Provide a slope of					=	2		in	1		
Length of launched portio	n					19.007		m	05		
Tk of stone at the inner e	dge shall corre	spon	ds t	o the q	uan	tity require	d for	atko	of	τ	
0.85	*19.0066	0				16.16		m3		Č.	
Inner Tk	12421042424					1.000		m			
Remaining Qty						4.75		m ³			
Quantity to be provided in	the sloped po	rtion				4.75175		m ³			
Thickness required at the	edge					0.559		m			
						0.60		m			
Provide an outer TI	hickness of					1.60		m			
Quantity provided at the L	aunched secti	on				22.1		m3	>		20.91
Hence the Quantity of P			s me	ore tha	n ti					hing.	
Upstream Protection											
M.F.L			+	8.40	m	(From RV	VL ca	lculat	ion)		
Maximum Discharge		=		49000		Sector Control			1 cumec	s	
						10	- 22	201.4	. ournou		

= +

3.53 m

U/s bed level

Scour Depth, R = 6.38	m				
Upstream Block Protection: (As per clause 20.2.	of IS	6966(part	I) - 198	9)	
The likely extent of scour for D/s flexible protection	Ξ	1.25 x R			
Design Depth of scour below the floor level, D	=	3.1			
Upstream Launching Apron: (As per clause 20.3	of IS	6966(part	I) - 198	9)	
Length of launching apron	=	1.5	to	2.5	x D
	=	4.66078	to	7.77	
Provide a length of	=	5	m		
Slope of the River	=	1	in	450	
River Slope in m/km	=	2.22222	(Restri	cted to 0.4)	
Thickness of pitching (τ)	-	850	mm	(claus	e 20.3.4)
Thickness of pitching read for covering the launched	slo =	1.25 x t		1.000	5
	=	1062.5	mm	1.00	R0.8060609
	=	1.065	m		1.60
					5.59
Qty of stone required 5.5902*1.065		5.95	m ³		
Provide a slope of	=	2	in	1	
Length of launched portion		5.590	m		
Tk of stone at the inner edge shall corresponds to the	quan	tity require	d for a ti	k of	т
0.85 *5.5902		4.75	m3		
Inner Tk		1.000	m		
Remaining Qty		1.20	m³		
Quantity to be provided in the sloped portion		1.20185	m³		
Thickness required at the edge		0.481	m		
		0.60	m		
Provide an outer Thickness of		1.60	m		
Quantity provided at the Launched section		6.5	m3	>	5.95
Hence the Quantity of Pitching provided is more than	the R		antity of	Ditching	083454540

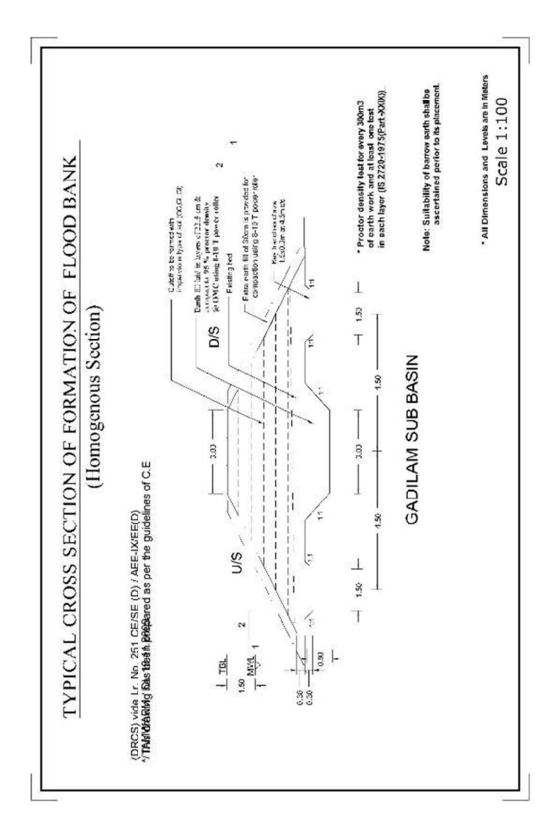
Hence the Quantity of Pitching provided is more than the Required Quantity of Pitching.

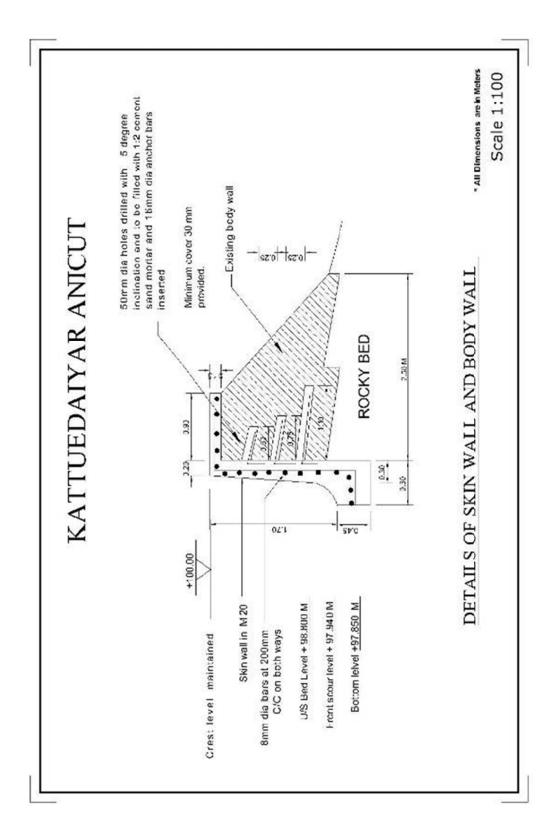
22

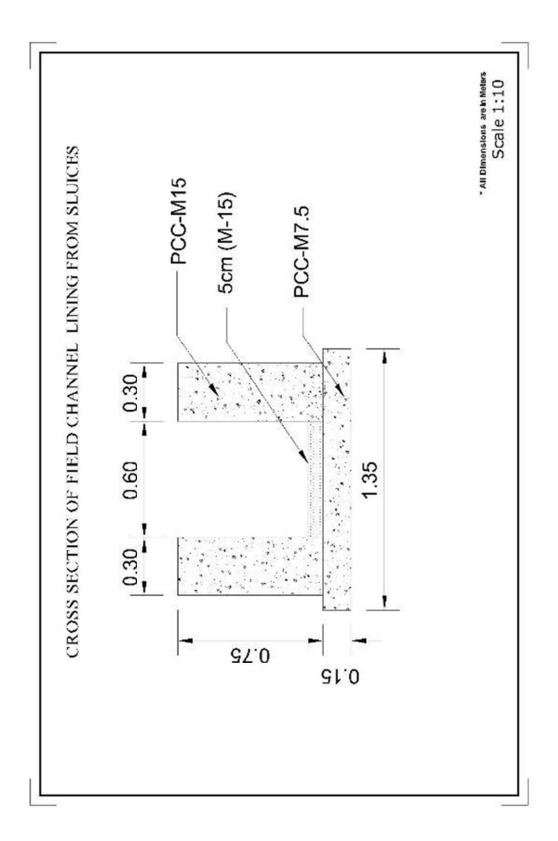
4

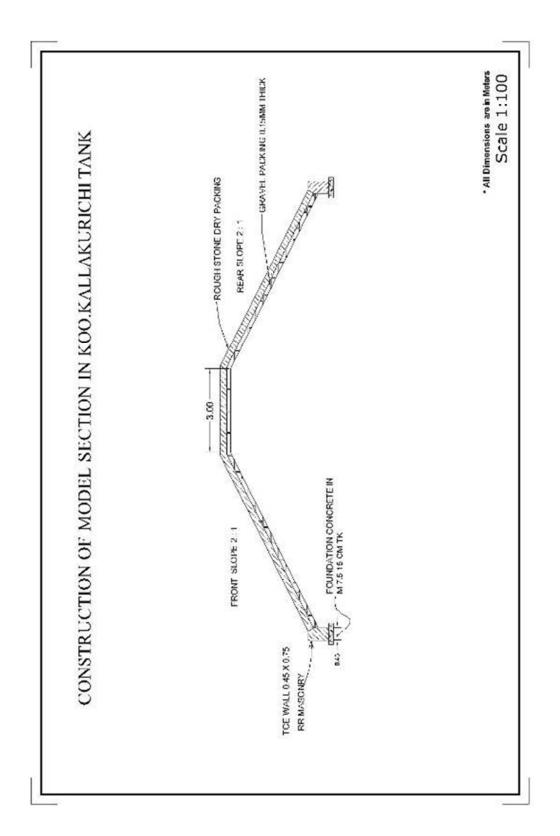
1

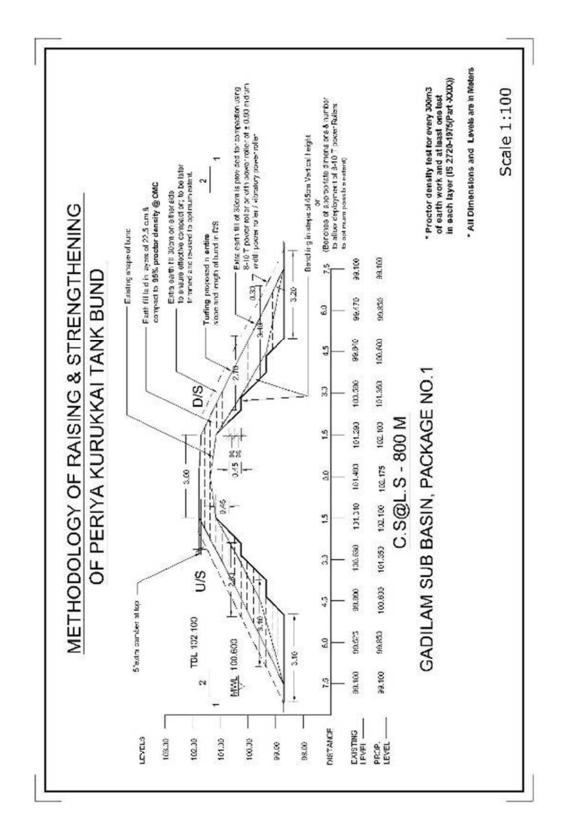
.

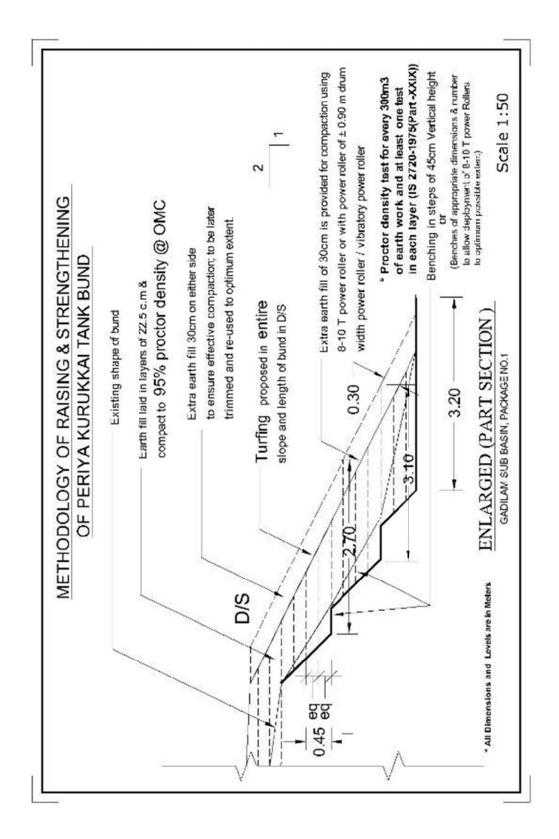

1

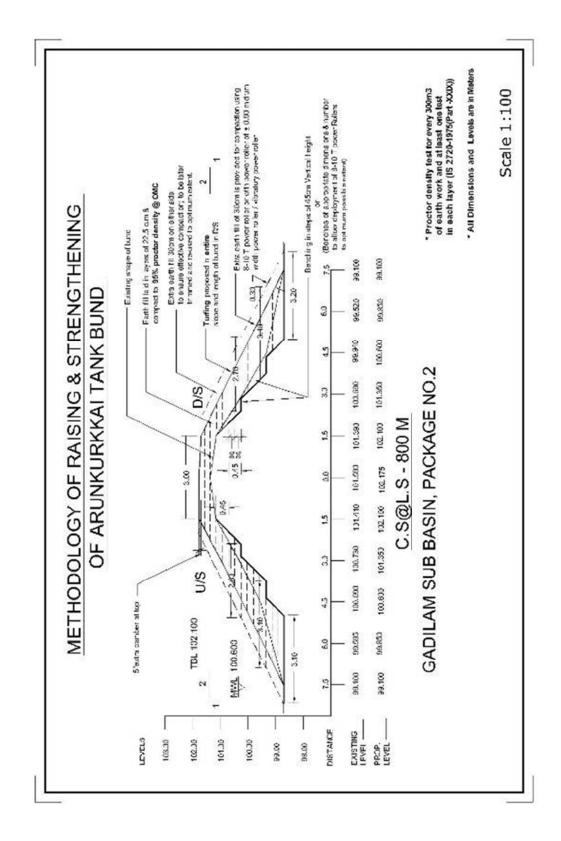

THIRUVANTHIPURAM ANICUT

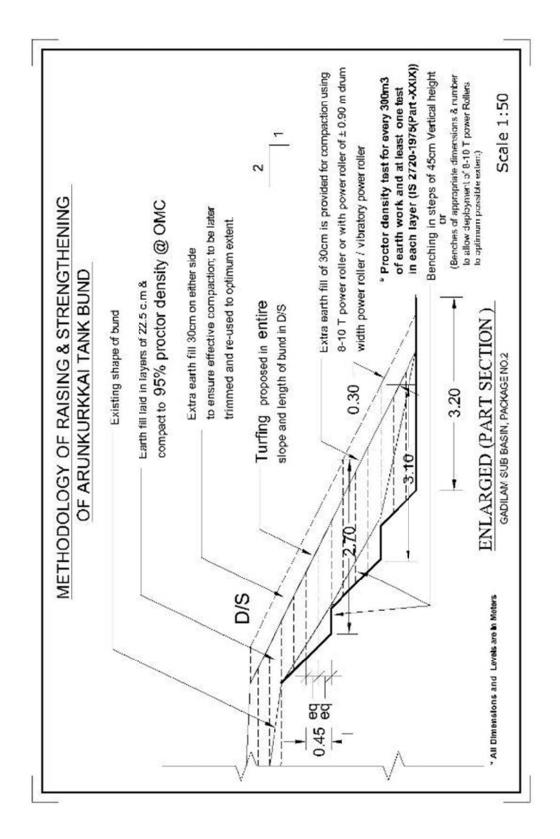

Fixing the FMFL				0	
Design Discharge		:		1387.51 m ³ /	/sec 49000 c/
Crest Level		:		5.465 m	1387.51
Us Bed level		:		3.530 m	1388
Assume FMFL		:		8.400 m	
RWL		:		6.303 m	
Height of weir	=(5.465-3.53)	:		1.94	
Head over crest		:		2.94 m	
1.33 times of	design head			3.90 m	
Va=C1387.512388	50347/(135*(1.94+2.94))			2.11 m/s	5
hv=head due to velic	city of approach Va2/2g			0.23	
Effective head =	He = Ho + $Va^2 / 2g$:		3.16	
Total length of stru	ucture between abutments			135 m	
Length of anicut p	ortion			135 m	
Effective Length	Le=L-2(kp*n+Ka)he			133.73523 m	
	Ka =	0.2			
Width of the	weir			2 m	from stability
				3 m	Broad crest
Discharge over t	he check dam - The check	dam functions a	as a BC Weir		
$Q = Q_1 + Q_2$ where					
Q1 = 2/3*Ca1 *(2g)(0.	5)* B*{(h+hv)(3/2)-hv(3/2)	free weir	equation		
$Q_1 = C_{d2} + (2g(h+hv))$		drowned	weir equation		
Cd1				0.577	
Cd ₂				0.8	
h = FMFL - RMFL				2.09728211 m	
hv=				0.23 m	
B = Clear water w	av			133.735233 m	
Effective width B	-,			133.735233 m	
h1 = depth of d/s w	ater level above crest			0.84 m	
Q1 = 2/3* 0.577 * (2	*9.81)*(0.5) * 133.7352334352	7* {(2.1+0.23)*(3/	2) -0.23^(3/2)}=	782.771013 m ³	/sec
	(2.1+0.23))^(0.5) *133.74 * 0.84			605.228998 m ³	/sec
Total discharge ov	er check dam			1388.00001 m ³	soc
Total Discharge th	rough over check dam			1388.00	

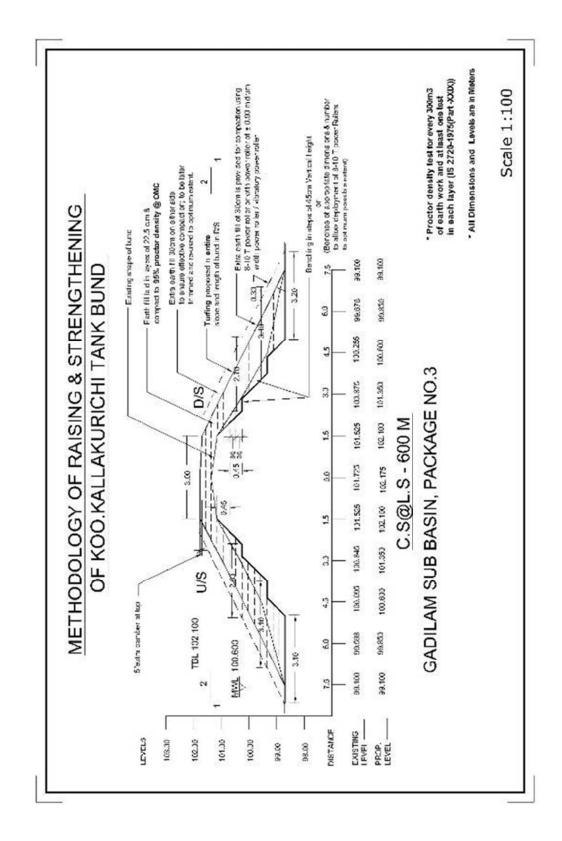

÷

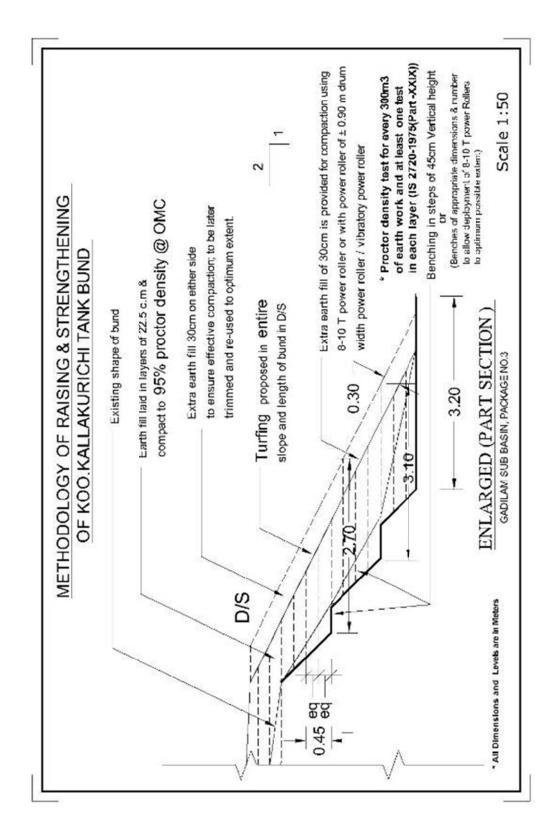

×

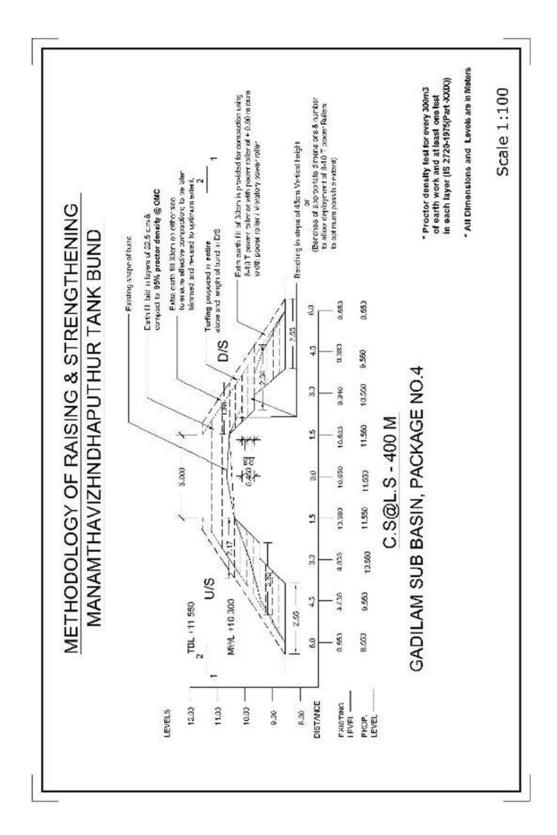


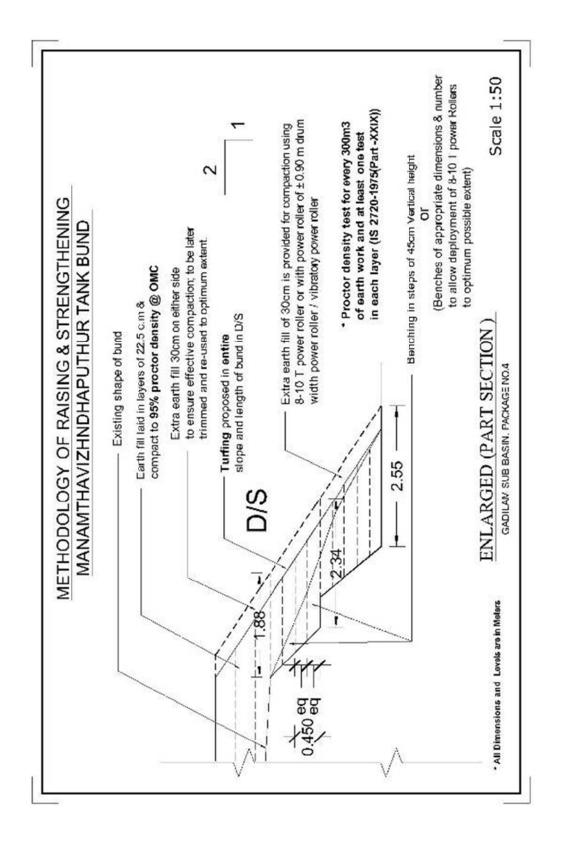


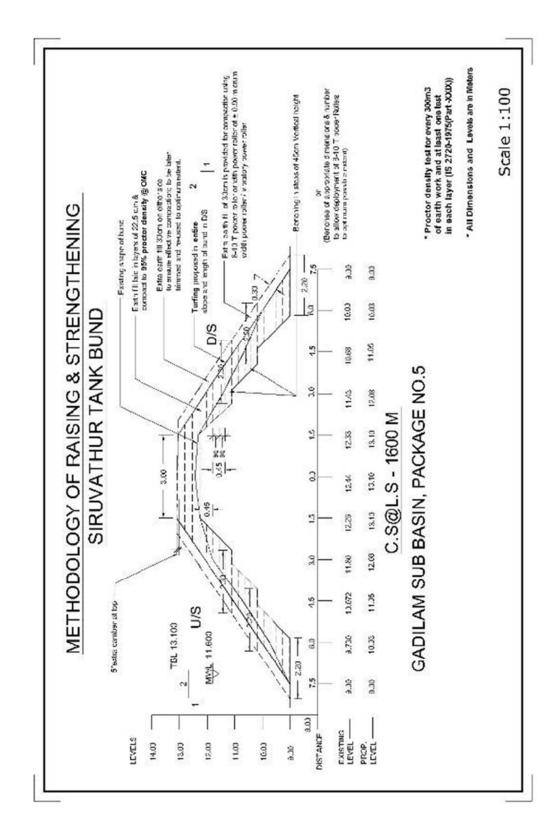


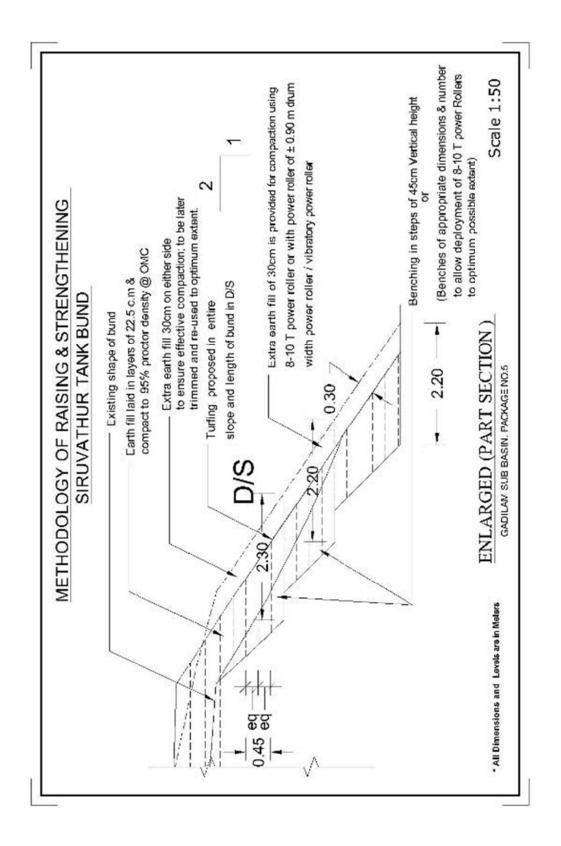


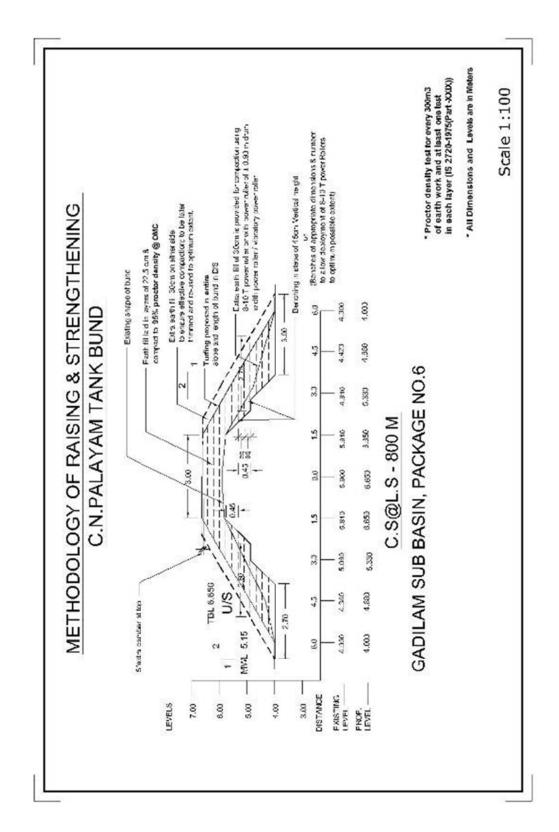


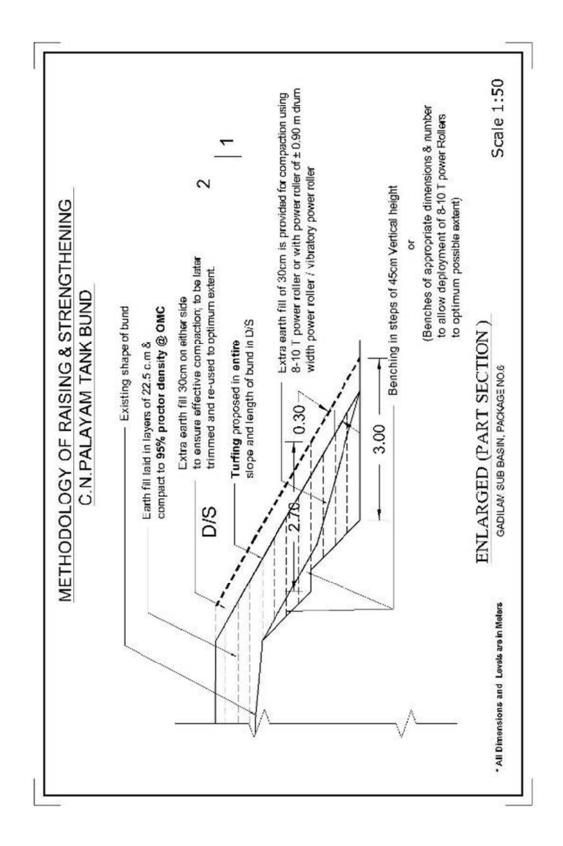


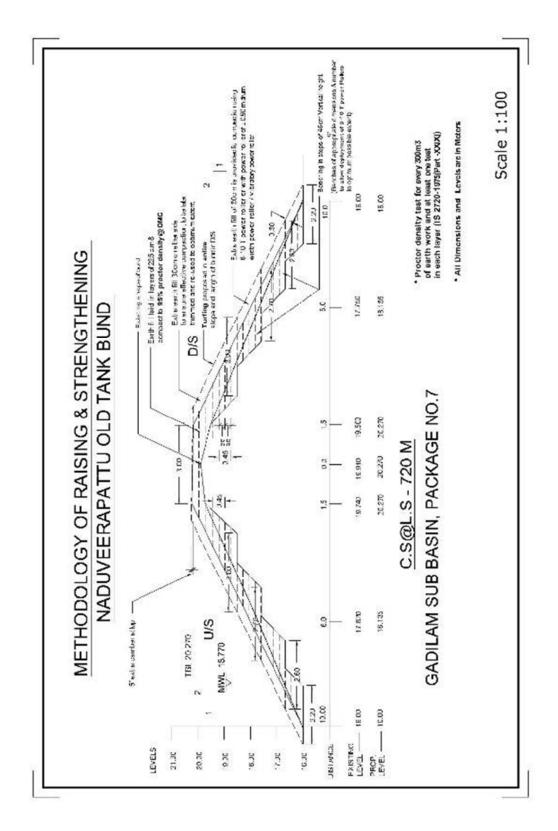


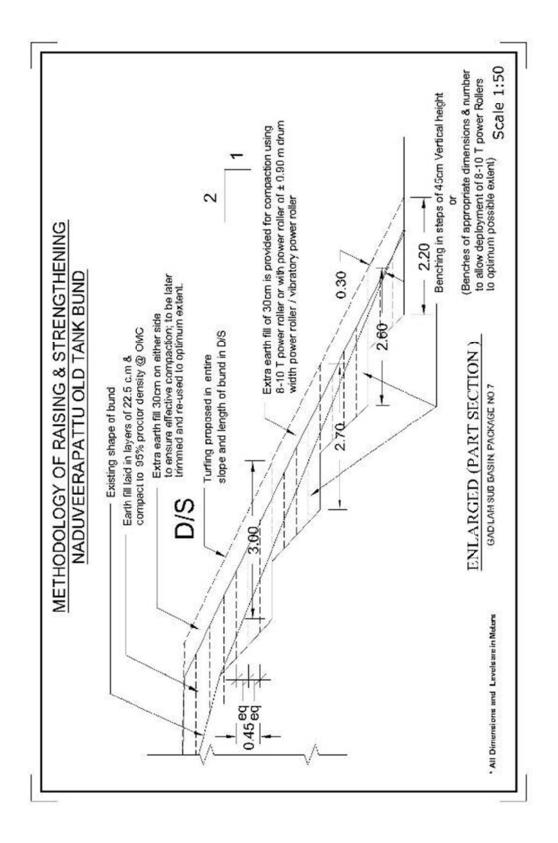


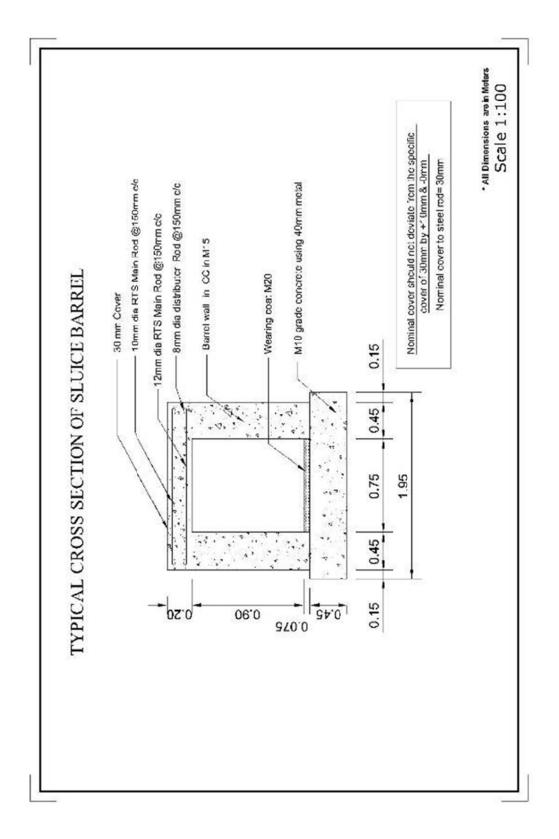


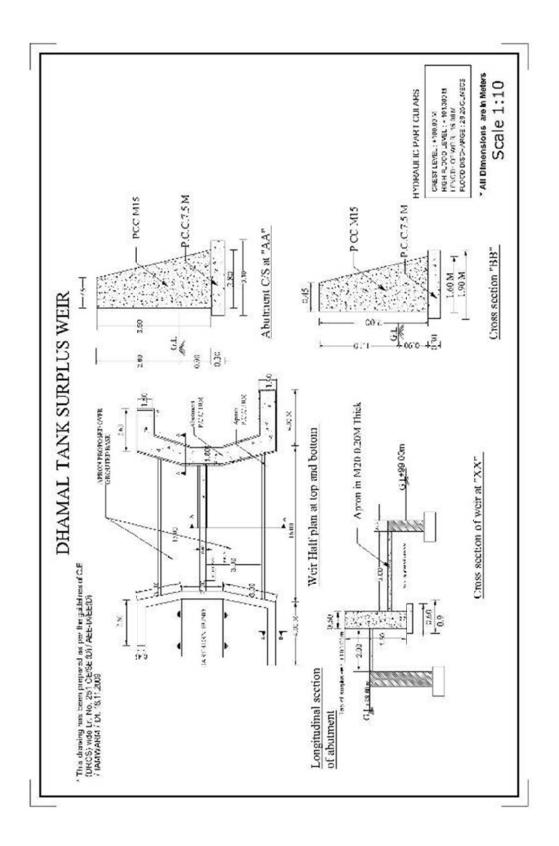


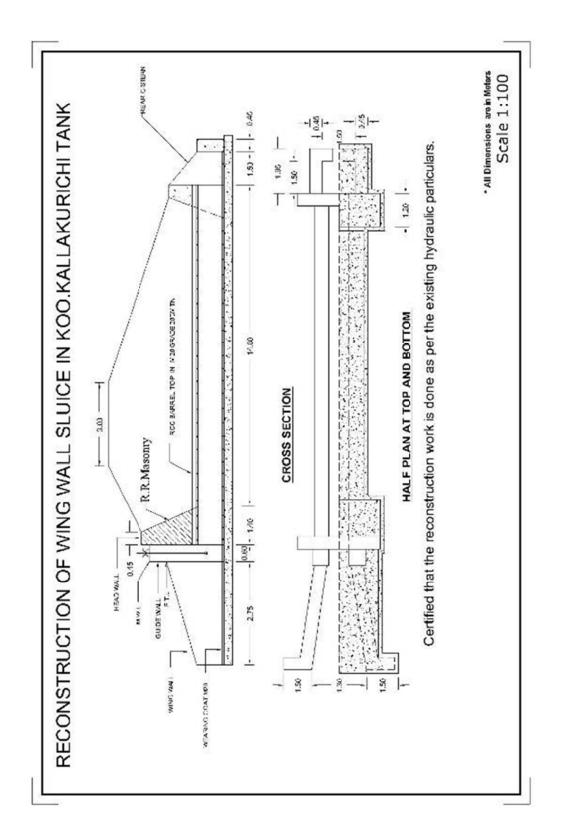


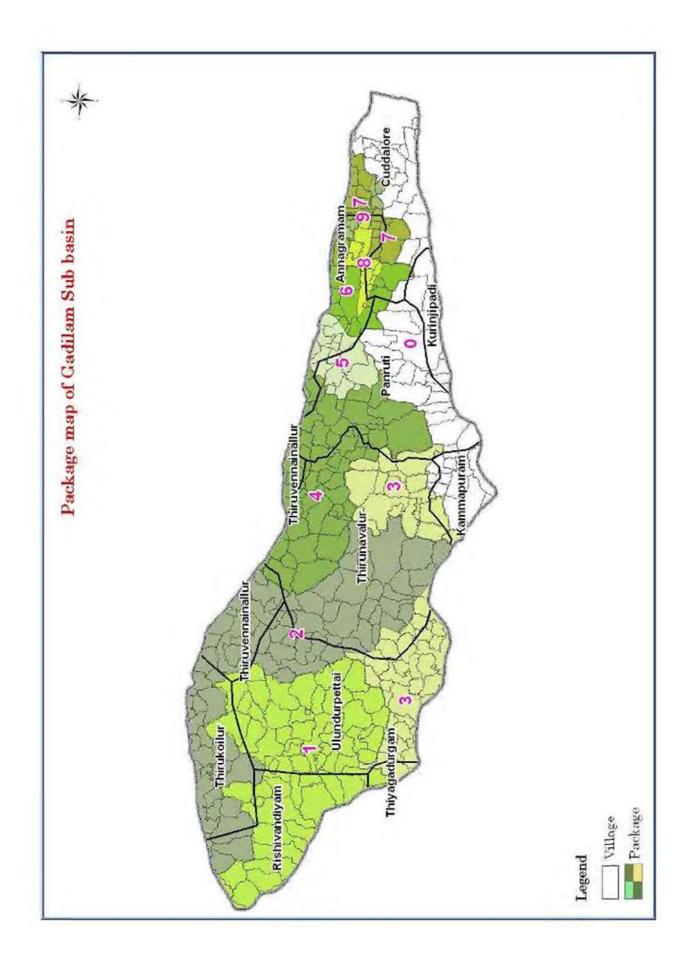


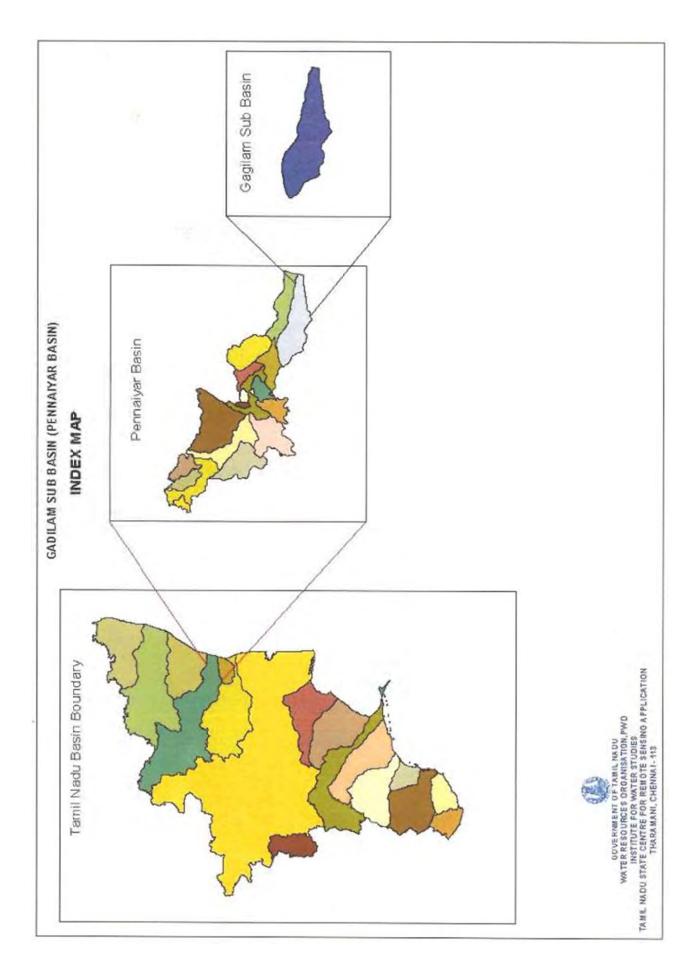


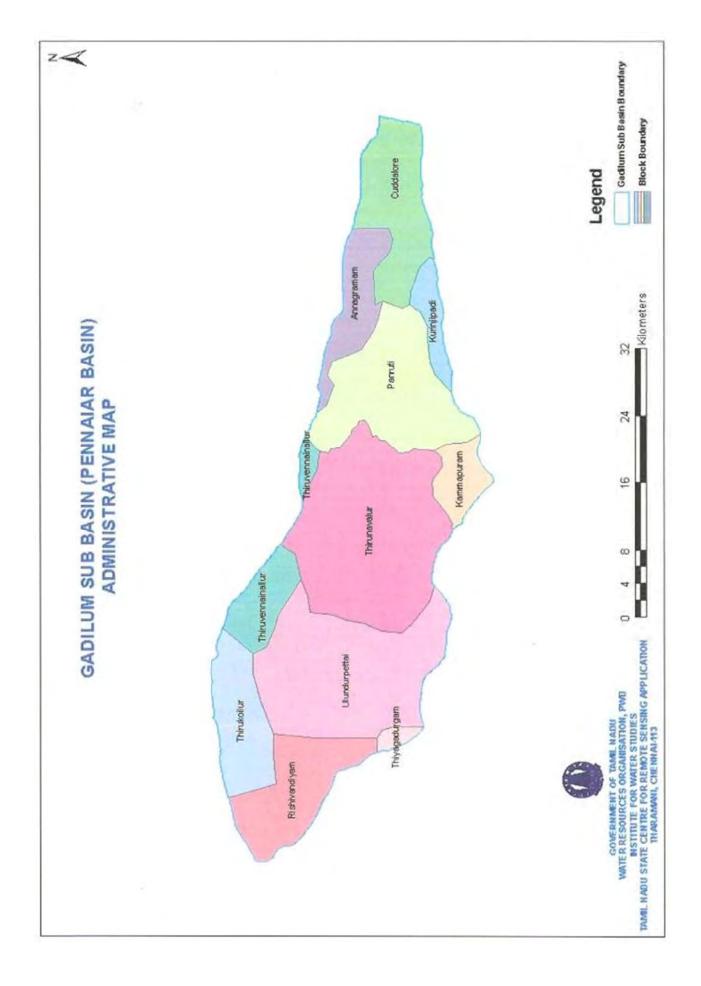


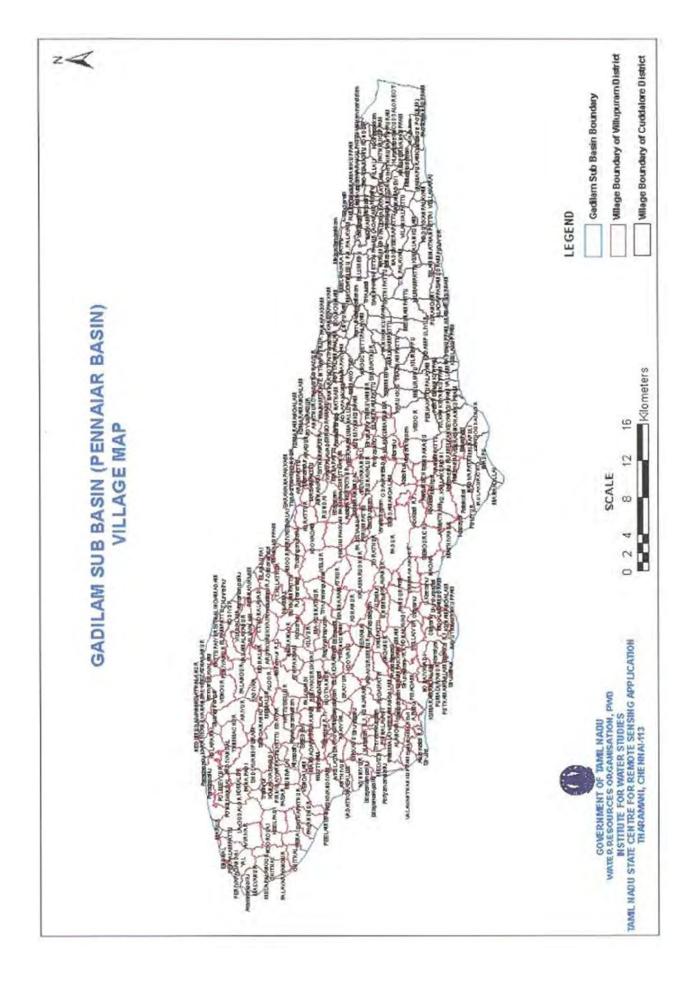


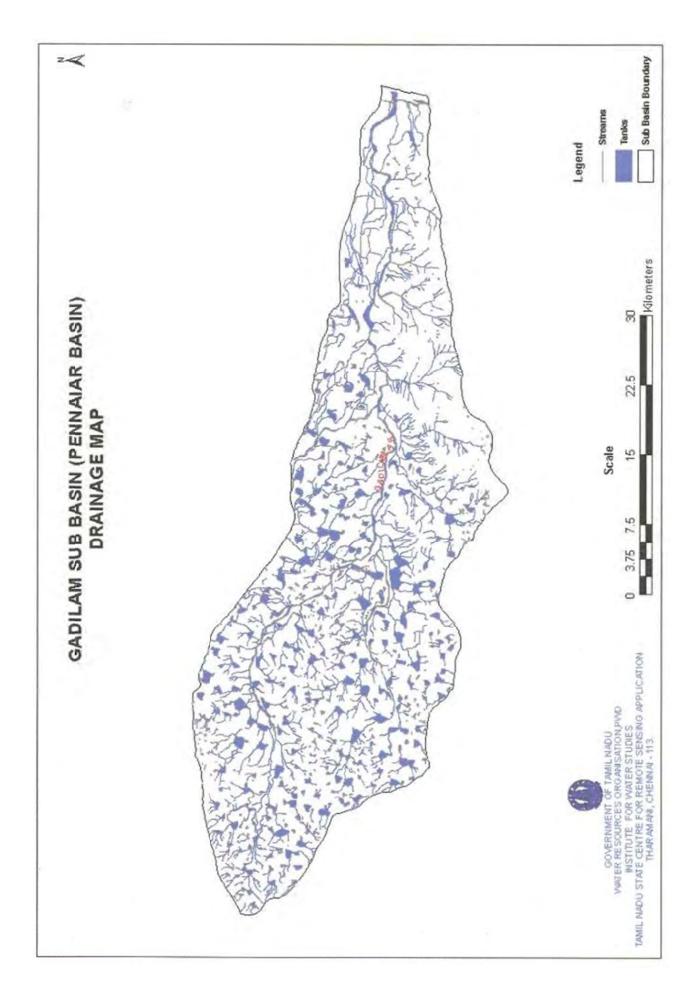


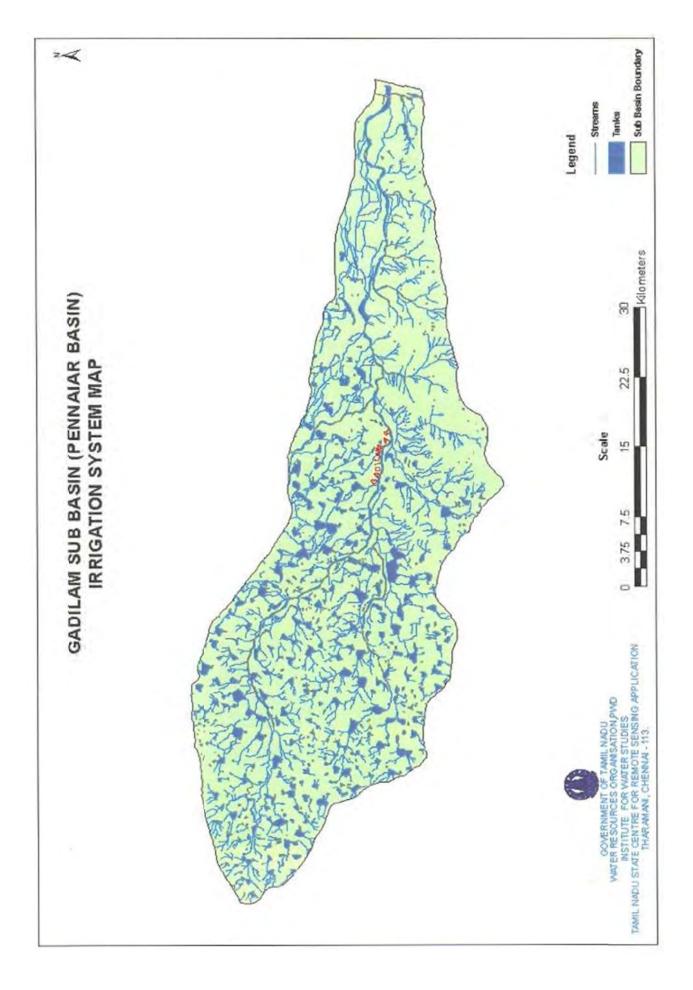


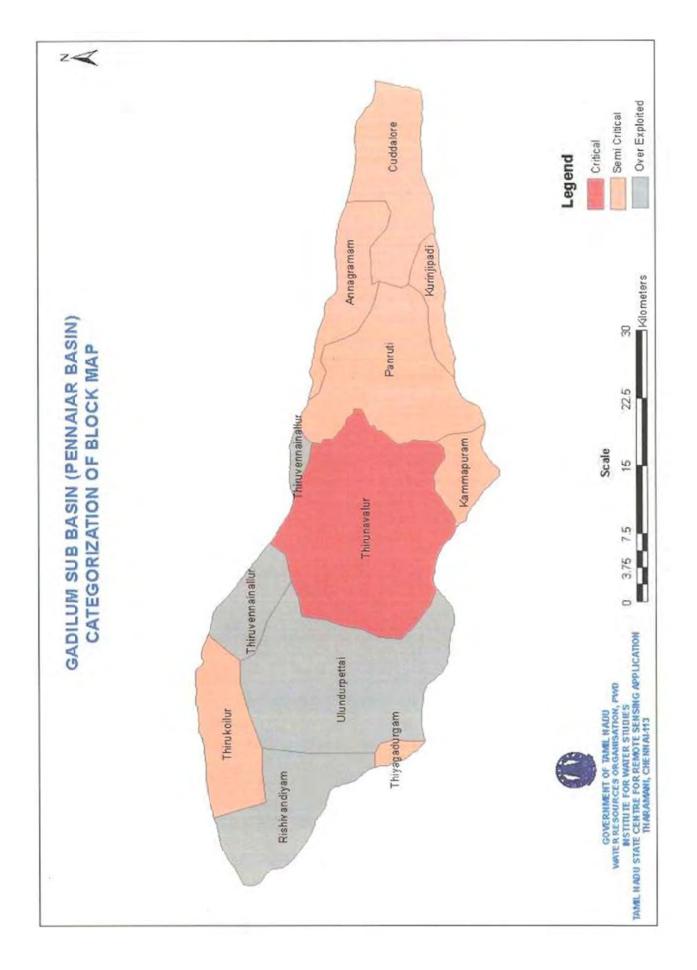


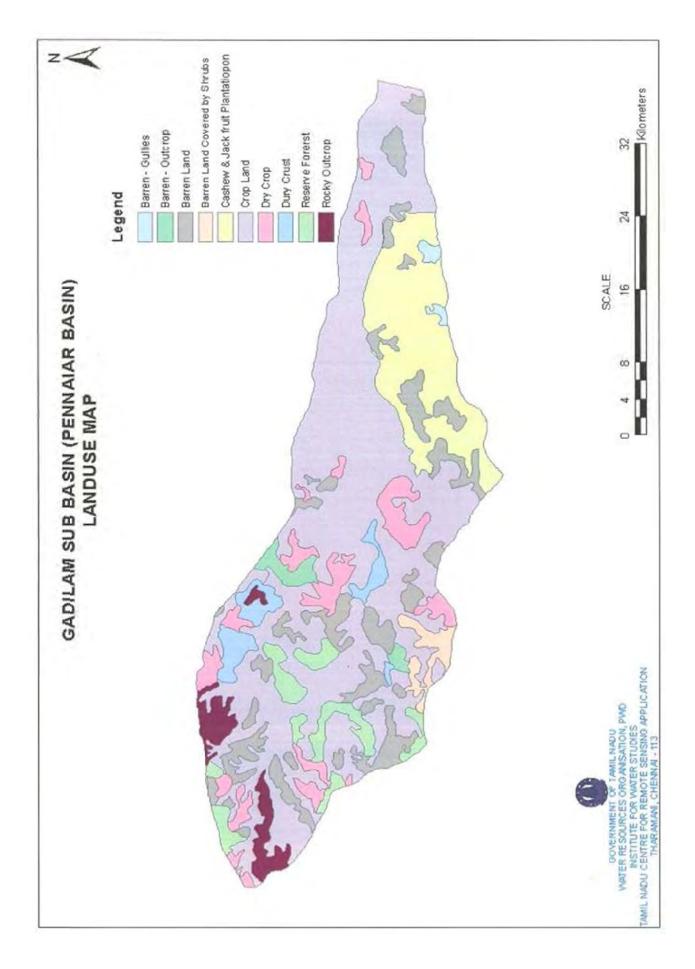


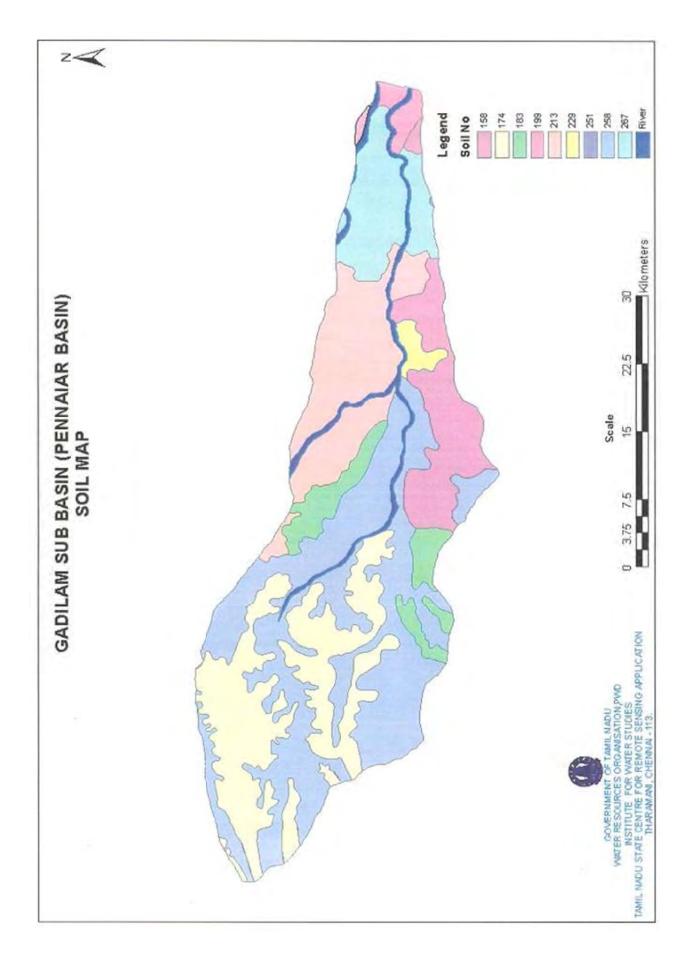


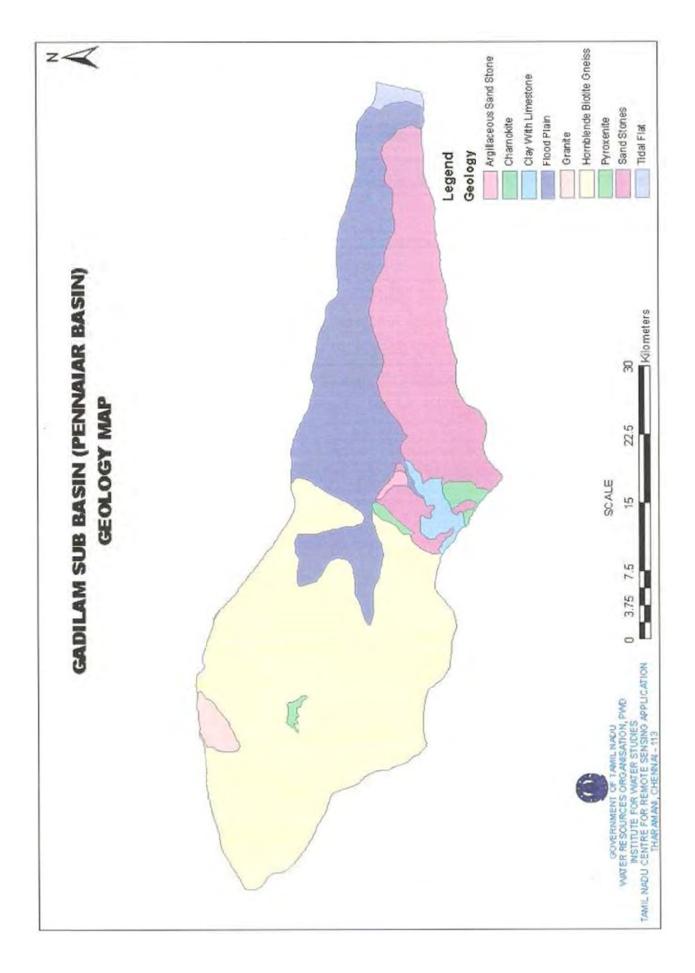


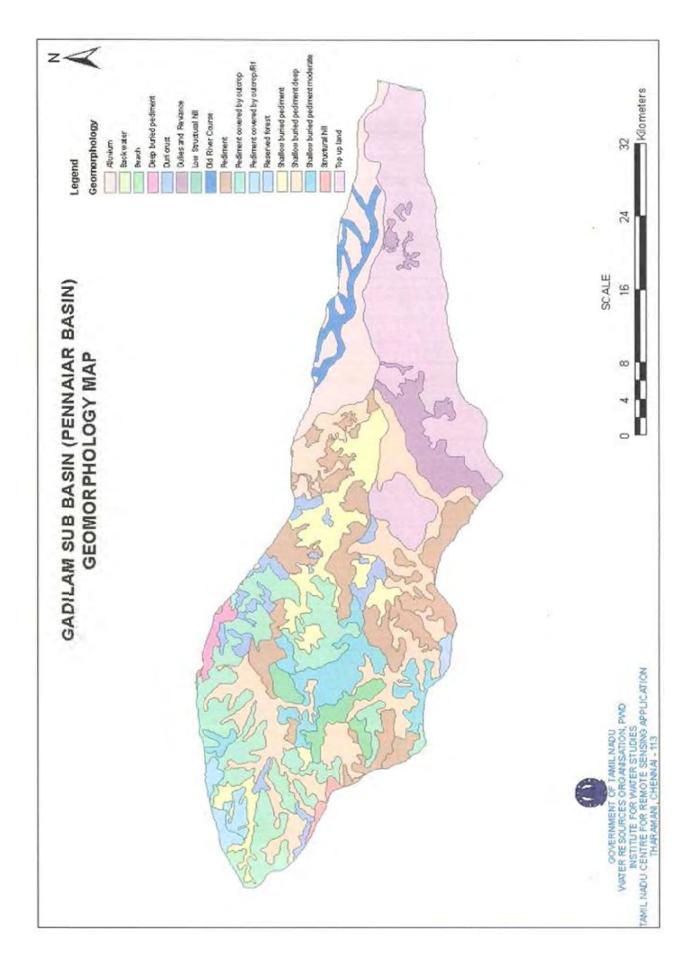


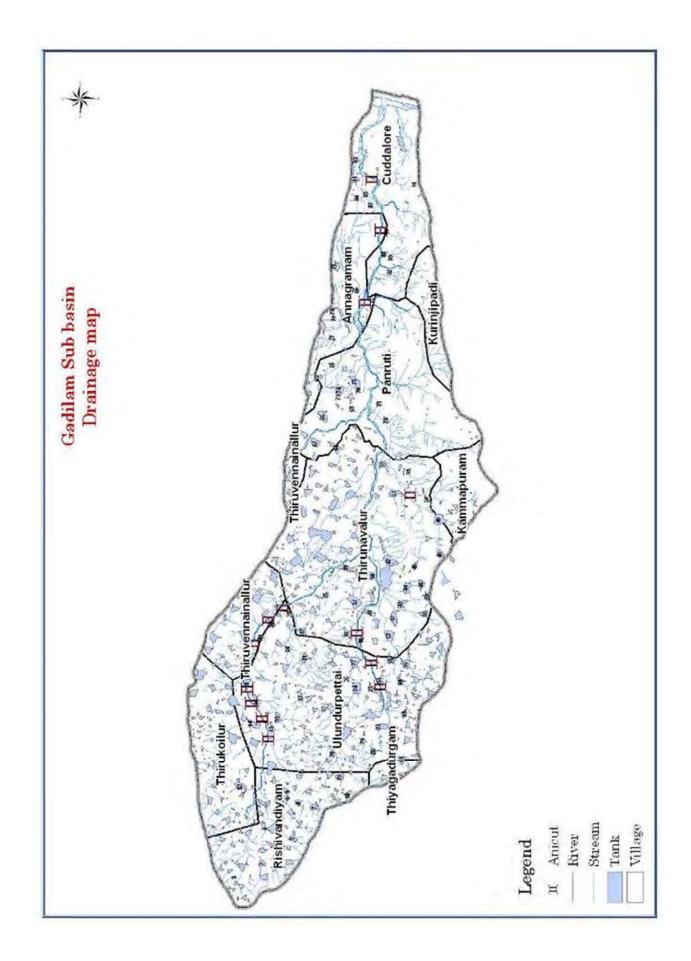


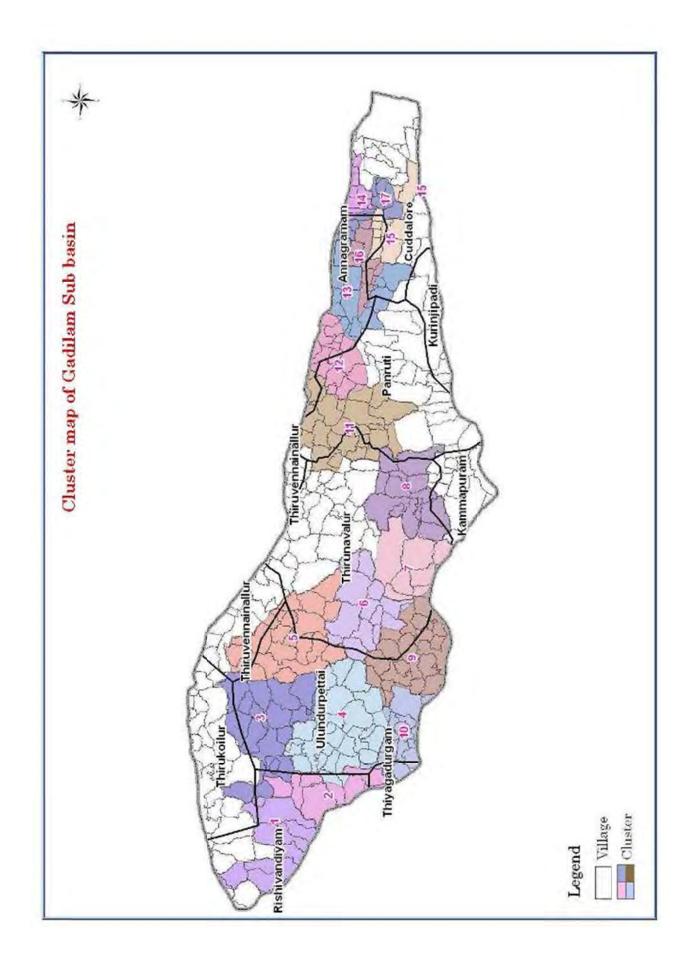


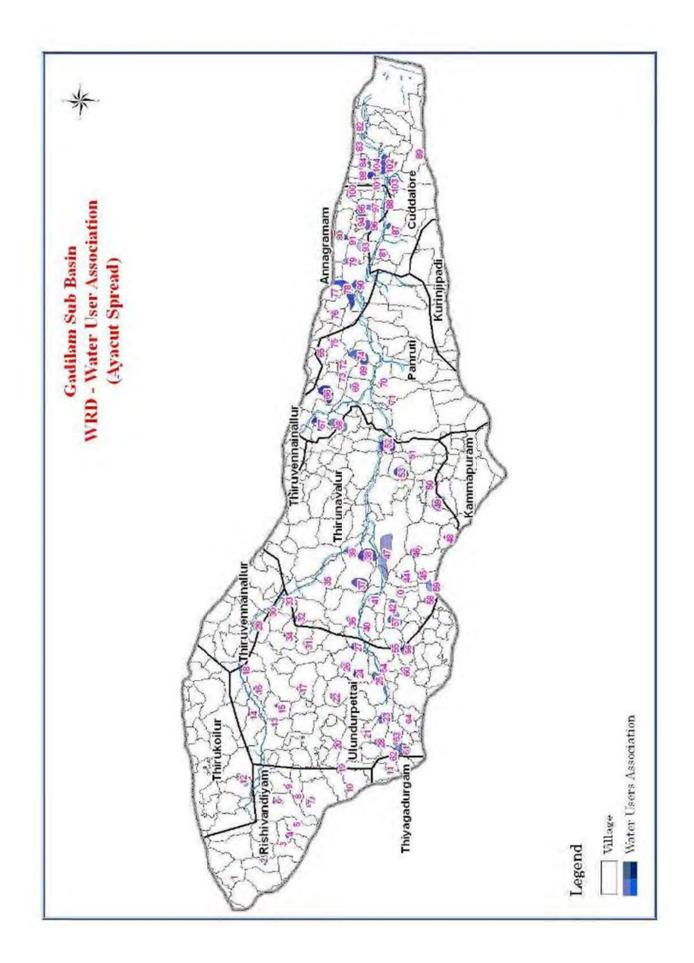












Walk through survey at Thottapattu village on 16.12.08

Walk through survey at Thottapattu village on 16.12.08

Stakeholders meeting held at Cuddalore on 29.10.08

Stakeholders meeting held at Cuddalore on 29.10.08

Stakehodlers meeting held at Vridhachalam on 22.10.08

Stakeholders meeting held at Vridhachalam on 22.10.08

Sub committe meeting conducted by Executive Engineer on 21.1.09

Sub Committe meeting conducted by Assistant Executive Engineer on 16.12.08

Walk through survey at Vengalam village on 8.11.08

Page 231

Walk through survey at Munivazhai village on 8.11.08

Walk through survey at Kattuedaiyar village on 17.12.08

Walk through survey at Eraiyur village on 17.12.08

Walk through survey at Nathamoor village on 11.11.08

Walk through survey at Kiliyur village on 11.11.08

Walk through survey at Kalamarudur villag on 14.11.08

Walk through survey at Semmangur village on 14.11.08

Walk through survey at Vanpakkam village on 15.11.08

Walk through survey at Vanpakkam village on 15.11.08

Walk through survey at Sirugramam village on 18.12.08

Walk through survey at Sirugramam village on 18.12.08

Walk through survey at Ramapuram village on 16.12.08

Page 237

Walk through survey at Vilangalpattu village on 16.12.08

Walk through survey at Naduveerapattu village on 19.12.08

Walk through survey at Naduveerapattu village on 19.12.08

DETAILED SPECIFICATIONS

Sl. No.	Description of Items
1	C learing Scrub jungle complete as per standard specifications.
2	Dismantling, with out damaging the near by structures if any clearing away and carefully stacking material useful for reuse for any thickness of brick or stone masonry in Cement Mortar walls under 3 (Three) meters high complying with standard specification and as directed by the Engineer.
3	Dismantling with out damaging the near by structures if any ,clearing away plain cement concrete as directed by the Engineer in charge of the works as per technical Specification and as directed by the Engineer.
4	Earth work excavation in all kind of soils except rock requiring blasting for open excavation and depositing the earth in places shown by the engineer with all leads and lifts including dewatering by baling, pumping, diverting water wherever necessary and spreading the earth at site in layers not exceeding 250 mm thickness breaking clods neat sectioning etc. including watering as desired by the engineer in charge based on the work for cut open the bund
5	Earthwork excavation for foundation in all soils and depositing on bank inclusive of shoring, strutting and bailing out water wherever necessary, well rammed, consolidated and depositing the surplus earth in places as shown by the departmental officers with an initial lead of 10 (Ten) metres and initial lift of 2 (Two) metres and clearing, leveling the site complete as per standard specifications.
6	Earthwork in all soils except hard rock requiring blasting and conveying for formation of bund with lead of 0 to 300 metre deploying earth moving machinery and tippers for formation of bund in layers of suitable thickness, depending upon type of compaction equipment deployed, and not exceeding 23 cm thickness, benching of slopes prior to placement of earth fill, breaking clods, watering to OMC (optimum moisture content) and compaction of each layer to 95% Proctor density through deployment of appropriate compaction equipment (8-10 T power roller / vibratory deployment of appropriate width (+ 0.90 m width drum) power roller or vibratory power roller / fuel-operated or elect – operated vibratory plate compactors, ensuring compaction of designed bund section including side slopes, complete as per specification.
7	Earthwork deploying earth moving machinery for de-silting channels, depositing earth on banks for forming bund, well consolidated and dressed, including sectioning and jungle clearance etc. complete. (having width upto 3 m) complying with the standard specification
8	Turfing in slopes of bund including watering and fixing with a lead of up to 3 KMCT complete as per standard specifications.
9	Providing and placing in Position of Cement concrete M7.5 grade with well graded aggregates and the nominal maximum size of coarse aggregate of 40 mm mixing by mixer machine including dewatering by bailing/pumping wherever necessary laying the concrete in layers and in bays with all leads and lifts, compacting and finishing the surface watering curing, so as to attain the profile and strength specified in the drawings for various depths below ground level and various heights above ground level as per the direction of the Engineer and complying with standard specification
10	Reinforced Cement concrete M20 grade for Cement Concrete works with well graded hard aggregates and the nominal maximum of coarse aggregate of 20 mm gauge weigh batching the ingredients and mixing in approved mixers/batching plant (to produce concrete of the specified characteristic strength of 20N/mm ² at 28days) including dewatering of placement site by bailing/pumping and by diverting wherever necessary

	laying the concrete in layers and in bays, compacting and finishing the surface water curing so as to attain the profile and strength specified in the approved drawing and specification and including the cost component of providing rigid and smooth centering and shuttering wherever necessary but excluding cost component of providing fabrication of reinforcements for various depths below ground level and various heights above ground level as per the direction of the Engineer complete in all respect but excluding the cost and placing of reinforced grill in position complying with standard specification
11	Supplying, fabricating & placing in position of ribbed tor steel grills for Reinforcement of RCC works including cost of steel and binding wire and labour charges for decoiling, cutting, bending and tying the grills complete as per standard specifications.
12	Providing cut stone roughly dressed and set in cement mortar 1:3 (one cement and three sand) including fixing in position etc complete as directed by the Engineer in charge of work complying with the standard specification
13	Random rubble masonry in cement mortar 1:4 (one cement and four sand)mixed using mixer machine using new hard rough stone bond stones for various depth and height below and above ground level with all leads and lifts including simultaneous flush pointing the exposed surface with same mortar and withal incidental charges such as scaffolding and dewatering by baling pumping and diverting water wherever required water wherever required finishing curing complete so as to attain the profile and strength in the drawing and specification including providing shrinkage ,construction joint for closing the days work at intervals specified wherever required and as directed by the Engineer complete complying with specification
14	Plastering with Cement Mortar 1:4 (One cement and four sand) 20mm thick including all incidental chares such as scaffolding finishing curing for various depth and height below and above ground level etc complete as directed by the Engineer in charge of work complying with the standard specification
15	Refilling with excavated earth (other than sand) available at site with all leads and lifts for filling the cut open portion wherever necessary including breaking clods sectioning etc. including extra watering and compaction of Earth Fill layers earth fill layers to specified density of 95% of proctor density through deployment of appropriate compaction equipment as directed by the Engineers and complying with standard specification
16	Rough stone dry packing for apron and revetment using new hard granite stone including stacking the stones for Pre-measurements complying with standard specification.
17	Supplying demarcation R.C.C. pre cast post in Cement concrete M15 grade with well graded aggregates and the nominal maximum size of coarse aggregate of size 20 mm of size 0.20 x 0.20 x 1.30 M and fixing the post 40 Cm depth below ground level, the post includes using 4 numbers of 8 mm RTS main rod to a length of 1.325 M, using 6 mm MS 9 numbers as strips with steel centering and painting the post with enamel paint to a height of 0.80 M around the post etc. complete and conveying the post to the site of demarcation boundary such as tank bund and foreshore including earth work excavation for foundation in HSC, and the post embedded by using Cement concrete M7.5 grade with well graded aggregates and the nominal maximum size of coarse aggregate of 40 mm, as per the direction of the Engineers and complying with standard specification
18	Supplying and fixing of 'V' notch made up of steel plate of 6 mm thick and fixing it in concrete of grade M-10 using 20 mm grade metal to IS specified to the profile specified in the drawing including the cost of earthwork and all materials etc. complete as per the direction of the Engineers and complying with standard specification for Measuring device.

19	Fabricating, supplying and fixing of steel screw gearing shutters of following sizes made out of 75 x 40 mm M.S. Medium Channel for outer frame with same section of vertical stiffeners 3 Nos. with 10mm skin plate. The grooves 2 Nos. to a required height made out of 100 x 50 mm M.S. Channel with hold fast arrangements. The Top Beam to be made out of 200 x 100mm R.S. joists 2 Nos. to a width of shutter plus 0.60mm to a width of shutter plus 0.30M for bearing. Screw Gearing arrangements to
	be made using 80mm dia M.S. shaft to a required height duly threaded with capstain head arrangements [heavy type] with ball bearing arrangements suitable to operate the screw gearing rod with operating key. Necessary bed bolts and fish plates to be
	provided for anchorage arrangements to place the R.S.Joist in position. All the components to be painted with two coats of A.C. Black paint over one coat of quality red oxide (for Weir and Sluices) for the size of shutter 1.00 m X 1.00m.
20	Providing and placing in Position of Cement concrete of grade M10 using well graded aggregates and with maximum nominal size of 20mm to I.S. specified grading mixing in mixer machine (to produce concrete of the specified characteristic strength of 10N/mm2 at 28 days) including dewatering the placement site laying Vibrating, compacting and finishing the surface with all leads and lifts watering, curing complete so as to attain the profile and strength specified in the drawing and specification for various height above ground level complete as directed by the Engineer complying
21	with standard specification Cement concrete M15 grade with well graded aggregates and the nominal maximum size of coarse aggregate of size 20mm weigh batching the ingredients and mixing in approved mixers/batching plant (to produce concrete of the specified characteristic strength of 15N/mm ² at 28days) including dewatering the placement site by bailing/pumping and by diverting wherever necessary laying the concrete in layers and
	in bays vibrating, compacting and finishing the surface water curing so as to attain the profile and strength specified in the approved drawing and specification and including the cost component of providing rigid and smooth centering and shuttering wherever necessary various heights above and below ground level and as per the direction of the Engineers complying with standard specification.
22	Earthwork in all soils except hard rock requiring blasting and conveying for formation of bund with lead of 0 to 100 metre deploying earth moving machinery and tippers for formation of bund in layers of suitable thickness, depending upon type of compaction equipment deployed, and not exceeding 23 cm thickness, benching of slopes prior to placement of earth fill, breaking clods, watering to OMC (optimum moisture content) and compaction of each layer to 95% Proctor density through deployment of appropriate compaction equipment (8-10 T power roller / vibratory deployment of appropriate width (+ 0.90 m width drum) power roller or vibratory power roller / fuel-operated or elect – operated vibratory plate compactors, ensuring compaction of designed bund section including side slopes, complete as per specification for forming
23	foreshore bund. Earth work excavating and depositing on bank with a lead of 10 m & initial lift of 2 m in Hard stiff clay, stiff black cotton, hard red earth, shales, murram, gravel, stoney earth and earth mixed with small size of boulders hard gravelly soil with a lead of 0 to 3 KM
	CT, complying with standard specification and as directed by the departmental officers, complete including extra watering and compaction of earth fill layers to specified density of 95% of proctor density @ OMC through deployment of appropriate compaction equipment including trimming the side slope for side compaction t (standard 8-10 ton power roller; short width drum vibratory power roller; vibratory power roller; fuel-operated vibratory plate compactor of adequate capacity, as per space available for compaction) for forming flood bank.
24	Cement concrete M20 grade with well graded aggregates and the nominal maximum size of coarse aggregate of size 20mm weigh batching the ingredients and mixing in approved mixers/batching plant (to produce concrete of the specified characteristic strength of 15N/mm ² at 28days) including dewatering the placement site by

25	bailing/pumping and by diverting wherever necessary laying the concrete in layers and in bays vibrating, compacting and finishing the surface water curing so as to attain the profile and strength specified in the approved drawing and specification and including the cost component of providing rigid and smooth centering and shuttering wherever necessary various heights above and below ground level and as per the direction of the Engineers complying with standard specification. Pointing with cement mortar 1:3(one cement and three sand) for flush pointing in
23	Random rubble masonry using mixer machine for mixing water complying with standard specification.
26	Fabricating and supply of Teak wood plug size of 60 cm height . The plug rod with 63 mm mild steel rod size of 5 m height. The plug rod top side , middle, center and bottom side covered iron stap – 3 nos. Plate thickness size 3mm steel plate . The plug hold size 12 cm to 15 cm Dia. The plug rod fittings top side 2 numbers 200 X 100 mm channel total length of 1.80 metre -2 nos. and anchor bolt with plate 2 sets and the headset with thrust bearing type with Hexagonal nuts one set, with locking arrangements key one number the plug painted and conveyance to the work site including loading, unloading . (The rates should be inclusive of all taxes and duties and including fixing charges etc., complete complying specification and ad directed by the Engineer.)
27	Centering and sofitts of Reinforced concrete slabs plain surface including structing upto 3m height M.S sheet of size 90 cm x 60cm and B.G 10 Gauge screws with welding M.S Angle of size 25mm x 25mm lide over silver oad (country wood) joist of size 6.5cm spaced at about 90cm c/c and supported casurnia poles of 10cm to 13cm dia. Complying with standard specification.
28	Supplying and fixing of TBL stones and B.M. stones the exposed surface neatly dressed to a height of 15 cm including cutting letters 10x10x25 cm.as directed by the departmental officers.
29	Clean removal of lime plaster from walls and racking out joints 20 mm deep and Plastering with cement Mortar 1:4 (One cement and four sand) 20 mm thickness etc., complete complying with standard specification.