GOMUKHI NADHI SUB BASIN AN OVERVIEW

GOMUKHI NADHI SUB BASIN - AN OVER VIEW

1. Introduction :-

The Vellar river originates in the Chitteri Hills of Dharmapuri District in the name of Anaimaduvu river and Thumbal river and Singipuram river are originates at Jallattu reserve forest area at 8 Km east of Salem in Salem district and flows through Villupuram, Cuddalore, Namakkal, Trichy and Perambalur District and finally falls into the Bay of Bengal. The Vellar basin is situated between the coordinates of N latitude 11⁰ 13'-12⁰ 00' and E Longitude 78⁰ 13' - 79⁰ 47'. The Vellar basin is bounded by Ponnaiyar and Paravanar basins at north, Cauvery basin in the west & south the Bay of Bengal in the east.

The Vellar basin has been divided into 7 sub basins and Gomukhi is one of the Gomukhi Nadhi originates from the eastern slopes of Kalrayan hills in sub basins. Kallakurichi at an altitude of about 1298 metres. The river flows for a length of 13Km at which Gomukhi Nadhi reservoir has been constructed across the river at about 16Km to the north west of Kallakurichi town. About 44Km below this reservoir a tributary called Mayura Nadhi joins the Gomukhi Nadhi on its right flank. Mayura Nadhi runs for a length of 38Km which is also originates the south eastern slopes of Kalrayan hills north east of Chinnasalem taluk. Two sub tributaries namely Thirumanimuktha nadhi on the right flank and Namasivayapuram Odai on the left join the Mayura Nadhi at 8 Km above the confluence of the Mayura nadhi, with the Gomukhinadhi. Gomukhi sub basin is located between N latitude 11° 15'-12° 00' and E Longitude 78° 15'-79° 15'. The taluks covered in this subbasin are Kallakurichi (Villupuram District), Athur (Salem District) Virudhachalam and Thittakudi (Cuddalore District). It receives an annual rainfall of 956mm with its major share during north east monsoon. The winter water level varies from 1 to 1.5m and the summer water level varies from 3.55 to 4.00 m

Observation Well:-

There is only one observation well located in this sub basin. Moderate to good quality of ground water is available in Kallakurichi Sitteri village of Kallakurichi block. The concentration of all ions lies within the permissible limit. The Geochemical type is calcium bicarbonate.

2. Details of Ayacut :

There is no system tanks. The basin consists only Nonsystem tanks and Rainfed Tanks. The Gomukhi Sub basin is having 80 Nos of non-system tanks and 47 anicuts having a total ayacut 5124 Ha being maintained by PWD.

The Total Ayacut area under the sub basin : 5123.89Ha.

Though the total registered ayacut under PWD control is 5123.89 Ha average cultivation is only 4162.87 Ha leaving a gap of 961.02 Ha which are approximately 19 % of designated irrigation extent.

3. Soil Type and crops Grown

The soil types found in this sub basin are combination of Inceptisol, Alfisol, Entisol and Vertisol.

Crops grown in this sub basin area are Paddy, Sugarcane, Maize, Turmeric, Groundnut, Pulses and Tapiaco which are grown during first season and Black gram, maize, cotton, and groundnut are grown during second season.

4. Water potential.

Surface water potential	98.77 Mcum.
Ground water potential	223.05 Mcum.
Total water Potential	321.82 Mcum.

Present water Demand.

Domestic	16.90 Mcum
Live Stock	20.96 Mcum
Industrial	6.00 Mcum
Irrigation	105.66 Mcum
WRO & PU	25.91 Mcum
Total	175.73 Mcum

Therefore 146.39 Mcum (321.82 - 175.73) is higher than the current demand.

In spite of the surplus scenario the reasons for substantial gap in area coverage are

(I). This sytem is a very old system having 80 Nos of PWD tanks and 47 Anicuts for more than 100 years they were not maintained. Therefore it requires wide spread rehabilitation

- (II). The tanks and its supply channel are heavily silted up with thick vegetation grown obstructing free flow of water bunds are eroded at many places which needs improvements.
- (III). Fixing of Boundary stones is necessary to prevent encroachment.
- (IV). The sluices and weirs of tanks need repairs.
- (V). Micro irrigation needs to be propagated in the application of water to the fields
- (VI). Most of the lands are in fragmented condition consequently there is a lot of water loss in field to field irrigation.
- (VII). Farmers are not aware of modern techniques of irrigation and hybrid varieties of crops.
- (VIII). Lack of efficient farm management.

5. Water User Assocication (WUA)

It is proposed to form 60 WUAs covering an area of 5007.58 Ha.

Stakeholders Consultations.

In order to improve the system efficiency and productivity of irrigated agriculture, a multi disciplinary approach involving the following departments are envisaged.

- i. Water Resources Department (WRD)
- ii. Agriculture
- iii. Agricultural Engineering (AED)
- iv. Horticulture Dept.
- v. Agriculture Marketing and Agribusiness.
- vi. Tamil Nadu Agricultural University (TNAU)
- vii. Fisheries.
- viii. Animal Husbandry and Veterinary Services.

WRD officials with the officials of the above line departments have conducted meetings with the stakeholders in the sub basin and also had "Joint Walkthrough Surveys" and the following table shows the constraints and countermeasures which emerged during these consultations.

5.2 OVERVIEW

Components	Constraints	Counter Measures.
WRO	The tank feeder canals and tanks are silted up and it is required to be desilted and distribution system is to be rehabilitated. Sluices, gates and weir are in damaged condition. Bunds are not to standards as prescribed by IAMWARM Post irrigation management Overdrawal by upper reaches. no water to lower reaches.	 All Anicuts are in damaged condition(reconstruction and repairing of bodywall, abutment, apron etc.,) (i). A holistic approach to be adopted to include all the PWD tanks in the sub basin and improve their bunds & desilting to the minimum extent required to harvest rainwater. (ii). WUAs are to be formed and further maintenance would be with their involvement. (iii). Surplus weirs, tanks sluice, are to be improved. (iv). The rehabilitation of distribution system network is also proposed. Proposed WUA shall take care of its members from lower reaches in the WUA and regulatory systems shall be developed as bye laws of the WUA.
Agriculture	Traditional old practice being adopted.	 (i).Productivity linked Demonstration by TNAU and by Agriculture Department is Proposed. (ii).Capacity Building of farmers and officials is proposed. (iii).Extension of new Agriculture technology on application of optimum fertilizers, IPM measures are proposed through Agriculture, Horticulture Departments and TNAU Departments. (iv).Supply of quality seeds to be ensured.
Agriculture Marketing , Horticulture Agricultural Engineering.	 (i). Farmers failed to adopt new technologies, and diversification mainly due to absence of correct market information. (ii). For diversification of crops no proper extension advice is available. 	 (i). Agri. Marketing Department and TNAU to assess the market trend and advise the WUA through Agribusiness Cell, Kiosks & Discussion meetings. (ii). For value addition to products, grading arrangements, thrashing floor,

[
	iii). Modern technologies like micro irrigation, to save water, are costly and require lot of frequent training etc.,iv). The value addition technologies observed are absent.	 cold storage, etc., are proposed iii). The possibility of making WUA as entrepreneurs of Agri - processing units are explored and suggestions are made. iv). Depending on the marketability and Agro-Climatic suitability appropriate Horticulture crops are proposed and the extent of development is also proposed in consultation with the WUA. (v). Depending on the Horticulture crops proposed. AED proposes to link installation of micro irrigation system network and wherever required pilot cases for buried pipe conveyance is also proposed.
Animal Husbandry and Fisheries.	 (i). Livestock population need health improvements schemes (ii).Quality fodder is needed iii).Infrastructure development in existing veterinary sub centres is needed. iv).In service training to veterinarians are needed. (v).Good fish fingerlings are required to promote inland fishery through farm ponds in the farmers' lands. 	 (i). A I Centre with improved infrastructure in existing veterinary sub centres have been proposed (ii).Sufficient fodder area is proposed to be cultivated with good quality fodder seeds supply. iii). Adequate trainings are proposed iv).Fisheries department in consultation with the AED and WUA propose inland fishing with the farm ponds etc., with provision for kiosks for improved marketability.

6. Details of Activities of Line Departments.6.1 Water Resources Department (WRO)

- 6.1.1 Approach to rehabilitate the irrigation system and service delivery
 - a. Thematic Maps on land use soils crops, water bodies and other agricultural and demographic attributes are prepared by IWS.
 - b. The crop water requirements for the crops during without and with project situation are prepared by IWS. The crops proposed by Agriculture and Horticulture Department will be tailored in consultation with Agricultural Marketing Department and the Water Users Association.
 - c. The adequacy & status of the canal system, feeder channels to tanks, distribution system etc., have been assessed by the WRO (both regional and plan formulation wing) as follows.
 - Rehabilitation of Anicuts.
 - Strenghthening of tank bund by earthwork excavation using machineries.
 - Desiting the supply channels by earthwork excavation using machineries.
 - Providing retaining walls at Vulnerable points in the tank bund.
 - Providing Model sections to maintain the TBL in the tanks.
 - Reconstruction of Collapsed weirs.
 - Repairs to the damaged weirs.
 - Reconstruction of Collapsed Sluices.
 - Repairs to the damaged sluices.
 - Providing S.G shutter / Plug arrangements to Sluices, Head sluices, Scour Vents etc.,
 - Removing, repairing and refixing in position of the existing S.G shuttering arrangements and providing locking arrangements etc.,
 - Fixed boundary stones in the tanks to prevent encroachment.

Accordingly the following packages are proposed.

PACKAGE DETAILS

SI. No.	Package Nos.	Name of the Package	Package Amount in Lakhs.
1	PACKAGE NO.I IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts, Non system tanks and its supply channels from Vadakkanadal Anicut to Empair Anicut under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	277.91
2	PACKAGE NO.II IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts, Non system tanks and its supply channels from Kallakurichi anicut to Vellakurichi anicut under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	395.64
3	PACKAGE NO.III IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicut, Non system tanks and its supply channels in Mayura river under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	276.18
4	PACKAGE NO.IV IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts, Non system tanks and its supply channels in Thirumanimuktha river under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	338.23
5	PACKAGE NO.V IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts Non system tanks and its supply channels in Mayura river under Gomukhi sub basin in Tittakudi and Vrsithachalam taluk of Cuddalore District.	142.09
		Environment cell	10.00
		Sub total	1440.05

BRIEF NARRATION :

7.1 WATER RESOURCES ORGANISATION.

- Anicut body wall repairing and reconstruction.
- Apron providing, sluice shutter, strengthening of tank bunds, of damage anicuts
- Restoring the original carrying capacity of supply channels from rain fed Odai, from its own catchment odai to feed the non system tanks.
- Strengthening of tank bunds.
- Reconstruction and Repairs of weirs and sluices of tanks operational arrangements by means of providing and replacing screw gearing arrangements.
- Fixing boundary stones in the tanks to prevent encroachment of tanks forming new water users Associations for Participatory Irrigation Management (PIM)
- Rehabilitation works of all Irrigation structures to improve the conveyance efficiency

Executive Engineer, WRD., Vellar Basin Division, Vridhachalam Superintending Engineer, Vellar Basin Circle, WRD., Cuddalore. Chief Engineer, WRD., Chennai Region, Chennai.

2. SCOPE OF THE PROJECT

PRESENT STATUS OF THE SYSTEM

1.0 GENERAL

The Deficiencies in the structure and functions of Irrigation Network casuses the inefficient functioning of the Gomukhi Nadhi Sub - Basin and creates hardship to the farming community.

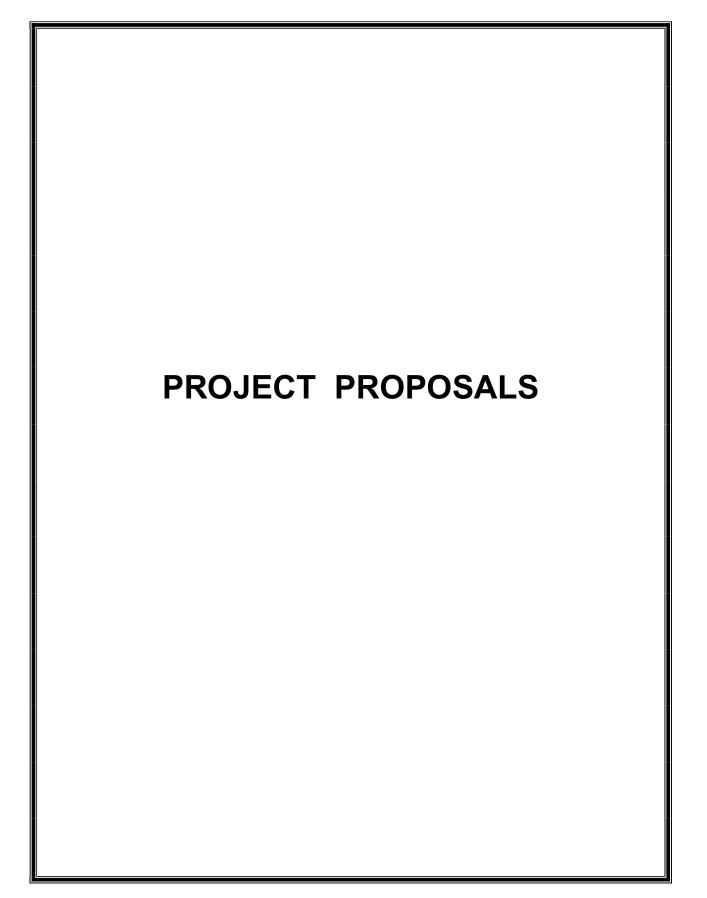
1.1 System Deficiency

In Most of the command areas of the channels, tanks, irrigation channels etc., distribution are taken upto a certain limit only beyond this the water is left to be conveyed by the farmers themselves to the fields for irrigation. No technical attention is paid on the application of water to the fields. The farmers with out the proper awareness of irrigation leave most of the fields with zigzag boundaries and the field bunds are abnormal is size which reduces the cultivatable area considerably.

The major problems being experienced in the Gomukhi Nadhi sub basin are as follows.

- Lack of efficient farm water management.
- Poor infra structure facilities.
- Non adoption of modern micro irrigation methods and new agricultural practices.
- Inadequate coordination among rural agencies, Government departments and other financial institution etc.,
- Lower crop yield.
- Low field application efficiency.
- Traditional method of farming.
- Excess use of chemical fertilizers and pesticides.
- Inadequate post harvest management facilities.

2.3 SCOPE OF THE PROJECT


The water resources Department in coordination with the following line department have proposed to improve the irrigation service delivery and productivity of irrigated agriculture with effective integrated water resources management in this sub basin. The line department are

- 1. Agriculture Department
- 2. Department of Horticulture and plantation crops.
- 3. Agriculture Engineering Department
- 4. Tamil Nadu Agricultural University.
- 5. Department of Agricultural marketing and Agribusiness services.
- 6. Animal Husbandry and Veterinary Services.
- 7. Fisheries Department
- 8. Environmental cell of water Resources Organization.

2.2 Water Resources Department.

In order to improve the conveyance and operational efficiency, it is now proposed to improve and modernize the structural components in Gomukhi Sub basin.

- Desilting the supply channels by earth work excavation using Machineries.
- Strengthening the tank bund by desilting the tank using Machineries
- Repairs to Head sluices
- Reconstruction of collapsed weirs
- Repairs to the damaged weirs
- Reconstruction of Collapsed sluices
- Repairs to the damaged sluices
- Providing Bathing Ghats, Retaining walls and Model section in selective area of the tanks
- Providing S.G shutters / Plug arrangements to sluices, Head Sluices, scour vent etc.,
- Removing, Repairing and refixing in position of the existing S.G shuttering arrangements to the sluices and providing locking arrangements etc.,
- Fixing Boundary stones in the tank bund and water spread area.

WATER RESOURCES DEPARTMENT

CHAPTER - 1.1 INTRODUCTION

INTRODUCTION

1.1.1 GENERAL

Agriculture is the dominant sector in the Indian economy. Tamil Nadu, depends largely on the surface water irrigation as well as ground water irrigation the state has used the surface and ground water water potentials to the maximum limit and hence the future development and expansion depends only on the efficient and economical use of water potential and resources.

To achieve higher water use efficiency it is necessary to improve and upgrade the existing conveyance system and also to introduce modern irrigation methods.

With the above objective, a comprehensive programme has been proposed with a Multi Disciplinary approach.

1.1.2 Description of the Vellar Basin.

The Vellar river originates in the Chitteri Hills of Darmapuram District in the name of Anaimaduvu river and Thumbal river and Singipuram river originates at Jallattu reserve forest area at 8 Km east of Salem in Salem district and flows through Villupuram, Cuddalore, Namakkal, Trichy and Perambalur District and finally falls into the Bay of Bengal. The Vellar basin is situated between the coordinates of N latitude 11⁰ 13'-12⁰ 00' and E Longitude 78⁰ 13' - 79⁰ 47'. The Vellar basin is bounded by Ponnaiyar and Paravanar as basins with north, Cauvery basins in the west and south and the Bay of Bengal in the east.

The Vellar basin has been divided into 7 sub basins and Gomukhi is one of the sub basin.

- 1. Upper Vellar Sub Basin
- 2. Swatha Nadhi Sub Basin
- 3. Manimuktha Nadhi Sub Basin.
- 4. Gomukhi Nadhi Sub Basin.
- 5. Chinnar River Sub Basin
- 6. Anaivari Odai Sub Basin
- 7. Lower Vellar Sub Basin.

1.1.3 Description of the Gomukhi Nadhi Sub basin.

Gomukhi Nadhi originates from the eastern slopes of Kalrayan hills in Kallakurichi at an altitude of about 1298 metres. The river flows for a length of 13Km at which Gomukhi Nadhi reservoir has been constructed across the river at about 16Km to the north west of Kallakurichi town. About 44Km below this reservoir a tributary called Mayura Nadhi joins the Gomukhi Nadhi on its right flank. Mayura Nadhi runs for a length of 38Km from its origin which is also on the south eastern slopes of Kalrayan hills north east of Chinnasalem taluk. Two sub tributaries namely Thirumanimuktha nadhi on the right flank and Namasivayapuram Odai on the left join the Mayura Nadhi at 8 Km above the confluence of the Mayura nadhi, with the Gomukhinadhi. Gomukhi sub basin is located between N latitude 11⁰ 15'-12⁰ 00' and E Longitude 78⁰15'-79⁰ 15'. The taluks covered in this subbasin are Kallakurichi (Villupuram District), Athur (Salem District) Virudhachalam and Thittakudi (Cuddalore District). It receives an annual rainfall of 956mm with its major share during north east monsoon. The winter water level varies from 1 to 1.5m and the summer water level varies from 3.55 to 4.00 m

There are 80 Tanks and 43 Anicuts situated within the Gomukhi Nadhi Sub basin Catchment area having are Ayacut of 5007.58 Ha.

<u>1.1.1. CLUSTER CONVERGENCE TABLE - IIIRD PHASE SUB-BASINS</u> <u>GOMUKHI NADHI SUB BASIN</u>

CLUSTER WISE / INFRASTRUCTURE WISE / VILLAGE WISE CONVERGENT TABLE

Name of the Sub-dasin : GOMUKHI NADHI SUB BASIN.

SI. No	Clusters with the name of the tank	Cluster	Name of the cluster Revenue village		al Aya ea in F		To	tal Aro	ea in	Ha	WRO			ricu Ire	Ho ult	ure	AF		TN U	J	Ag mar tir	rke 1g	A I)	Fis rie	
				FI	ΡΙ	Gap	Wop	WP	Gap	(Focus crop)	Activiti es	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha
1	2	3	4	5	6	7	8	9	10	11	12	1 3	14	15	16	17	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7
		V	<u>/illupuram</u> <u>District</u>																							
		-						K	ADA	THUR	CLUSTE	ER														
	CLUSTER : 1	-	-																							
1	Vadakanan dal Anicut		Vadakanan dal	52.3 1	28.4 0	24. 00	80.7 1	104. 71			Flood bank															
	Vadakanan dal Tank	В									Anicut repairs															
		ale									shutters															
2	Kadathur tank	Chinnasalem	Kadathur	55.7 9	11.4 7	22. 10	67.2 6	89.3 6			Strengt hening the tank bund															
											Reconst ruction of sluice															

								Weir						
								Repairs						
								Supply			_			
								channel						
								Retaini			_		 	
								ng wall			_		 	
	Nallathur		15 1	25 4	16	50.6	52.2	Strengt						
3	tank	Nallathur	15.1 6	35.4 8	1.6 7	50.6 4	52.3	hening						
	tank		0	8	/	4	1	the tank						
								bund			_		 	
								Reconst						
								ruction						
								of						
								sluice					 	
								Weir						
								Repairs			_		 	
								Supply						
								channel			_		 	
								Retaini						
								ng wall			_			
	TT .1 1	TT .1 1	1.4.5	10.0	• •		•••	Strengt						
4	Kuthiraicha	Kuthiraicha	14.5	13.0	2.3	27.5	29.9	hening						
	ndal tank	ndal	3	5	5	8	3	the tank						
								bund			_			
								Reconst						
								ruction						
								of						
								sluice						
								Weir						
								Repairs					 	
								Supply						
								channel			_			
								Retaini						
								ng wall						

5	Karanur tank		Karanur	33.4 7	25.5 8	6.0 4	59.0 5	65.0 9			Strengt hening the tank							
					_		_	-			bund							
											Reconst							
											ruction							
											of							
											sluice							
											Weir							
											Repairs		 	 				
											Supply channel							
											Retaini							
											ng wall							
								KAL	LAK	URIC	HI CLUSTE	R						
	CLUSTER : 1I																	
1	Somandark		Somandark	0.02	5.01	6.1	15.6	21.8			Flood							
1	udi Anicut		udi	9.82	5.81	9	3	2			bank							
											Anicut							
											repairs							
											shutters							
2	Emapair		Ka.Mamma	66.7		1.0	66.7	67.8			Flood							
	Anicut	hi	nadhal	9	-	8	9	7			bank							
	Emapair	uric									Anicut							
	tank	lakı									repairs							
		Kallakurichi									shutters							
		Ľ							23		Strengt							
3	Kallakurich		Kallakurich	95.5	32.6	103	128.	207.	.5		hening							
	i Anicut		i		7	.00	17	64	3		the tank							
									-		bund		 	 				
	Kallakurich										Reconst							
	i tank										ruction of							
											01							

									S	luice							
										Weir							
										epairs	 	 					
										upply							
										annel	 	 	 	_			
										etaini							
										g wall	 	 	 	_			
	г ·			10.0	10	06.2	110	_		rengt							
4	Emapair	Emapair	77.6		19.	96.3	110.	5.		ening							
	tank	1	8	5	35	3	03	65		e tank							
										ound	 	 	 	_			
										econst							
									ru	ction							
										of							
										luice Veir	 	 	 	 	 		
										epairs							
										upply							
									ch	annel							
										etaini							
										g wall							
5	Thenkeeran	Thenkeeran	71.3	60.9	9.4	132.	140.	1.		lood							
5	ur Anicut	ur	9	5	3	34	42	35		oank							
	Thenkeeran								A	nicut							
	ur tank								re	pairs							
									sh	utters							
									St	rengt							
	Thatchur		35.8	11.6	16.	47.5	64.1		h	ening							
6	tank	Thatchur	9	6	57	5	2		the	e tank							
					-					ound							
									Re	econst							
									ru	iction							
										of							

										sluice								
										Weir Repairs								
										Supply channel								
										Retaini ng wall								
				1	1		1	NEEL	AMAN	GALAM CLU	JST	ER	 	 	 	 	 	
	CLUSTER : 1II																	
1	Neelamang alam Anicut		Neelamang alam	69.8 7	27.3 1	12. 04	97.1 8	109. 22		Flood bank								
	Neelamang alam tank									Anicut repairs								
										shutters								
2	Niraimathi tank	л.	Niraimathi	28.1 9	2.02	2.0 0	30.2 1	32.2 1		Strengt hening the tank bund								
		Kallakurichi								Reconst ruction of								
		×								sluice								
										Weir Repairs								
										Supply channel								
										Retaini ng wall								
3	Vilambar tank		Vilambar	37.0 1	15.4 3	9.2 5	52.4 4	61.6 9		Strengt hening the tank								

								bund								
								Reconst			 			_		
								ruction								
								of								
								sluice								
								Weir								
								Repairs								
								Supply								
								channel								
								Retaini								
								ng wall								
								Strengt								
4	Malaikottal	Malaikotta		21.1	17.	78.6	95.9	hening								
	am tank	am	7	1	27	8	5	the tank								
								bund			 	_				
								Reconst								
								ruction								
								of								
								sluice			 _				_	
								Weir								
								Repairs Supply			 					
								channel								
								Retaini			 					
								ng wall								
								Strengt								
_	Latchiyam		48.0	12.3	17.	60.4	77.4	Strengt hening								
5	tank	Latchiyam	3	9	05	2	7	the tank								
								bund								
								Reconst								
								ruction								
								of								
								sluice								

											Weir								
											Repairs				 _	 _		 	
											Supply								
											channel					_			
											Retaini								
											ng wall								
											Strengt								
6	Vanavaretti		Vanavaretti	37.0	14.1	10.	51.2	61.7			hening								
0	tank		v alla val etti	2	9	49	1	0			the tank								
											bund								
											Reconst								
											ruction								
											of								
											sluice								
											Weir								-
											Repairs								
											Supply								
											channel								
											Retaini								
											ng wall								
				1	1		1	N	AGA	LUR	CLUSTEI	R	1			1	1	1	
	CLUSTER																		
	: IV																		
	Kurur			88.1		8.6	88.1	96.7			Flood								
1	Anicut		Kurur	4	-	2	4	6			bank								
		_									Anicut								
	Kurur tank	am									repairs								
		gn									shutters								
		Thiyagadurugam													 -	 	 	 	
	Mudinamu	ıga		10 5		57	48.5	54.3			Strengt								
2	Mudiyanur tank	iya	Mudiyanur	48.5	-	5.7	48.5				hening the tank								
	tank	Th	-	/		4		1											
											bund		 		 _				-
											Reconst								
											ruction								

								of
								sluice
								Weir
								Repairs
								Supply
								channel
								Retaini
								ng wall
2	Virugavur	N/:	57.1	19.2	15.	76.4	92.2	Flood
3	Anicut	Virugavur	9	1	85	0	5	bank
	Virugavur							Anicut
	tank							repairs
								shutters
								Strengt
	Nagalur		70.2	35.9	10.	106.	116.	hening
4	tank	Nagalur	0	0	08	10	18	the tank
								bund
								Reconst
								ruction
								of
								sluice
								Weir
								Repairs
								Supply
								channel
								Retaini
								ng wall
								Strengt
	Kanangur		53.0		5.6	53.0	58.7	hening
5	tank	Kanangur	8	-	9	8	7	the tank
								bund
								Reconst
								ruction
								of

											sluice								
											Weir Repairs								
											Supply channel								
											Retaini ng wall								
6	Porasakuric hi tank		Porasakuric hi	38.7 7	11.9 3	8.9 6	50.7 0	59.6 6			Strengt hening the tank bund								
											Reconst ruction of sluice								
											Weir Repairs								
											Supply channel								
											Retaini ng wall								
								VAF	RANJA	ARAN	M CLUST	ER							
	CLUSTER : V																		
1	Ogaiyur tank	Thiyagadurugam	Ogaiyur	61.3 8	1.27	9.2 0	62.6 5	71.8 5			Strengt hening the tank bund								
		Thiyag									Reconst ruction of								

								sluice						
								XX 7 ·						
								Weir Repairs						
								Supply						
								channel						
								Retaini						
	Velakurichi		26.9	14.5	7.3	41.4	48.8	ng wall Flood		 		 _		
2	Anicut	Velakurichi	3	2	7.5	5	40.0	bank						
	Velakurichi							Anicut						
	tank							repairs						
								shutters						
								Strengt hening						
3	Varanjaram tank	Varanjaram	26.6	-	11. 50	26.6 9	38.1 9	hening the tank						
	talik		9		50	9	9	bund						
								Reconst						
								ruction						
								of sluice						
								Weir						
								Repairs						
								Supply						
								channel		 _				
								Retaini ng wall						
4	Asakalathur	Asakalathur	87.5	-	17.	87.5	105.	Flood						
	Anicut		5		94	5	49	bank						

	Asakalathur tank									Anicut repairs
										shutters
								T	HAGARA	CLUSTER
	CLUSTER : VI									
1	Thengiyana tham tank		Thengiyana tham	30.1 1	-	2.3 0	30.1 1	32.4 1		Strengt hening the tank bund
										Reconst ruction of sluice
		я								Weir Repairs
		asale								Supply channel
		Chinnasalem								Retaini ng wall
2	Paithanthur ai tank		Paithanthur ai	94.0 5	-	3.6 8	94.0 5	97.7 3		Strengt hening the tank bund
										Reconst ruction of sluice
										Weir Repairs

								Supply						
								Supply						
								 channel			 		 	
								Retaini						
								 ng wall						
								Strengt						
3	Thenchettiy	Thenchettiy	19.3	8.42	7.6	27.7	35.3	hening						
5	andal tank	andal	1	0.42	0	3	3	the tank						
								bund						
								Reconst						
								ruction						
								of						
								sluice						
								Weir						
								Repairs						
								Supply						
								channel						
								Retaini						
								ng wall						
								Strengt						
	Eliyathur		40.1		4.9	40.1	45.1	hening						
4	tank	Eliyathur	9	-	4	9	3	the tank						
	turik				•			bund						
								Reconst						
								ruction						
								of						
								sluice						
								Weir			_			
								Repairs						
								Supply			 			
								channel						
											 _		 _	
								Retaini						
				07.4	=0	0	1.45	ng wall			 		 	
5	Thagarai	Thagarai	-	87.4	58.	87.4	145.	Strengt						
-	tank			5	30	5	75	hening						

										the tank bund							
										Reconst							
										ruction							
										of							
										sluice							
										Weir							
										Repairs							
										Supply							
										channel							
										Retaini							
										ng wall							
								TH	IOTTIYA	M CLUSTI	ER					 	
	CLUSTER																
	: VII																
										Strengt							
1	Thottiyam		Thottiyam	19.0 6	7.23	6.6	26.2	32.9		hening							
	tank		1110 001 9 0011	6	,	4	9	3		the tank							
										bund							
										Reconst							
										ruction							
		н								of							
		ale								sluice Weir				_			
		nas								Repairs							
		Chinnasalem														 	 _
		G								Supply channel							
										Retaini				_			
										ng wall							
										Strengt							
	Bangaram		_	23.5		8.1	29.7	37.8		hening							
2	tank		Bangaram	6	6.19	0	5	5		the tank							
	WIIII			Ŭ		Ŭ		Ŭ		bund							

								Reconst								
								ruction								
								of								
								sluice								
								Weir								
								Repairs								
								Supply								
								channel								
								Retaini								
								ng wall								
	N							Strengt								
	Namasivay	Namasivay	18.9	11.1	7.6	30.0	37.6	hening								
3	apuram	apuram	1	1	2	2	4	the tank								
	tank	1						bund								
								Reconst								
								ruction								
								of								
								sluice								
								Weir								
								Repairs								
								Supply								
								channel								
								 Retaini								
								ng wall								
								 Strengt								
	Ulangakath	Ulangakath	45.1		14.	54.7	69.0	hening								
4	an tank	an	9	9.52	14. 29	1	09.0	the tank								
	antank	an	9		29	1	0	bund								
												+		_		
								Reconst								
								ruction								
								of								
								 sluice								
								Weir								
								Repairs								

										Supply
										channel
										Retaini
										ng wall
								V.I	P.AGARAN	M CLUSTER
	CLUSTER : VIII									
1	Elavadi Anicut		Elavadi	28.1 7	8.34	7.5 0	36.5 1	44.0 1		Flood bank
	Elavadi tank									Anicut repairs
										shutters
2	Kallanatha m Anicut		Kallanatha m	3.50	2.10	1.4 0	5.60	7.00		Flood bank
	Kallanatha m tank									Anicut repairs
		em								shutters
3	Thimmapur am Anicut	Chinnasalem	Thimmapur am	6.09	3.65	2.4 4	9.74	12.1 8		Flood bank
	Thimmapur am tank	Chii								Anicut repairs
										shutters
4	Pandiyakup pam Anicut		Pandiyakup pam	8.38	5.03	3.3 5	13.4 1	16.7 6		Flood bank
	Pandiyakup pam tank									Anicut repairs
										shutters
5	Maravanath am Anicut		Maravanath am	17.7 9	-	0.5 1	17.7 9	18.3 0		Flood bank

	Maravanath										Anicut						
	am tank										repairs						
											shutters						
6	V.P.Agara m tank		V.P.Agara m	55.4 1	31.7 2	18. 25	87.1 3	105. 38			Strengt hening the tank bund						
											Reconst ruction of sluice						
											Weir Repairs						
											Supply channel						
											Retaini ng wall						
								CHI	NNA	SALE	M CLUSTER						
	CLUSTER : IX																
1	Chinnasale m Anicut		Chinnasale m	74.1 3	39.0 4	41. 03	113. 17	144. 40	9. 80		Flood bank						
	Chinnasale m tank	alem									Anicut repairs						
		Chinnasalem									shutters						
2	Kaniyamoo r Anicut	Chi	Kaniyamoo r	45.8 3	15.0 4	10. 75	60.8 7	71.6 2			Flood bank						
	Kaniyamoo r tank										Anicut repairs						

								shutters									
								Strengt									
3	Rayarpalay	Rayarpalay	25.8	16.2	11.	42.0	53.2	hening									
	am tank	am	4	5	12	9	1	the tank									
								bund					 _		 		
								Reconst									
								ruction									
								sluice									
								Weir					-		 	_	
								Repairs									
								Supply									
								channel									
								Retaini									
								ng wall									
4	Pethanur	Pethanur	23.6	8.74	4.0	32.4	36.4	Flood									
4	Anicut	Pethanur	8	0.74	2	2	4	bank									
	Pethanur							Anicut									
	tank							repairs									
								shutters									
_	Ulagiyanall	Ulagiyanall	33.4	21.6	11.	55.0	67.0	Flood									
5	ur Anicut	ur	5	2	98	7	5	bank									
	Ulagiyanall							Anicut									
	ur tank							repairs									
								shutters									
			·				PERU	MANGALAM CLU	STE	R	·			· 1		·	
	CLUSTER																
	: X																

1	Vepudaiyan thangal Anicut		Siruvathur	48.1 5	17.0 9	15. 02	65.2 4	80.2 6	Flood bank					
	Vepudaiyan thangal tank								Anicut repairs					
									shutters					
2	V.Theertha puram tank		V.Theertha puram	11.8 4	7.10	4.7 3	18.9 4	23.6 7	Flood bank					
									Anicut repairs					
									shutters					
3	Varadhappa nur Anicut		Varadhappa nur	33.7 0	10.9 8	10. 31	44.6 8	54.9 9	Flood bank					
		Kallakurichi							Anicut repairs					
		Kalla							shutters					
4	Pukkiravari Anicut	Ŧ	Pukkiravari	31.0 7	9.91	10. 10	40.9 8	51.0 8	Flood bank					
	Pukkiravari tank								Anicut repairs					
									shutters					
5	Sirumangal am Anicut		Sirumangal am	20.6 8	12.4 1	8.2 7	33.0 9	41.3 6	Flood bank					
	Sirumangal am tank								Anicut repairs					
									shutters					
6	Perumangal am Anicut		Perumangal am	20.9 7	2.17	5.3 0	23.1 4	28.4 4	Flood bank					

	Perumangal am tank									Anicut repairs							
										shutters							
7	Kilnarriyap panur tank		Kilnarriyap panur	34.1 9	1.36	8.0 7	35.5 5	43.6 2		Strengt hening the tank bund							
]	THEN	PONI	PORAPPY CLUS	STER						
	CLUSTER : XI																
1	Rayappanur Anicut		Rayappanur	30.8 2	18.4 9	12. 33	49.3 1	61.6 4		Flood bank							
	Rayappanur tank									Anicut repairs							
		ısalem								shutters							
2	Thenponpor appy Anicut	Chinnasalem	Thenponpor appy	35.4 4	21.2 6	14. 17	56.7 0	66.1 7	4. 70	Flood bank							
	Thenponpor appy tank									Anicut repairs							
										shutters							

3	Vasudavan ur tank		Vasudavan ur	9.19	5.51	3.6 7	14.7 0	18.3 7		Flood bank							
										Anicut repairs							
										shutters							
4	Ammaiyaga ram tank		Ammaiyaga ram	6.15	1.95	2.1 3	8.10	10.2 3		Flood bank							
										Anicut repairs							
										shutters							
								TH	OTTAPA	DI CLUSTI	ER						
	CLUSTER : XII																
1	Poondi Anicut		Poondi	27.2 9	8.82	5.8 8	36.1 1	41.9 9		Flood bank							
	Poondi tank	m								Anicut repairs							
		sale								shutters							
2	Thagamthe erthapuram tank	Chinnasalem	Thagamthe erthapuram	27.4 9	-	2.8 0	27.4 9	30.2 9		Strengt hening the tank bund							
										Reconst ruction							

									C							
									of							
									luice							
									Weir							
								R	epairs							
								S	upply							
								cł	nannel							
								R	etaini							
								n	g wall							
_	Thottapadi		38.0	19.4	20.	57.4	77.4		Flood							
3	Anicut	Thottapadi	0	2	00	2	2		bank							
	Thottapadi		, v		00				nicut							
	tank								epairs							
	tallk								-pans					_	-	
								sh	nutters							
										 	 		 	 	_	
	77 1 1	TZ 1 1	41.0		~ 4	41.0	12.4		trengt							
4	Kalasamudr	Kalasamudr		-	2.4	41.0	43.4		ening							
	am tank	am	4		1	4	5		e tank							
									bund		 					
									econst							
								n	uction							
									of							
									luice							
									Weir							
								R	epairs							
								S	upply							
								cł	nannel							
									etaini							
									g wall							
										+ +					-	+
	Pethasamud	Pethasamud	11.9		2.0	16.3	18.4		trengt ening							
5	ram tank	ram	7	4.42	3	9	2		e tank							
		14111	'		5				bund							
									econst		 					+-
								n	uction							

		1									
										of	
		-								sluice	
										Weir	
		-								Repairs	
										Supply	
										channel	
										Retaini	
										ng wall	
								KRIS	SHNAPU	IRAM CLUSTER	
	CLUSTER										
	: XIII										
										Strengt	
1	Kural tank		Kural	29.4	-	3.3	29.4	32.7		hening hening	
1	Kurai tank		Kurai	4	-	0	4	4		the tank	
										bund bund	
										Reconst	
										ruction	
										of I I I I I I I I I I I I I I I I I I I	
										sluice	
		1								Weir	
		g								Repairs	
		Chinnasalem								Supply	
		asa								channel	
		nn								Retaini	
		Chi								ng wall	
										Strengt	
2	Thattathirip		Thattathirip	7.00	5.30	4.0	12.3	16.3		hening hening	
	uram tank		uram	/.00	5.50	0	0	0		the tank	
										bund	
		1								Reconst	
										ruction	
										of	
										sluice	
										Weir	

								Repairs	
								Supply channel	
								Retaini	
								ng wall	
								Strengt	
	Alambalam		23.0	11.6	11.	34.6	45.6	hening	
3	tank	Alambalam	0	5	00	5	5	the tank	
	talik			5	00		5	bund	
								Reconst	
								ruction	
								of	
								sluice	
								Weir	
								Repairs	
								Supply	
								channel	
								Retaini	
								ng wall	
								Strengt	
4	Krishnapur	Krishnapur	46.0	30.2	26.	76.2	102.	hening hening	
4	am tank	am	0	9	50	9	79	the tank	
								bund bund	
								Reconst	
								ruction	
								of	
								sluice	
								Weir	
								Repairs	
								Supply	
								channel	
								Retaini	
								ng wall	

5	Karunthala kurichi tank		Karunthala kurichi	15.8 9	5.54	3.8 0	21.4	25.2 3		Strengt hening the tank bund Reconst ruction of sluice Weir Repairs Supply channel						
										Retaini						
									ARPALAY	ng wall						
	CLUCTED							INAIIN	ARPALAY	AWI CLUS	ĸ					
	CLUSTER : XIV															
1	Nainarpalay am tank		Nainarpalay am	26.5 7	9.00	7.3 3	35.5 7	42.9 0		Strengt hening the tank bund						
		ısalem								Reconst ruction of sluice						
		Chinnasalem								Weir Repairs						
										Supply channel						
										Retaini ng wall						
2	Anumanand al Anicut		Anumanand al	27.9 8	8.17	6.9 0	36.1 5	43.0 5		Flood bank						

	Anumanand al tank								Anicut repairs					
									shutters					
3	Sampakuric hi tank	Sampakuric hi	17.0 0	9.88	7.0 0	26.8 8	33.8 8		Flood bank					
									Anicut repairs					
									shutters					
4	Karunkuli tank	Karunkuli	56.0 8	-	4.5 5	56.0 8	60.6 3		Flood bank					
									Anicut repairs					
									shutters					
5	Maruthamal aiyan Anicut	Ammmakal athur	4.66	2.79	1.8 6	7.45	9.31		Flood bank					
	Ammmakal athur tank								Anicut repairs					
									Shutters					
6	Eriyur tank	Eriyur	29.1 5	7.23	7.5 2	36.3 8	43.9 0		Flood bank					
									Anicut repairs					
									Shutters					
			268 7.93	931. 19	817 .63	361 9.12	439 1.72	45 .0 3						
		ore District												
	CLUSTER : XV													

1	Kolavai tank		Kolavai	37.5 0	8.45	31. 23	45.9 5	77.1 8	Strengt hening the tank					
									bund					
									Reconst					
									ruction					
									of					
									sluice					
		İ							Weir					
									Repairs					
									Supply					
									channel					
									Retaini					
									ng wall					
									Strengt					
2	S. Naraiyur	ore	S. Naraiyur	35.8	19.2	15.	55.0	70.8	hening					
	tank	alc	S. Maraiyui	0	0	87	0	7	the tank					
		Mangalore							bund					
		Ϊ							Reconst					
									ruction					
									of					
									sluice					
									Weir					
									Repairs					
									Supply					
									channel					
									Retaini					
									ng wall					
									Strengt					
3	Arasankudi		Arasankudi	16.5		4.6	28.7	33.4	hening					
	tank		1 musumaun	8	5	7	3	0	the tank					
									bund					
									Reconst					
									ruction					

								- f				1			
								of sluice							
											-				
								Weir							
								Repairs			-				
								Supply							
								 channel			 		 		
								Retaini							
								 ng wall			 		 		
	C		260	20.1	17	57.0	74.2	Strengt							
4	Sirupakkam tank	Sirupakkam	36.8	20.1 9	17. 25	57.0 4	74.2 9	hening the tank							
	tank	-	5	9	23	4	9	bund							
													_		
								Reconst ruction							
								of							
								sluice							
								 Weir			 		 		
								Repairs							
								Supply					 _	_	
								channel							
								Retaini			 _				
								ng wall							
								 Strengt					-		
	Rettakurich	Rettakurich	24.2		16.	33.6	49.7	hening							
5	i tank	i	3	9.38	10.	1	1	the tank							
		1			10	1	1	bund							
								Reconst							
								ruction							
								of							
								sluice							
								 Weir			1				
								Repairs							
					1			Supply							
								channel							
L			L	1				 •		 1					I

									Retaini							
									ng wall							
6	J. Endal tank		J. Endal	43.2	25.9 6	17. 30	69.2 2	86.5 2								
	J. Endal Anicut								Flood bank							
									Anicut repairs							
									Shutters							
				20.6		10	27.7	41 1	Strengt							
7	A.Marur tank		A.Marur	20.6 8	7.07	13. 44	27.7 5	41.1 9	hening the tank							
									bund			 				
									Reconst							
									ruction of							
									sluice							
									Weir		 					
									Repairs							
									Supply							
		II							channel							
		Nallur							Retaini							
									ng wall			 	-			
									Strengt							
8	Nagar tank		Nagar	40.3	24.2	16.	64.6	80.7	hening the							
			Tugai	9	3	15	2	7	tankbun							
									d							
		1							Reconst							
									ruction							
									of							
									sluice							
									Weir							
									Repairs							

								Supply channel						
								Retaini ng wall						
9	Sepakkam tank	Sepakkam	28.4	17.0 7	11. 38	45.5 2	56.9 0							
	Kattumailur Anicut							Flood bank						
								Anicut repairs						
								Shutters						
			283. 74	143. 70	143 .39	427. 44	570. 83							

Viller District Total						45
Villupuram District Total	268	931.	817	361	439	.0
Ayacut	7.93	19	.63	9.12	1.72	3
Cuddalore District Total	283.	143.	143	427.	570.	
Ayacut	74	70	.39	44	83	
						45
	207	107	061	404	406	Δ

	297	107	961	404	496	.0
Total	1.67	4.89	.02	6.56	2.55	3

Sl.N o.	Name of the cluster / Insfrastructure/ village	Tota	l Ayacut (Ha)	Tot	al area (H	a)	WRO	Agr	culture	T	NAU	Hor	ticultur e	mai	Agri rketing	I	AED	Fis	heries		nimal bandr y
		FI	PI	Gap	Wop	WP	Gap		Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha	Act	No./Ha
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	Villupuram Dis	strict						~														
1	KADATHUR - I	171.26	113.98	56.16	285.24	341.40	0.00	Strengthenin g the tank bund Reconstructi														
								on of sluice														
								Weir Repairs														
								Supply channel Retaining wall														
								Flood bank														
								Anicut repairs														
								shutters														
2	KALLAKURICHI - II	357.07	129.74	155.62	486.81	611.90	30.53	Strengthenin g the tank bund Reconstructi on of sluice Weir Repairs														
								Supply channel Retaining wall														
								Flood bank														
								Anicut repairs														
								shutters														
3	NEELAMANGALA M - III	277.69	92.45	68.10	370.14	438.24	0.00	Strengthenin g the tank bund														
								Reconstructi on of sluice														

1.1.2. CONVERGENT TABLE - ABSTRACT (FOR EACH CLUSTER)

								Weir Repairs Supply channel Retaining wall Flood bank Anicut repairs shutters							
4	NAGALUR - IV	355.95	67.04	54.94	422.99	477.93	0.00	Strengthenin g the tank bund Reconstructi on of sluice							
								Weir Repairs Supply channel Retaining wall Flood bank Anicut repairs shutters							
5	VARANJARAM - V	202.55	15.79	46.01	218.34	264.35	0.00	Strengthenin g the tank bund Reconstructi on of sluice Weir Repairs Supply channel Retaining wall Flood bank Anicut repairs shutters							

6	THAGARAI - VI	183.66	95.87	76.82	279.53	356.35	0.00	Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel							
								Retaining wall							
7	THOTTIYAM - VII	106.72	34.05	36.65	140.77	177.42	0.00	Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel							
								Retaining wall							
8	V.P.AGARAM - VIII	119.34	50.84	33.45	170.18	203.63	0.00	Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel							
								Retaining wall							
								Flood bank							
								Anicut repairs							
								shutters							

9	CHINNASALEM - IX	202.93	100.69	78.90	303.62	372.72	9.80	Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel Retaining							
								wall Flood bank							
								Anicut repairs							
								shutters							
10	PERUMANGALA M - X	200.60	61.02	61.80	261.62	323.42	0.00	Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel Retaining wall							
								Flood bank							
								Anicut repairs							
								shutters							
11	THENPONPOREPP Y - XI	81.60	47.21	32.30	128.81	156.41	4.70	Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel Retaining wall							

								Flood bank								
								Anicut								
								repairs								
								shutters								
12	THOTTAPADI - XII	145.79	32.66	33.12	178.45	211.57	0.00	Strengthenin g the tank bund								
								Reconstructi on of sluice								
								Weir Repairs								
								Supply channel Retaining wall								
								Flood bank								
								Anicut repairs								
								shutters								
13	KRISHNAPURAM - XIII	121.33	52.78	48.60	174.11	222.71	0.00	Strengthenin g the tank bund								
								Reconstructi on of sluice								
								Weir Repairs								
								Supply channel Retaining wall								
14	NAINARPALAYA M - XIV	161.44	37.07	35.16	198.51	233.67	0.00	Strengthenin g the tank bund								
								Reconstructi on of sluice								
								Weir Repairs								
								Supply channel Retaining wall								
								Flood bank								

								Anicut repairs shutters							
		2687.93	931.19	817.63	3619.12	4391.72	45.03							 	
	Cuddalore District														
15	J.ENDAL - XV	194.22	95.33	102.4 2	289.55	391.97		Strengthenin g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs							
								Supply channel Retaining wall							
								Flood bank							
								Anicut repairs							
								shutters Strengthenin						 	
16	SEPPAKKAM	89.52	48.37	40.97	137.89	178.86		g the tank bund							
								Reconstructi on of sluice							
								Weir Repairs Supply							
								channel Retaining wall							
								Flood bank							
								Anicut repairs shutters							
				143.3											
	Cuddalore District Villupuram District	283.74 2687.9 3	143.70 931.19	9 817.6 3	427.44 3619.1 2	570.83 4391.7 2	45.0 3								
	TOTAL	2971.6 7	1074.8 9	961.0 2	4046.5 6	4962.5 5	45.0 3								

CHAPTER - 1.2 HYDROLOGY

1.2.1 General :-

Gomukhi is a tributary of Manimuktha which is a tributary of Vellar River Mayura & Thirumainmuktha are the tributaries of Gomukhi.

1.2.2 Location :-

Gomukhi Sub basin area is 1191.10Sq.Km in both hilly & plain area. The talukes covered in this sub basin are Atttur, Thalaivasal of Salem District, Kallakurichi of Villupuram and Virudhachalam & Tittagudi at Cuddalore District.

1.2.3 Catchment Area of Gomukhi Sub - Basin :-

The Gomukhi sub basin has a typical climate, owing to the extensive major catchments area in hills and mainor catchment in plains. Gomukhi Sub- basin enjoys the benefits of mostly North East monsoon and slightly in summer season.

1.2.4 Hydro Meteorology :-

The Hydro Meteorology parameters include rainfall, temperature, humidity, wind velocity, evaporation and duration of sun shine which determine the climate of the basin

1.2.5 Rain Fall :-

Average annual rainfall of gauging stations influencing this sub basin is as follows.

Sl.No.	Name of Rain gauge station	North East Monsoon	Summer	South west monsoon	Winter	Annual
1	Kallakurichi	422	95	431	22	970mm
2	Kattumailur	486	74	356	26	942mm
	Avarage	454		394		956mm

a. <u>CLIMATE</u>

The Vellar basin lies in a low rainfall belt having an annual average rainfall of 956mm southwest

monsoon contribute 394mm, while NE monsoon contributes 454mm. This basin receives major share of its rainfall during NE monsoon. This monsoon helps to build up storage in the tanks Non system rainfed. This basin lies on the leeward side of western Ghats on Western sides southwest monsoon reinfall though lesser than NE monsoon rainfall still contribute some runoff helping to buildup storage in tanks for the measurement of Hydro meteorological parameters in the basin area. There are two weather stations at Lekkur & Mangalapuram and their data are taken for the study.

b. SOIL CLASSIFICATION

In this sub basin due to different stages, weathering & parent material the soil types are met with in

combination of Inceptisol, Alfisol and Vertisol more prominent type is Inceptisol.

Inceptisol	Red or brown or grey soil	Suited for commonly
meepusor	with surface horizon more	grown crops with
	developed than sub	exceptions.
	surface. They are	
	developing soils,	
	moderately deep, coarse	
	loamy to loam moderately	
	drained to well drained.	
Alfisol	The red or brown soils	Annual crops with shallow
	having accumulation of	roots systems cum up
	alleviated clay in sub	wells.
	surface horizon it well	
	drained poor water and	
	nutrient holding capacity	
Vertisols	Black soil	Suitable for cotton, pulses
		etc.,

(Change as suited to this sub - basin)

c. LAND HOLDINGS

The Details of farm holdings and size classes prevalent in Gomukhi sub basin are given below. 80 % land holdings with he small and medium farmers.

1.2.6 DEMOGRAPHY

Name of	Total No.of	Total No.of		Population	
sub basin	Blocks	Villages	2004	2010	2025
Gomukhi	3	83			

1.2.7 WATER POTENTIAL

Surface water potential Ground water yield	•	98.77 Mcum 223.05Mcum
Total	:	321.82Mcum

1.2.8 WATER DEMAND

		Witl	hout Project	With Project
i ii	Domestic Live stock	:	16.90 Mcum 20.96 Mcum	16.90 Mcum 20.96 Mcum
iii	Industrial	:	6.00 Mcum	6.00 Mcum
iv	Irrigation (PWD tank)	:	105.66 Mcum	85.94 Mcum
v	P.U. Tanks	:	25.91 Mcum	25.91 Mcum
	Total	-	175.43Mcum	155.71Mcum

1.2.9 WATER BALANCE :

Surplus	=	146.39Mcum	166.11Mcum
---------	---	------------	------------

Salient features of Implementation of PIM Gomukhi Sub - basin

1) The sub - basin :

This is one of the seven sub basins of the Vellar river basin totally 80 irrigation tanks are under the control of Water Resources Department (WRD) of Public works Department (PWD) in this sub - basin. The list of tanks covered with more details are furnished in the Annexure - 1. These 80 tanks are located within the sub - basin's hydraulic boundary spread over 83 Villages of Vadakkanadal of Villupuram District, Seppakkam of Cuddalore District. The total command ara under these 80 tanks works out to 4345.82 Ha. (Annexure 1)

2) Command area :

under Non - System tanks (80 tanks)-	4345.82 Ha
Anicut (43 Nos) -	661.76 Ha
Total -	5007.58 Ha

3) An assessment of number of WUA's

villages only. Ha)

4) An account of "Awareness creation"

Activates undertaken and "Walkthrough Surveys" carried out.

- i) There are 80 tanks in the sub-basin spread over 83 villages.
- ii) As detailed out in Anexure 01. All these villages were visited by the WRO officials and awareness about various activities, contemplated under IAMWARM Project has been created.
- iii) Details of Villages covered, walkthrough surveys conducted, farmers attended, list of works suggested by the farmers, list of works officials are all furnished in the Annexure - 02.
- 5) Schedule for completion of delineation and preparation for WUA documents, comprising of :-
- i) Form I : Details to be notified by District collectors, (End of March 09)
- ii) Form II : WUA document to be notified by district collectors (End of April 09)
- iii) Completion of preparatory works for the conduct of Elections for WUA's (End of May - 09)

- 6) Schedule for Conduct of Elections in the Sub basin for farming management committees will be completed by end of Jan 2010.
- 7) Initiating and completing the process of publishing EOI to hire support Organisation at sub-bsin level. (End Jun 2009)
- 8) Providing request for proposals (RFPs) to all the short listed agencies, and obtaining technical and cost proposals. (Middle of August 2009)
- 9) Selection and deployment of support Organisation to the sub basin (End of sep 2009)
- 10) Appointment and the Role of competent Authorities.
 - i) Section 26 of the Tamil Nadu Farmers Management of Irrigation Systems (TNFMIS) act provides for the appoint of "competent Authorities" to assist the respective farmers organization (WUA, Distributory committee and Project Committee) in the implementation and execution of all decisions taken by such farmers Organization similarly every farmer's organization shall extend such co-option or assistance as may be required by the competent authority, for carrying out all the tasks related to implementation of TNFMIS Act.
 - ii) It is kproposed to form 60 WUAs only under IAMWARM Project to cover a command area of 5123.89 Ha.
 - iii) Appointment of competent Authorities for the WUAs proposed to be formed under IAMWARM Project is based on the WRO section officer wise" distribution as indicated below.
 Name of the WRO Sub Division officers working in the

GOMUKHI SUB BASIN

a Assistant Executive Engineer W.R.O., P.W.D., Vellar Basin Sub Division, Kallakurichi.

List of Competent Authorities.

a. Section officer, WRO Irrigation section Vellar Basin. Kallakurichi.	WUAs GOMI - 2 to 13, 22 to 34, 36
 b. Section officer WRO Irrigation section Vellar Basin. Chinnasalem. 	WUAs GOMI - 14 to 21, 35, 37 to 52
c. Section officer WRO Irrigation Gomukhi Nadhi Project section. Vadakkandal	WUAs GOMI- 1
d. Section officer WRO Irrigation section. Vellar Basin, Veppur.	WUAs GOMI- 53 to60

11)Involvement of farmers in the preparation "Scheme Modernisation Plans"

- i) Based on the outcome of the "Awareness Creation Programme" and walkthrough survey carried out with the involvement of farmers, a list of tasks proposed to be taken up for "Modernization" under IAMWARM project was discussed with No.of farmers from 83 villages and the tasks was also prepared and exhibited in the notice Board of the village Administrative officers and panchayat office.
- During the meeting, the farmers present were also informed that soon after finalization of contract for carrying out "Modernization of Irrigation systems" a Notice Board" with the details about the nature of works. its cost period of contract and name of the contractor will all be fixed at the site of the work as well as in the panchayath office, for information of the farmers. They have also been informed that they are free to supervise the work by the contractor and any lapse in the quality of work may be reported to the field officers of WRO as wall as the Executive Engineer of WRO, who has been designated as the Nodal officer for the sub basin concerned.
- iii) The field officers of WRO have all been informed about the problems in handing over the operation and maintenance responsibilities to the farmers concerned, if the tasks as desired by them are not included in the modernization of the system and also in case some of the tasks already planned are not implanted due to some reasons or other.
- iv) The WRO officers were also informed that hey are personally responsible for handing over the irrigation systems after completing the tasks related to modernization of irrigation systems.

12)Current status of Recovry of water charges.

- i) An enquiry conduced with the "village Adminstrative officers" (VAO's) of randomly selected villages (15 numbers out of 83 Village) the normal water charges recovery as informed by the VAO works out to 50-60% only. about the expected percentage of 80-90%.
- ii) With the proposal to form New WUAs under IAMWARM in Gomukhi sub basin the managing committee will be trained to take up the responsibility of improving the water charges recovery percentage. These wll be followed up after coimpleting the modernization tasks and handing over of the O & M responsibilities to WUAs.

13)"Capacity Building" of the WUA farmers:

- i) The Support Organisation Group" will prepare "Training Modules" required for building the capacity of the WUA farmers. based on a "Training Needs" Analysis. They will also Organize various "Capacity building" Programmes at suitable locations within the sub - basin command area, to benefit the farmers of the WUAs in the sub - basin.
- ii) The "Support Organization" will also arrange for organizing the "Study Tours" both within and outside the state to enhance their knowledge and experiences which will help them to improve the crop productivity and there by the farmer's income.

- iii) The support Organization will also conduct necessary "awareness programme" and impart training to educate the farmers of the WUAs in all aspects of the TNFMIS act, TNFMS rules and election procedures for constituting the "Managing committees" of the WUAs
- 14) The competent Authorities appointed for the sub-bains will also be trained to effectively to interact with WUA farmers and maintain good rapport and relationship with the farming community in the sub-basin.

Desilting the Supply Channel :-

There are 80 tanks situated within Gomukhi sub basin catchment area a Lesser quantum of water flows to the tanks and balance water is over flanked and flows into agricultural lands.

1.6.2 Outcome of the Project.

- 1. Enhancing the conveyance efficiency from 43% to 53%
- 2. The out of present Gap area of **961.03** ha, **916.00** Ha has been proposed to cover as fully irrigated area. The balance gap of **45.03** Ha is left as it is since it is covered with building etc.,
- 3. The irrigation infrastructure development works proposed in this scheme are for **68** tanks, **41** Anicuts and the supply channel having a total length of **189.98** km.

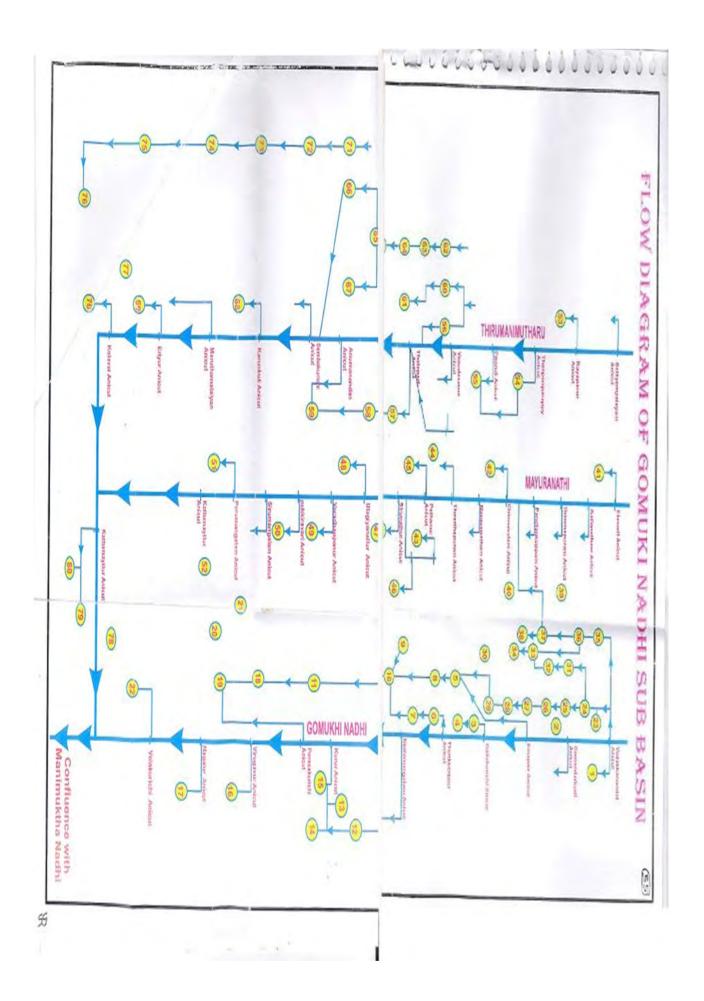
1.6 REHABILITAION OF IRRIGATION INFRASTRUCTURE OF THE GOUMUKHI SUB BASIN

1.6.1 Structural Status & Deficiencies in the system.

The following are the present structural condition of the Gomukhi Sub Basin system.

- 1. This system is a old system existing for more than 100 years as such requires Rehabilitation of tanks and its supply channels.
- 2. The tanks and its supply channels are heavily silted up which require strengthening of tank bund and improvements to supply channels.
- 3. The damaged (or) dilapidated condition of the sluices, weirs of tanks and head sluices of supply channels need repairs.
- 4. The damaged condition of the Anicuts and its supply channels which requires rehabilitation works.

In order to improve the conveyance and operational efficiency in irrigation. It is now proposed to improve and modernize the irrigation Infrastructures in Gomukhi sub basin.


1. Repairs to damaged anicuts such as body wall, apron, shutters, flood bank, Skin wall are proposed in this estimate.

2. Strengthening of tank bund by earthwork excavation using machineries.

3.Desilting the supply channels by earthwork excavation using machineries.

4.Providing Bed bars to maintain the bed level and inner slopes of the supply channels 5.Repairing Restoring the traditional water bodies (i.e tanks)

- a. Restoring the capacity of the tanks, supply channels by desilting
- b. Strengthening the tank bund with free board of 1.50m with consolidation by power roller for effective storing the water and conveying it to the entire command area and also for conveying agriculture inputs to the field.
- c. Reconstruction of Collapsed weirs.
- d. Repairs to the damaged weirs
- e. Reconstruction of collapsed sluices
- f. Repairs to the damaged sluices.
- g. Providing Model Sections and retaining walls in selective area of the tanks.
- h. Providing S.G shutter / plug arrangements to sluices, Head sluices, scour vents etc.,
- i. Fixed boundary stones in the tanks to prevent encroachement.
- j. Removing, Repairing and refixing in position of the existing S.G. shuttering arrangements and providing locking arrangements etc.,
- k. Provisions for Turfing the rear side slopes of the tank bund near sluices and weir.

CROPPING PATTERN

Name of the sub Basin	: Gomukhinadhi	Fully Irrigated	2971.67	На
District	: Viluppuram/Cudalore	Partially Irrigated	1074.88	Ha
Registered Ayacut Area	: 5007.58 Ha	Gap	961.03	Ha
		Total Ayacut Area	5007.58	На

S.No.	Crop		Without	Project			With Pr	•		Increase
0.110.	•	FI	PI	RF/G	TOTAL	FI	PI	RF/G	TOTAL	morease
I	Perennial crop									
1	Coconut	15.00	13.68	0.00	28.68	30.68	0.00	0.00	30.68	2.00
2	Colius	0.00	0.00	0.00	0.00	13.00	0.00	0.00	13.00	13.00
3	Fodder	10.00	0.00	0.00	<u>10.00</u> 0.84	65.00 0.84	0.00	0.00	65.00	55.00
4 5	Casurina Mango	0.00	30.00	0.00	30.00	40.00	0.00	0.00	0.84 40.00	0.00
6	Sapota	0.00	2.00	0.00	2.00	7.00	0.00	0.00	7.00	5.00
7	Guava	0.00	5.00	0.00	5.00	10.00	0.00	0.00	10.00	5.00
	Sub Total	25.00	51.52	0.00	76.52	166.52	0.00	0.00	166.52	90.00
=	Annual crop									
1	Sugar Cane	416.43	262.05	0.00	678.48	647.75	0.00	0.00	647.75	-30.73
2	Tapioca	0.00	179.00	242.00	421.00	580.00	0.00	0.00	580.00	159.00
3	Turmeric	319.91	0.00	0.00	319.91	422.91	0.00	0.00	422.91	103.00
4	Banana	70.00	0.00	0.00	70.00	115.00	0.00	0.00	115.00	45.00
	Sub Total	806.34	441.05	242.00	1489.39	1765.66	0.00	0.00	1765.66	276.27
III	1 st crop									
1. a	Paddy	1402.33	305.67	0.00	1708.00	0.00	0.00	0.00	0.00	-1708.00
b	Paddy - SRI	0.00	0.00	0.00	0.00	1247.97	0.00	0.00	1247.97	1247.97
2	Maize	250.00 0.00	143.63	47.20 383.40	440.83 383.40	474.00 460.00	0.00	0.00	474.00	33.17 76.60
3	Pulses Cotton	373.00	0.00 133.01	100.00	606.01	630.40	0.00	0.00	630.40	24.39
5	Tomato	3.00	0.00	0.00	3.00	10.00	0.00	0.00	10.00	7.00
6	Brinjal	20.00	0.00	0.00	20.00	35.00	0.00	0.00	35.00	15.00
7	Bhendi	10.00	0.00	0.00	10.00	30.00	0.00	0.00	30.00	20.00
8	Chillies	51.00	0.00	0.00	51.00	78.00	0.00	0.00	78.00	27.00
9	Onion	25.00	0.00	0.00	25.00	35.00	0.00	0.00	35.00	10.00
10	Gourds	6.00	0.00	0.00	6.00	25.00	0.00	0.00	25.00	19.00
11	Flowers	0.00	0.00	0.00	0.00	5.00	0.00	0.00	5.00	5.00
12	Buildings	0.00	0.00	45.03	45.03	0.00	0.00	45.03	45.03	0.00
13	Fallow	0.00	0.00	143.40	143.40	0.00	0.00	0.00	0.00	-143.40
	Sub Total	2140.33	582.31	719.03	3441.67	3030.37	0.00	45.03	3075.40	-366.27
	Grand Total (I+II+III)	2971.67	1074.88	961.03	5007.58	4962.55	0.00	45.03	5007.58	0.00
IV	2 nd Crop									
1. a	Paddy	300.00	0.00	0.00	300.00	0.00	0.00	0.00	0.00	-300.00
	,					0.00				
b	Paddy - SRI	0.00	0.00	0.00	0.00	647.00	0.00	0.00	647.00	647.00
2	Maize	0.00	220.00	100.00	320.00	800.00	0.00	0.00	800.00	480.00
3	Pulses	0.00	210.00	100.00	310.00	900.00	0.00	0.00	900.00	590.00
4	Groundnut	15.00	130.00	100.00	245.00	570.00	0.00	0.00	570.00	325.00
5	Gingely	10.00	15.00	0.00	25.00	30.00	0.00	0.00	30.00	5.00
6	Brinjal	20.00	0.00	0.00	20.00	20.00	0.00	0.00	20.00	0.00
7	Bhendi	0.00	0.00	0.00	0.00	15.00	0.00	0.00	15.00	15.00
8	Chillies	0.00	0.00	0.00	0.00	25.00	0.00	0.00	25.00	25.00
-	Sub Total	345.00	575.00	300.00	1220.00	3007.00	0.00	0.00	3007.00	1787.00
v	3 rd Crop									
	Total	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	Great Grand Total	3316.67	1649.88	1261.03	6227.58	7969.55	0.00	45.03	8014.58	1787.00

EE (WRD)

JD (AH)

TNAU

DD (Horti)

Sl.No.	Name of Crop	Area in Ha	Crop water requirement in mm	Total Crop water requirement in Mcm	Irrigation water requirement at source Eff=43%	Total Irrigation requirement in Mcm
Ι	Perennial Crops					
1	Coconut	28.68	1646	0.472	1.10	1.10
2	Mango	30.00	402	0.121	0.28	0.28
3	Sapota	2.00	526	0.011	0.02	0.02
4	Guava	5.00	256	0.013	0.03	0.03
5	Fodder	10.00	413	0.041	0.10	0.10
6	Casurina	0.84	1001	0.008	0.02	0.02
	Sub Total	76.52		0.67	1.55	1.55
II	Annual Crops					
1	Sugar cane	678.48	1168	7.925	18.43	18.43
2	Banana	70.00	1681	1.177	2.74	2.74
3	Tapioca	421.00	538	2.265	5.27	5.27
4	Turmeric	319.91	489	1.564	3.64	3.64
т	Fodder	0.00	0.00	0.000	0.00	0.00
	Medicinal plant	0.00	0.00	0.000	0.00	0.00
	Sub Total	1489.39	0.00	12.93	30.07	30.07
III	1st Crop	110,10,		120,0	20107	00007
	-	1709.00	11(2	10.964	46.20	46.20
1.a	Paddy Daddy SDI	1708.00	1163	19.864	46.20	46.20
<u>b</u> 2	Paddy - SRI Cotton	0.00 606.01	814 231	0.000 1.400	0.00 3.26	0.00 3.26
3	Maize				5.64	5.64
4	Blackgram	440.83	550 263	2.425	0.00	0.00
5	Tomato	3.00	460	0.000	0.00	0.00
6	Onion	25.00	337	0.084	0.20	0.20
7		10.00	462	0.046	0.11	0.11
	Bhendi					
8	Brinjal	20.00	588	0.118	0.27	0.27
9 10	Gourds Pulses	<u>6.00</u> 383.40	268 252	0.016	0.04 2.25	0.04
10	Chillies	51.00	536	0.966	0.64	0.64
11	Buildings	45.03	0			0.04
12	Fallow	143.40	0	0.000	0.00	0.00
15	Sub Total	3441.67		25.21	58.62	58.62
	Grand Total	5007.58		38.80	90.24	90.24
	(I+II+III)	5007.50		20.00	20.24	20.24
IV	2nd Crop					
1. a	Paddy	300.00	1061	3.183	7.40	7.40
b	Paddy - SRI	0.00	743	0.000	0.00	0.00
2	Pulses	310.00	252	0.781	1.82	1.82
3	Maize	320.00	450	1.440	3.35	3.35
4	Brinjal	15.00	588	0.088	0.21	0.21
5	Bhendi	10.00	462	0.046	0.11	0.11
6	Chillies	20.00	505	0.101	0.23	0.23
7	Gingelly	15.00	342	0.051	0.12	0.12
8	Groundnut	230.00	409	0.941	2.19	2.19
	Total	1220.00		6.63	15.42	15.42
	Great Grand Total	6227.58		45.43	105.66	105.66

<u>GOMUKHI NADHI SUB BASIN - VELLAR BASIN</u> <u>Crop water requirement without Project</u>

GOMUKHI NADHI SUB BASIN - VELLAR BASIN

Water Potential without Project

	D (1		00 77	м
Surface Water	Potential	=	98.77	Mcm
Ground Water	Potential	=	223.05	Mcm
Total Potenti	al	=	321.82	Mcm
Water Dema	nd without Projec	t		
··· ··· ··· ··· ··· ··· ··· ··· ··· ··		<u> </u>		
Domestic		=	16.9	Mcm
Livestock		=	20.96	Mcm
Industrial		=	6.00	Mcm
Irrigation	WRO	=	105.66	Mcm
	PU & GW	=	25.91	Mcm
Total Water	<u>Demand</u>	=	175.43	Mcm
<u>Water Balan</u>	<u>ce</u>	=	146.39	Mcm

Sl.No.	Name of Crop	Area in Ha	Crop water requirement in mm	Total Crop water requirement in Mcm	Irrigation water requirement at source Eff=53%	Total Irrigation requirement in Mcm
Ι	Perennial C	Crops				
1	Coconut	30.68	1646	0.505	0.95	0.95
2	Colius	13.00	350	0.046	0.09	0.09
2	Mango	40.00	402	0.161	0.30	0.30
3	Sapota	7.00	526	0.037	0.07	0.07
4	Guava	10.00	256	0.026	0.05	0.05
5	Fodder	65.00	413	0.268	0.51	0.51
6	Casurina	0.84	1001	0.008	0.02	0.02
	Sub Total	166.52		1.05	1.98	1.98
II	Annual Crops					
1	Sugar cane	647.75	1168	7.566	14.27	14.27
2	Banana	115.00	1681	1.933	3.65	3.65
3	Tapioca	580.00	538	3.120	5.89	5.89
4	Turmeric	422.91	489	2.068	3.90	3.90
	Sub Total	1765.66		14.69	27.71	27.71
III	1st Crop					
1. a	Paddy	0.00	1163	0.000	0.00	0.00
b	Paddy - SRI	1247.97	814	10.160	19.17	19.17
2	Cotton	630.40	231	1.456	2.75	2.75
3	Maize	474.00	550	2.607	4.92	4.92
4	Flowers	5.00	263	0.013	0.02	0.02
5	Tomato	10.00	460	0.046	0.09	0.09
6	Onion	35.00	337	0.118	0.22	0.22
7	Bhendi	30.00	462	0.139	0.26	0.26
8	Brinjal	35.00	588	0.206	0.39	0.39
9	Gourds	25.00	268	0.067	0.13	0.13
10	Pulses	460.00	252	1.159	2.19	2.19
11	Chillies	78.00	536	0.418	0.79	0.79
12	Buildings	45.03	0	0.000	0.00	0.00
	Sub Total	3075.40		16.39	30.92	30.92
	otal (I+II+III)	5007.58		32.13	60.62	60.62
IV	2nd Crop	0.00	10/1	0.000	0.00	0.00
<u>1. a</u>	Paddy	0.00	1061	0.000	0.00	0.00
<u>b</u>	Paddy - SRI	647.00	743	4.805	9.07	9.07
2	Pulses	900.00	252	2.268	4.28	4.28
3	Maize	800.00	450	3.600	6.79	6.79
4	Brinjal	20.00	588	0.118	0.22	0.22
5	Bhendi	15.00	462	0.069	0.13	0.13
6	Chillies	25.00	505	0.126	0.24	0.24
7	Gingelly	30.00	342	0.103	0.19	0.19
8	Groundnut	570.00	409	2.331	4.40	4.40
	Total	3007.00		13.42	25.32	25.32
	Great Grand Total	8014.58		45.55	85.94	85.94

<u>GOMUKHI NADHI SUB BASIN - VELLAR BASIN</u> <u>Crop water requirement with Project</u>

GOMUKHI NADHI SUB BASIN - VELLAR BASIN

Water Potential with Project

Surface Water I Ground Water I Total Potential			= = =	98.77 223.05 321.82	Mcm Mcm Mcm
Water Demand	<u>d with Proje</u>	<u>ect</u>			
Domestic			=	16.9	Mcm
Livestock			=	20.96	Mcm
Industrial			=	6.00	Mcm
Irrigation	WRO		=	85.94	Mcm
-		PU & GW	=	25.91	Mcm
<u>Total Water D</u>	emand		=	155.71	Mcm
Water Balance	<u>}</u>		=	166.11	Mcm

CHAPTER - 1.3 HYDRAULICS OF THE COMPONENTS

	1	.3.1. Hydraulics	of Tanks	1	1	1
SI.N o	Name of Tank	Village	Ayacu t in Ha.	Capacit y Mcum.	No of Filling s	Annual Stroag e
1	Vadakanandal Large Tank	Vadakanandal	104.71	40.00	2	80.00
2	Pasungayamangalam Tank	Kallakurichi	36.89	5.50	2	11.00
3	Kallakurichi Large Tank	Kallakurichi	158.96	15.86	2	31.72
4	Kallakurichi Small Tank	Kallakurichi	12.04	8.75	2	17.50
5	Emapair Tank	Emapair	115.68	35.48	2	70.96
6	Thenkeeranur Large Tank	Thenkeeranur	68.02	19.44	2	38.88
7	Thenkeeranur Small Tank	Thenkeeranur	39.47	15.86	2	31.72
8	Tatchur Tank	Tatchur	64.12	16.90	2	33.80
9	Latchiyam Tank	Latchiyam	77.47	15.95	2	31.90
10	Vilambar Tank	Vilambar	61.69	18.63	2	37.26
11	Malaikottalam Tank	Malaikottalam	95.95	22.91	2	45.82
12	Neelamangalam Tank	Neelamangalam	109.22	20.17	2	40.34
13	Niraimathi Tank	Niraimathi	32.21	15.60	2	31.20
14	Kurur Tank	Kurur	96.76	46.18	2	92.36
15	Mudiyanur Tank	Mudiyanur	54.31	11.50	2	23.00
16	Virugavur Tank	Virugavur	34.79	20.12	2	40.24
17	Nagalur Tank	Nagalur	116.18	20.53	2	41.06
18	Kanangur Tank	Kanangur	58.77	18.17	2	36.34
19	Porasakurichi Tank	Porasakurichi	41.03	10.81	2	21.62
20	Vanavaretti Tank	Vanavaretti	61.70	16.20	2	32.40
21	Ogaiyur Tank	Ogaiyur	71.85	25.60	2	51.20
22	Varanjaram Tank	Varanjaram	38.19	8.23	2	16.46
23	Samikulam Tank	Samikulam	31.47	4.44	2	8.88
24	Kadathur Tank	Kadathur	57.89	14.24	2	28.48
25	Nallathur Tank	Nallathur	52.31	18.05	2	36.10
26	Kuthiraichandal Tank	Kuthiraichandal	29.93	4.20	2	8.40

28 Karanur Chitteri Karanur 18.40 6.48 2 12 29 Villangthangal Tank Villangthangal 23.28 4.20 2 8. 30 Ulagamkathan Tank Ulagamkathan 69.00 19.50 2 39 31 Eliyathur Large Tank Eliyathur Large 32.16 6.60 2 13 32 Eliyathur Small Tank Eliyathur Small 12.97 1.50 2 3. 33 Thottiyam Tank Thottiyam 32.93 4.64 2 9. 34 Bangaram Tank Bangaram 37.85 4.46 2 8. 35 Thengiyanatham Tank Thengiyanatham 32.41 3.84 2 7. 36 Paithanthurai Tank Thenchettiyandal 35.33 4.16 2 8. 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 38 40 Vettiperumalagaram Namasivayapuram 37.64 5.34		1	1				
29 Villangthangal Tank Villangthangal 23.28 4.20 2 8. 30 Ulagamkathan Tank Ulagamkathan 69.00 19.50 2 39 31 Eliyathur Large Tank Eliyathur Large 32.16 6.60 2 13 32 Eliyathur Small Tank Eliyathur Small 12.97 1.50 2 3. 33 Thottiyam Tank Thottiyam 32.93 4.64 2 9. 34 Bangaram Tank Bangaram 37.85 4.46 2 8. 35 Thengiyanatham Tank Thengiyanatham 32.41 3.84 2 7. 36 Paithanthurai Tank Pathanthurai 97.73 20.39 2 400 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Namasivayapuram 37.64 5.34 2 17 39 Thagarai Tank Thagarai 145.75 34.15	27	Karanur Peria Eri	Karanur	46.69	10.62	2	21.24
30 Ulagamkathan Tank Ulagamkathan 69.00 19.50 2 39 31 Eliyathur Large Tank Eliyathur Large 32.16 6.60 2 13 32 Eliyathur Small Tank Eliyathur Small 12.97 1.50 2 3.9 33 Thottiyam Tank Thottiyam 32.93 4.64 2 9.0 34 Bangaram Tank Bangaram 37.85 4.46 2 8.0 35 Thengiyanatham Tank Thengiyanatham 32.41 3.84 2 7.7 36 Paithanthurai Tank Paithanthurai 97.73 20.39 2 400 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Namasivayapuram 37.64 5.34 2 100 39 Thagarai Tank Thagarai 145.75 34.15 2 68 40 Vettiperumalagaram Vettiperumalagaram 105.38 19.15 </td <td>28</td> <td>Karanur Chitteri</td> <td>Karanur</td> <td>18.40</td> <td>6.48</td> <td>2</td> <td>12.96</td>	28	Karanur Chitteri	Karanur	18.40	6.48	2	12.96
31 Eliyathur Large Tank Eliyathur Large 32.16 6.60 2 13 32 Eliyathur Small Tank Eliyathur Small 12.97 1.50 2 3. 33 Thottiyam Tank Thottiyam 32.93 4.64 2 9. 34 Bangaram Tank Bangaram 37.85 4.46 2 8. 35 Thengiyanatham Tank Thengiyanatham 32.41 3.84 2 7. 36 Paithanthurai Tank Paithanthurai 97.73 20.39 2 400 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Thagarai 145.75 34.15 2 68 40 Yettiperumalagaram Vettiperumalagaram 105.38 19.15 2 38 41 Elavadi 41.99 8.54 2 17 42 Chinnasalem Tank Kaniyamoor 48.57 12.15 2 24	29	Villangthangal Tank	Villangthangal	23.28	4.20	2	8.40
32 Eliyathur Small Tank Eliyathur Small 12.97 1.50 2 3. 33 Thottiyam Tank Thottiyam 32.93 4.64 2 9. 34 Bangaram Tank Bangaram 37.85 4.46 2 8. 35 Thengiyanatham Tank Bangaram 37.85 4.46 2 8. 36 Paithanthurai Tank Thengiyanatham 32.41 3.84 2 7. 36 Paithanthurai Tank Thenchettiyandal 95.33 4.16 2 8. 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Namasivayapuram 37.64 5.34 2 10 39 Thagarai Tank Thagarai 145.75 34.15 2 38 40 Tank Tank Kaniyamoor 48.57 12.15 2 24 41 Elavadi Aniyamoor Tank Kaniyamoor 48.57 1	30	Ulagamkathan Tank	Ulagamkathan	69.00	19.50	2	39.00
33Thottiyam TankThottiyam32.934.6429.34Bangaram TankBangaram37.854.4628.35Thengiyanatham TankThengiyanatham32.413.8427.36Paithanthurai TankPaithanthurai97.7320.3924037Thenchettiyandal TankThenchettiyandal35.334.1628.38Namasivayapuram TankNamasivayapuram37.645.3421039Thagarai TankThagarai145.7534.1526840Vettiperumalagaram TankVettiperumalagaram105.3819.1523841Elavadi41.998.5421742Chinnasalem TankChinnasalem143.7036.0427243Kaniyamoor TankKaniyamoor48.5712.1522444Rayarpalayam TankPethanur36.4410.5022145Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur24.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.502<	31	Eliyathur Large Tank	Eliyathur Large	32.16	6.60	2	13.20
34Bangaram TankBangaram37.854.4628.35Thengiyanatham TankThengiyanatham32.413.8427.36Paithanthurai TankPaithanthurai97.7320.3924037Thenchettiyandal TankThenchettiyandal35.334.1628.38Namasivayapuram TankNamasivayapuram37.645.34210039Thagarai TankThagarai145.7534.1526840Vettiperumalagaram TankVettiperumalagaram105.3819.1523841Elavadi41.998.5421742Chinnasalem TankChinnasalem143.7036.0427243Kaniyamoor TankKaniyamoor48.5712.1522444Rayarpalayam TankRayarpalayam53.218.6921745Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPerumangalam28.4420.5024151Perumangalam TankPerumangalam28.4420.502	32	Eliyathur Small Tank	Eliyathur Small	12.97	1.50	2	3.00
35 Thengiyanatham Tank Thengiyanatham 32.41 3.84 2 7. 36 Paithanthurai Tank Paithanthurai 97.73 20.39 2 40 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Namasivayapuram 37.64 5.34 2 10 39 Thagarai Tank Thagarai 145.75 34.15 2 68 40 Vettiperumalagaram Vettiperumalagaram 105.38 19.15 2 38 41 Elavadi Tank Elavadi 41.99 8.54 2 17 42 Chinnasalem Tank Chinnasalem 143.70 36.04 2 72 43 Kaniyamoor Tank Kaniyamoor 48.57 12.15 2 24 44 Rayarpalayam Tank Rayarpalayam 53.21 8.69 2 17 45 Pethanur Tank Pethanur 36.44 10.50 2	33	Thottiyam Tank	Thottiyam	32.93	4.64	2	9.28
36 Paithanthurai Tank Paithanthurai 97.73 20.39 2 40 37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Namasivayapuram 37.64 5.34 2 10 39 Thagarai Tank Thagarai 145.75 34.15 2 68 40 Vettiperumalagaram Vettiperumalagaram 105.38 19.15 2 38 41 Elavadi Tank Elavadi 41.99 8.54 2 17 42 Chinnasalem Tank Chinnasalem 143.70 36.04 2 72 43 Kaniyamoor Tank Kaniyamoor 48.57 12.15 2 24 44 Rayarpalayam Tank Rayarpalayam 53.21 8.69 2 17 45 Pethanur Tank Pethanur 36.44 10.50 2 21 46 Siruvathur Large Tank Siruvathur 22.27 15.24 2	34	Bangaram Tank	Bangaram	37.85	4.46	2	8.92
37 Thenchettiyandal Tank Thenchettiyandal 35.33 4.16 2 8. 38 Namasivayapuram Tank Namasivayapuram 37.64 5.34 2 10 39 Thagarai Tank Thagarai 145.75 34.15 2 68 40 Vettiperumalagaram Tank Vettiperumalagaram 105.38 19.15 2 38 41 Elavadi Tank Elavadi 41.99 8.54 2 17 42 Chinnasalem Tank Chinnasalem 143.70 36.04 2 72 43 Kaniyamoor Tank Kaniyamoor 48.57 12.15 2 24 44 Rayarpalayam Tank Rayarpalayam 53.21 8.69 2 17 45 Pethanur Tank Pethanur 36.44 10.50 2 24 46 Siruvathur Large Tank Siruvathur 22.27 15.24 2 30 47 Siruvathur Chitteri Siruvathur 67.05 16.40 2	35	Thengiyanatham Tank	Thengiyanatham	32.41	3.84	2	7.68
38Namasivayapuram TankNamasivayapuram37.645.3421039Thagarai TankThagarai145.7534.1526840Vettiperumalagaram TankVettiperumalagaram105.3819.1523841Elavadi TankElavadi41.998.5421742Chinnasalem TankChinnasalem143.7036.0427243Kaniyamoor TankKaniyamoor48.5712.1522444Rayarpalayam TankRayarpalayam53.218.6921745Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankPoondi41.999.6821955Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura30.297.57215	36	Paithanthurai Tank	Paithanthurai	97.73	20.39	2	40.78
39Thagarai TankThagarai145.7534.1526840Vettiperumalagaram TankVettiperumalagaram105.3819.1523841Elavadi TankElavadi41.998.5421742Chinnasalem TankChinnasalem143.7036.0427243Kaniyamoor TankKaniyamoor48.5712.1522444Rayarpalayam TankRayarpalayam53.218.6921745Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapuram m30.297.57215	37	Thenchettiyandal Tank	Thenchettiyandal	35.33	4.16	2	8.32
40Vettiperumalagaram TankVettiperumalagaram105.3819.1523841Elavadi TankElavadi41.998.5421742Chinnasalem TankChinnasalem143.7036.0427243Kaniyamoor TankKaniyamoor48.5712.1522444Rayarpalayam TankRayarpalayam53.218.6921745Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi41.999.682193656Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	38	Namasivayapuram Tank	Namasivayapuram	37.64	5.34	2	10.68
40 Tank Vetuperumalagatam 105.35 19.15 2 38 41 Elavadi Tank Elavadi 41.99 8.54 2 17 42 Chinnasalem Tank Chinnasalem 143.70 36.04 2 72 43 Kaniyamoor Tank Kaniyamoor 48.57 12.15 2 24 44 Rayarpalayam Tank Rayarpalayam 53.21 8.69 2 17 45 Pethanur Tank Pethanur 36.44 10.50 2 21 46 Siruvathur Large Tank Siruvathur 42.01 19.94 2 39 47 Siruvathur Chitteri Siruvathur 22.27 15.24 2 30 48 Ulagiyanallur Tank Ulagiyanallur 67.05 16.40 2 32 50 Pukkiravari Tank Pukkiravari 51.08 13.37 2 26 51 Perumangalam Tank Perumangalam 28.44 20.50 2 41 <	39	Thagarai Tank	Thagarai	145.75	34.15	2	68.30
42 Chinnasalem Tank Chinnasalem 143.70 36.04 2 72 43 Kaniyamoor Tank Kaniyamoor 48.57 12.15 2 24 44 Rayarpalayam Tank Rayarpalayam 53.21 8.69 2 17 45 Pethanur Tank Pethanur 36.44 10.50 2 21 46 Siruvathur Large Tank Siruvathur 42.01 19.94 2 39 47 Siruvathur Chitteri Siruvathur 22.27 15.24 2 30 48 Ulagiyanallur Tank Ulagiyanallur 67.05 16.40 2 32 49 Varathapanur Varathapanur 54.99 12.50 2 25 50 Pukkiravari Tank Pukkiravari 51.08 13.37 2 26 51 Perumangalam Tank Perumangalam 28.44 20.50 2 41 52 Kilnarriyappanur Tank Kilnarriyappanur 47.80 15.33 2 30 53 Rayappanur Tank Rayappanur 47.80 15.	40		Vettiperumalagaram	105.38	19.15	2	38.30
43 Kaniyamoor Tank Kaniyamoor 48.57 12.15 2 24 44 Rayarpalayam Tank Rayarpalayam 53.21 8.69 2 17 45 Pethanur Tank Pethanur 36.44 10.50 2 21 46 Siruvathur Large Tank Siruvathur 42.01 19.94 2 39 47 Siruvathur Chitteri Siruvathur 22.27 15.24 2 30 48 Ulagiyanallur Tank Ulagiyanallur 67.05 16.40 2 32 49 Varathapanur Varathapanur 54.99 12.50 2 25 50 Pukkiravari Tank Pukkiravari 51.08 13.37 2 26 51 Perumangalam Tank Perumangalam 28.44 20.50 2 41 52 Kilnarriyappanur Tank Kilnarriyappanur 43.62 11.50 2 23 53 Rayappanur Tank Rayappanur 47.80 15.33 2 30 54 Thenponporappy Tank Thenponporappy 70.87 <t< td=""><td>41</td><td>Elavadi Tank</td><td>Elavadi</td><td>41.99</td><td>8.54</td><td>2</td><td>17.08</td></t<>	41	Elavadi Tank	Elavadi	41.99	8.54	2	17.08
44Rayarpalayam TankRayarpalayam53.218.6921745Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215 <td>42</td> <td>Chinnasalem Tank</td> <td>Chinnasalem</td> <td>143.70</td> <td>36.04</td> <td>2</td> <td>72.08</td>	42	Chinnasalem Tank	Chinnasalem	143.70	36.04	2	72.08
45Pethanur TankPethanur36.4410.5022146Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	43	Kaniyamoor Tank	Kaniyamoor	48.57	12.15	2	24.30
46Siruvathur Large TankSiruvathur42.0119.9423947Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	44	Rayarpalayam Tank	Rayarpalayam	53.21	8.69	2	17.38
47Siruvathur ChitteriSiruvathur22.2715.2423048Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	45	Pethanur Tank	Pethanur	36.44	10.50	2	21.00
48Ulagiyanallur TankUlagiyanallur67.0516.4023249VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	46	Siruvathur Large Tank	Siruvathur	42.01	19.94	2	39.88
49VarathapanurVarathapanur54.9912.5022550Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	47	Siruvathur Chitteri	Siruvathur	22.27	15.24	2	30.48
50Pukkiravari TankPukkiravari51.0813.3722651Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	48	Ulagiyanallur Tank	Ulagiyanallur	67.05	16.40	2	32.80
51Perumangalam TankPerumangalam28.4420.5024152Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	49	Varathapanur	Varathapanur	54.99	12.50	2	25.00
52Kilnarriyappanur TankKilnarriyappanur43.6211.5022353Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	50	Pukkiravari Tank	Pukkiravari	51.08	13.37	2	26.74
53Rayappanur TankRayappanur47.8015.3323054Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	51	Perumangalam Tank	Perumangalam	28.44	20.50	2	41.00
54Thenponporappy TankThenponporappy70.8718.6723755Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	52	Kilnarriyappanur Tank	Kilnarriyappanur	43.62	11.50	2	23.00
55Poondi TankPoondi41.999.6821956Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	53	Rayappanur Tank	Rayappanur	47.80	15.33	2	30.66
56Thagamtheerthapuram TankThagamtheerthapura m30.297.57215	54	Thenponporappy Tank	Thenponporappy	70.87	18.67	2	37.34
50 Tank m 30.29 7.57 2 13	55	Poondi Tank	Poondi	41.99	9.68	2	19.36
	56			30.29	7.57	2	15.14
	57	Thottapadi Tank	Thottapadi	77.42	15.33	2	30.66

58	Nainarpalayam Tank	Nainarpalayam	28.56	16.64	2	33.28
59	Anumanandal Tank	Anumanandal	14.22	7.10	2	14.20
60	Kalasamudram Tank	Kalasamudram	43.45	10.95	2	21.90
61	Pethasamudram Tank	Pethasamudram	18.42	13.29	2	26.58
62	Kural Tank	Kural	32.74	8.21	2	16.42
63	Thattathiripuram Tank	Thattathiripuram	16.30	4.00	2	8.00
64	V. Alambalam Tank	V. Alambalam	45.65	19.25	2	38.50
65	Krishnapuram Tank	Krishnapuram	37.77	14.90	2	29.80
66	Ponneri Tank	Ponneri	21.87	7.73	2	15.46
67	Krishanapuram Madathu Eri	Krishanapuram	43.15	8.96	2	17.92
68	Karunkuli Tank	Karunkuli	32.90	8.22	2	16.44
69	Eriyur Tank	Eriyur	43.90	10.92	2	21.84
70	Asakalathur Tank	Asakalathur	78.22	14.69	2	29.38
71	Karunthalakurichi Tank	Karunthalakurichi	25.23	6.30	2	12.60
72	S. Naraiyur Tank	S. Naraiyur	70.87	17.20	2	34.40
73	Arasankudi Tank	Arasankudi	33.40	3.50	2	7.00
74	Sirupakkam Tank	Sirupakkam	74.29	14.90	2	29.80
75	Rettakurichi Tank	Rettakurichi	49.71	7.90	2	15.80
76	J. Endal Tank	J. Endal	28.26	2.16	2	4.32
77	Kolavai Tank	Kolavai	77.18	2.85	2	5.70
78	A. Marur Tank	A. Marur	41.19	8.00	2	16.00
79	Nagar Tank	Nagar	80.77	9.85	2	19.70
80	Seppakkam	Seppakkam	56.90	7.25	2	14.50

1.3.1.HYDRAU LIC PARTICULARS

ANICUT

NAME OF THE SUB BASIN : GOMUKHI NADHI.

0	Nome of	Village	ut	nicut (M)	of Anicut	nt	.Km	Sq.km	a tlood cumecs / cs	Location	M)	Sluice	Cumecs		Supp	ly Ch	annel		rks.
SI.No	Name of Anicut	Village Block	Ayacut	Length of Anicut (M)	Crest level of Anicut	Front	Free Sq.Km	Combined Sq.km	Maximum 1100d discharge cumecs / Cusecs	Head Sluice Location	Vent (M)	Sill Level Sluice	Discharge	Leng th (M)	Bed Wid th (M)	FS D (M)	Bed slop e	Slui ce	Remarks.
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	2 0
Ι	<u>GOMUKI</u>	<u>HI RIVER</u>																	
1	Vadakkanandal	Vadakkanandal	327.20	95.0	100.	0.9	292.	292.	520	L.S	2 Nos 2.15 x 1.25	99.1 0	4.8 3	6000	4.00	0.9 0	1/20 00		
	Anicut	vadakkanandar	527.20	0	00	0	67	67	00	RS	6 Nos 2.10 x 0.70	99.4 0	3.1 0	1000 0	6.00	0.6	1/20 00		
2	Somandarkudi Anicut	Somandarkudi	21.82	130. 00	100. 00	0.9 0	30.8 3	323. 5	545 00	L.S	4 Nos 155 x 0.60	129. 10	3.3 5	1170 0	3.00	0.9 0	1/20 00		
	Pasungayaman galam Kondam	Pasungayaman galam Kondam	15.55	_	-	0.9 0	- 17.3 9	340. 89	557 00	RS	0.60 x 0.60		0.3 2	2000	3.00	0.4 5	1/20 00		

3	Emapair Anicut	Emapair	402.60	163. 00	100. 00	0.9 0	8.76	349. 65	600 00	RS	2.00x 1.20	0.60	2.1 6	5600	3.00	0.6 0	1/20 00	
4	Kallakurichi Anicut	Kallakurichi	158.21	60.0 0	100. 00	0.9 0	14.6 7	364. 32	645 00	RS	2.00x 1.21	59.4 0	2.1 6	2100	3.00	0.6 0	1/20 00	
5	Thenkeeranur Anicut	Thenkeeranur	166.31	104. 00	100. 00	0.9 0	1.48	365. 80	660 00	RS	2.00x 1.22	103. 40	2.1 6	2300	3.00	0.6 0	1/20 00	
6	Neelamangala m Anicut	Neelamangala m	102.83	100. 00	100. 00	0.9 0	0.30	366. 10	661 00	L.S	2.00x 1.23	99.4 0	2.1 6	3000	3.00	0.6 0	1/20 00	
7	Gurur	Gurur	179.70	117. 00	100. 00	0.9 0	15.8 4	381. 94	673 00	L.S	2.00 x 1.60	116. 40	2.8 8	3800	3.00	0.6 0	1/20 00	
8	Porasakurichi Anicut	Porasakurichi	57.45	121. 00	100. 00	0.9 0	11.4 6	393. 40	685 00	RS	2.00 x 1.60	120. 40	2.8 8	6400	3.00	0.6 0	1/20 00	
9	Virugavur Anicut	Virugavur	57.46	127. 00	100. 00	0.9 0	14.8 9	408. 29	723 00	L.S	2.00 x 1.60	126. 40	2.8 8	2600	3.00	0.6 0	1/20 00	
10	Nagalur Anicut	Nagalur	114.11	100. 60	100. 00	0.9 0	9.33	417. 62	74.5	L.S	2.00 x 1.60	100. 00	2.8 8	4400	3.00	0.6 0	1/20 00	
11	Velakurichi Anicut	Velakurichi	79.89	57.6 0	100. 00	0.9 0	12.2 8	429. 90	790 00	RS	2.00 x 1.60	57.0 0	2.8 8	4600	3.00	0.6 0	1/20 00	

II	<u>MAYURA</u> <u>NADHI</u>																		
12	Elavadi Anicut	Elavadi	43.50	100.00	149.80	0.9 0	0.9 6	0.96	583 C/S	R. S	open off tank	-	2.6 9	290 0	3.00	0.9 0	1/2000	-	
13	Kallanatham Anicut	Kallanatham	7.00	28.60	148.80	0.9 0	2.5 6	3.52	119 3 C/S	L.S	open off tank	-	1.0 3	300	2.00	0.4 0	1/2000		
14	Thimmapuram Anicut	Thimmapuram	12.18	75.00	145.40	0.9 0	1.7 6	5.28	135 5 C/S	L.S	open off tank	-	1	200	2.00	0.6 0	1/2000		
15	Pandiyankuppam Anicut	Pandiyankupp am	16.75	105.00	143.45 0	0.9 0	2.8 8	8.16	182 3 C/S	L.S	open off tank	-	1	450 0	2.00	0.4 5	1/2000		
16	Chinnasalem Anicut	Chinnasalem	164.3 5	160.00	139.05 0	0.9 0	6.8 8	15.04	284 0 C/S	R. S	open off tank	-	5.8 0	810 0	3.50	1.2 0	1/2000		
17	Maravanatham Anicut	Maravanatha m	28.44	71.00	135.80 0	0.9 0	4.0	19.04	305 4 C/S	L.S	open off tank	-	1	120 0	2.00	0.4 5	1/2000		
18	Theerthapuram Anicut	Theerthapura m	23.67	96.00	132.15 0	0.9 0	2.4 0	21.44	319 8 C/S	R. S	open off tank	-	1	210 0	2.00	0.9 5	1/2000		
19	Pethanur Anicut	Pethanur	36.44	99.00	125.80 0	0.9 0	4.1 6	35.55	448 6 C/S	R. S	open off tank	-	1.0 3	260 0	3.00	$\begin{array}{c} 0.6 \\ 0 \end{array}$	1/2000		
20	Kaniyamoor Anicut	Kaniyamoor	71.67	65.00	132.60 0	0.9 0	1.2 8	8.03	168 9 C/S	R. S	open off tank	-	2.7 0	150 0	3.00	0.9 0	1/2000		
21	Veppudaiyanthan gal Anicut	Veppudaiyant hangal	91.71	96.00	126.80	0.9 0	1.9 2	9.95	197 0 C/S	L.S	open off tank	-	5.8 0	100 0	3.50	1.2 0	1/2000		

22	Siruvathur Anicut	Siruvathur	68.83	125.00	123.85	0.9 0	4.8 0	40.35	488 4 C/S	L.S	open off tank	_	2.6 9	200 0	3.00	0.9 0	1/2000	
23	Ulagiyanallur Anicut	Ulagiyanallur	67.17	60.00	118.05	0.9 0	2.4 0	42.75	497 0 C/S	R. S	open off tank	-	2.7 0	120 0	3.00	0.9 0	1/2000	
24	Varadhappanur Anicut	Varadhappanu r	39.98	68.00		0.9 0	1.9 2	44.67	509 6 C/S	L.S	open off tank	-	2.0 0	160 0	2.00	0.4 5	1/2000	
25	Pukkiravari Anicut	Pukkiravari	50.76	108.00	111.05	0.9 0	1.2 8	45.95	516 6 C/S	L.S	open off tank	-	2.0 0	100 0	3.00	0.4 5	1/2000	
26	Sirumangalam Anicut	Sirumangalam	41.36	95.00	-	0.9 0	1.2 8	47.23	526 0 C/S	L.S	open off tank	-	1	250 0	2.00	0.4 5	1/2000	
27	Perumangalam Anicut	Perumangala m	24.32	104.00		0.9 0	1.9 2	49.15	542 3 C/S	R. S	5 Nos 1.20 x 1.10	-	2	160 0	3.00	0.4 5	1/2000	
	<u>Cuddalore</u>																	
28	Kattumailur Anicut	Kattumailur	137.6 7	45.10	100.00	0.9 0	1.5 2	50.67	565 2	R. S	1.2x1.5 0	-	1.6 2	630 0	3	0.4 5	1/2000	

II I	THIRUMANI	MUKTHA RIV	<u>ER</u>															
29	Selliyampalaya m Anicut	Selliyampalaya m	13.84	137.0 0	145.7 0	0.9 0	0.28	0.28	257	L. S	open off tank	-	1 C/S	145 0	2.0 0	0.4 5	1/200 0	
30	Rayappanur Anicut	Rayappanur	47.80	15.70	142.8 0	0.9 0	2.16	2.44	697	R. S	open off tank	-	2 C/S	950	3.0 0	0.4 5	1/200 0	
31	Thenponparapp i Anicut	Thenponparapp i	70.87	159.0 0	141.6 0	0.9 0	1.20	3.64	119 2	L. S	open off tank	-	2.69 C/S	165 0	3.0 0	0.9 0	1/200 0	
32	Poondi Anicut	Poondi	41.99	44.00	139.4 5	0.9 0	0.80	4.44	144 6	L. S	open off tank	-	2.00 C/S	275 0	3.0 0	0.4 5	1/200 0	
33	Vasudevanur Anicut	Vasudevanur	18.37	135.0 0	135.4 5	0.9 0	3.60	11.54	226 4	L. S	2 Nos 0.90 x 1.20	134. 25	1 C/S	220 0	2.0 0	0.4 5	1/200 0	
34	Ammaiyagara m Anicut	Ammaiyagara m	13.95	42.00	139.2 5	0.9 0	3.50	-	138 1	L. S	L.S 0.60 X 0.80	R.S 060x 0.45	L.S 0.56C/ S 2 Nos R.S 0.28 1 Nos	105 0	3.0 0		1/200 0	
35	Thottapadi Anicut	Thottapadi	71.19	70.00	129.0 5	0.9 0	12.0 0	23.54	389 7	L. S	open off tank		2 C/S	900	3.0 0		1/200 0	
36	Anumanandal	Anumanandal	42.48	210.0	121.5	0.9	19.2	42.74	567	L.	open		2 C/S	370	1.5		1/200	

	Anicut			0	0	0	0		6	S	off tank		0	0	0	
37	Nainarpalayam Anicut	Nainarpalayam	13.83	50.00	129.5 0	0.9 0	19.8 0	23.54	220 0	L. S	open off tank	2 C/S	200 0	3.0 0	1/200 0	
38	Sembakurichi Anicut	Sembakurichi	32.91	115.0 0	117.9 5	0.9 0	7.68	50.42	572 9	R. S	open off tank	2.70 C/S	100 0	2.0 0	1/200 0	
39	Karunguzhi Anicut	Karunguzhi	64.61	75.00	112.9 0	0.9 0	4.80	55.22	595 5	R. S	open off tank	1.30 C/S	125 0	2.0 0	1/200 0	
40	Maruthamalaiy an Anicut	Maruthamalaiy an	9.31	75.00	112.9 0	0.9 0	4.80	55.22	595 5	R. S	open off tank	1.30 C/S	200 0	3.0 0	1/200 0	
41	Eriyur Anicut	Eriyur	43.90	90.00	108.4 5	0.9 0	2.56	57.78	605 1	R. S	open off tank	1 C/S	164 0	3.5 0	1/200 0	
42	Kolavai Anicut	Askalathur	105.9 1	160.0 0	100.1 0	0.9 0	9.60	116.5 3	977 7	R. S	open off tank	5.80 C/S	405 0	3.5 0	1/200 0	
	<u>Cuddalore</u>															
43	Ja. Endal Anicut	Ja. Endal	58.26										260 0		1/200 0	

1.3.2.TANKS (Separate statement for system & Non System Tanks)

NAME OF THE SUB BASIN : GOMUKHI NADHI.

	101		ADIII.			· · · · ·													
Sl.No.	District	Tank	Name of Tank	Ayacut in Ha	Capacity in Mcft	Number of filling	Free catchment in So km	Combined catchment in Sq.Km	Water spread area (Sq.Km)	FTL in M	MWL in M	No.of Sluices	Ler	os and ngth of ir (m)	Discharge in Cusecs	Length of bund (M)	Length of Supply Channel (M)	Upper Tank	Lower Tank
				Ā	Cap	Nun	Free	Combir	Wat			Ň	N os	Leng th in m	Disch	Leng	Leng		
1	2	3	4	5	6	7	8	9	10	11	12	1 3	14	15	1 6	17	18	19	20
			upuram istrict																
1			Vadakana ndal Large Tank	104.71 0	40	2		1.30	0.86	50.00	50.600	4	1	43		1900	800	-	Kacharapala yam
2		н.	Pasungaya mangalam Tank	36.89	5.50	2			50.90	100.00	100.450	1	1	20		900	2000	-	Emapair
3	Villupuram	Kallakurichi	Kallakuric hi Large Tank	158.96 0	15.86	2			52.00	100.00	100.600	4	1	30		1200	2100	-	River & Kallakurichi
4		K	Kallakuric hi Small Tank	12.040	8.75	2			13.39	100.00	100.600	1	1	16.5		825	800	Kallakuri chi Large	Thenkeeran ur Big
5			Emapair Tank	115.68 0	35.48	2			80.97	100.00	100.600	4	2	39.5		1640	5600	Pasungay amangala m & Villantha	Tatchur

															ngal	
6			Thenkeera nur Large Tank	68.020	19.44	2	34.98	100.00	100.600	4	1	42	1350	2300	Kallakuri chi Small	Thenkeeran ur Small
7			Thenkeera nur Small Tank	39.470	15.86	2	52.00	100.00	100.600	1	1	30.5	800	1200	Thenkeer anur Big	Vilambar
8			Tatchur Tank	64.120	16.90	2	68.33	100.00	100.600	1	2	21	1400	2000	Emapair	Vilambar
9			Latchiyam Tank	77.470	15.95	2	64.78	100.00	100.600	1	1	52	750	3000	-	Thenthorasa lur
10			Vilambar Tank	61.690	18.63	2	84.00	100.00	100.600	4	3	106.7	2600	5400	Tatchur	Malaikottala m
11			Malaikott alam Tank	95.950	22.91	2	97.94	100.00	100.600	4	2	45	2500	1400	Vilambar	Gomukhi River
12	ram	richi	Neelaman galam Tank	109.22 0	20.17	2	74.23	100.00	100.600	3	2	57	2560	2600	-	Kurur
13	Villupuram	Kallakurichi	Niraimath i Tank	32.210	15.60	2	64.78	100.00	100.600	2	1	40	1575	1200	-	Kurur
14			Kurur Tank	96.760	46.18	2	72.81	100.00	100.600	3	2	34	2200	3800	Neelama ngalam & Niraimat hi	Mudiyanur
15			Mudiyanu r Tank	54.310	11.50	2	38.44	100.00	100.600	4	1	37.2	1650	1900	Kurur	Virugavur

16			Virugavur Tank	34.790	20.12	2		36.44	100.00	100.600	2	1	20	1100	1400	Mudiyan ur	Nagalur
17			Nagalur Tank	116.18 0	20.53	2		48.58	100.00	100.600	3	1	35	2000	4400	Virugavu r	Gomukhi River
18			Kanangur Tank	58.770	18.17	2		79.76	100.00	100.600	2	1	21	1400	2000	-	Porasakuric hi
19			Porasakuri chi Tank	41.030	10.81	2		44.53	100.00	100.600	2	1	55	1200	4800	Kanangur	River
20			Vanavaret ti Tank	61.700	16.2	2		0.338	100	100.600	2	1	23.6	1500		-	-
21			Ogaiyur Tank	71.850	25.60	2		76.30	100.00	100.600	2	2	45	1700	1500	-	Sedhuvaray ankuppam
22	Villupuram	Kallakurichi	Varanjara m Tank	38.190	8.23	2		36.44	100.00	100.600	2	1	45	900	4600	-	Gomukhi River
23	Λ	K	Samikula m Tank	31.470	4.44	2	0.22 5	0.095	100	100.600	1	1	10	600		-	Manampath an Eri
24			Kadathur Tank	57.890	14.24	2		0.387	100	100.600	2	2	24	1450		-	Nallathur Tank & Eliyathur
25			Nallathur Tank	52.310	18.05	2		0.456	100	100.600	3	1	18.4	1900		Kadathur	Kuthiraicha ndal

26			Kuthiraich andal Tank	29.930	4.2	2	0.225	100	100.600	1	1	10	820	Nallathur	Karanur Big
27			Karanur Peria Eri	46.690	10.62	2	0.155	100	100.600	1	1	20	1100	Kuthiraic handal	Karanur Small
28			Karanur Chitteri	18.400	6.48	2	0.267	100	100.600	1	1	15	850	Karanur Big	Villanthang al
29			Villangtha ngal Tank	23.280	4.2	2	0.229	100	100.600	1	1	10	820	Karanur Small	Emapair
30	uram	urichi	Ulagamka than Tank	69.000	19.5	2	0.335	100	100.600	2	2	23	1100	-	-
31	Villupuram	Kallakurichi	Eliyathur Large Tank	32.160	6.6	2	0.095	100	100.600	2	1	16	1700	Kadathur	Eliyathur Small
32			Eliyathur Small Tank	12.970	1.5	2	0.094	100	100.600	1	1	10	1100	Eliyathur Large	Thottiyam
33			Thottiyam Tank	32.930	4.64	2	0.445	100	100.600	2	1	15	1400	Paithanth urai	Bangaram
34			Bangaram Tank	37.850	4.46	2	0.380	100	100.600	1	1	15	1100	Thottiya m	-
35	dniii v	Kallak urichi	Thengiyan atham	32.410	3.84	2	0.090	100	100.600	2	1	15	1200	-	Paithanthura i

	Tank													
36	Paithanthu rai Tank	97.730	20.39	2		0.309	100	100.600	3	3	60	1300	Thengiya natham	Thenchettiy andal
37	Thenchetti yandal Tank	35.330	4.16	2		0.315	100	100.600	1	1	16	1100	Paithanth urai	Chinnasela m
38	Namasiva yapuram Tank	37.640	5.34	2		0.320	100	100.600	3	1	17	1250	Thenchett iyandal	-
39	Thagarai Tank	145.75 0	34.15	2		0.905	100	100.600	1	2	38	2100	_	-
40	Vettiperu malagara m Tank	105.38 0	19.15	2		0.503	100	100.600	2	2	47	1200	-	-
41	Elavadi Tank	41.990	8.54	2		0.355	100	100.600	2	1	18	1350	-	-
42	Chinnasal em Tank	143.70 0	36.04	2		0.811	100	100.600	3	2	71	1350	-	-

43			Kaniyamo or Tank	48.570	12.15	2	0.750	100	100.600	2	1	18	1500	-	-
44			Rayarpala yam Tank	53.210	8.69	2	0.385	100	100.600	2	1	19	1000	-	-
45			Pethanur Tank	36.440	10.5	2	0.279	100	100.600	2	1	14	1450	-	-
46			Siruvathur Large Tank	42.010	19.94	2	0.335	100	100.600	3	2	53	1400	-	-
47	Villupuram	Kallakurichi	Siruvathur Chitteri	22.270	15.24	2	0.254	100	100.600	1	1	30	900	-	-
48	Vil	Kal	Ulagiyana llur Tank	67.050	16.4	2	0.385	100	100.600	5	1	14	1700	-	-
49			Varathapa nur	54.990	12.50	2	0.284	100	100.600	1	1	10	1000	-	-
50			Pukkirava ri Tank	51.080	13.37	2	0.290	100	100.600	3	2	17	1500	-	-
51			Perumang alam Tank	28.440	20.5	2	0.205	100	100.600	1	1	21	1400	-	-
52			Kilnarriya ppanur Tank	43.620	11.5	2	0.425	100	100.600	1	1	14	1300	-	-
53	pura	Kall akuri chi	Rayappan	47.800	15.33	2	0.375	100	100.600	2	2	52.5	1650	-	-

	ur Tank													
54	Thenponp orappy Tank	70.870	18.67	2		0.415	100	100.600	2	1	30	1300	-	Poondi
55	Poondi Tank	41.990	9.68	2		0.280	100	100.600	1	1	14.75	1150	Thenpon porappy	-
56	Thagamth eerthapura m Tank	30.290	7.57	2		0.288	100	100.600	1	1	14.75	1500	Pakkamb adi	Thottapadi
57	Thottapad i Tank	77.420	15.33	2		0.410	100	100.600	2	1	15.5	1700	T.Puram	N.Palaynur
58	Nainarpal ayam Tank	28.560	16.64	2		0.468	100	100.600	1	1	10	1300	Thottapa di	Anumanand al
59	Anumana ndal Tank	14.220	7.1	2		0.060	100	100.600	1	1	10	1200	N.Palayn ur	-
60	Kalasamu dram Tank	43.450	10.95	2		0.375	100	100.600	2	1	12	1400	Pakkamb adi	Pethasamud ram

61			Pethasam udram Tank	18.420	13.29	2		0.338	100	100.600	2	1	10	1500	Kalasamu dram	-
62			Kural Tank	32.740	8.21	2		0.375	100	100.600	1	1	10	1400	Pakkamb adi	T.Puram
63			Thattathiri puram Tank	16.300	4	2		0.145	100	100.600	1	1	10	1000	Kural	V. Alambalam
64			V. Alambala m Tank	45.650	19.25	2		0.548	100	100.600	2	4	73	1390	T.Puram	Krishnapura m
65	ouram	urichi	Krishnapu ram Tank	37.77	14.9	2		0.325	100	100.600	1	1	14	1250	V. Alambala m Tank	Ponneri Tank
66	Villupuram	Kallakurichi	Ponneri Tank	21.870	7.73	2		0.199	100	100.600	1	2	30	1600	Krishnap uram	-
67			Krishanap uram Madathu Eri	43.150	8.96	2		0.107	100	100.600	1	1	10	1400	Krishana puram	-
68			Karunkuli Tank	32.900	8.22	2		0.201	100	100.600	2	1	15	1200	-	-
69			Eriyur Tank	43.900	10.92	2		0.274	100	100.600	3	1	18.5	1250	-	-
70			Asakalath ur Tank	78.220	14.69	2		0.765	100	100.600	2	1	18	1680	-	-

71	-		Karunthal akurichi Tank	25.230	6.3	2		0.219	100	100.600	1	2	20	1500	Googaiyu r	S. Naraiyur
	C	uddalo	re District													
72			S. Naraiyur Tank	70.87		2			100.00	100.60				2600	K.Kurich i	Arasankudi
73			Arasanku di Tank	33.40		2			100.00	100.60				1600	S. Naraiyur	Sirupakkam
74		Tittakudi	Sirupakka m Tank	74.29		2			100.00	100.60				800	Arasanku di	Rettakurichi
75		Titta	Rettakuric hi Tank	49.71		2			100.00	100.60				3500	Sirupakk am	J. Endal
76	Cuddalore		J. Endal Tank	28.26		2			100.00	100.60				3200	Rettakuri chi	-
77			Kolavai Tank	77.18		2			100.00	100.60				6300	-	-
78		am	A. Marur Tank	41.19		2			100.00	100.60				-	-	-
79		Virudhachalam	Nagar Tank	80.77		2			100.00	100.60						
80		Viı	Seppakka m	56.90		2			100.00	100.60						

1.3.3. SUPPLY CHANNELS HAVING DIRECT AYACUT

NAME OF THE SUB BASIN : GOMUKHI NADHI

SI.N	Name of Supply	Start Po	int	End Poi	nt	Length in	Bed	Ded Classe	MFD	Depth of	Remark
0	Channel	Location	Sill level	Location	Sill level	metres	Width	Bed Slope	MFD	Flow	s.
1	Virugavur Anicut S.Channel	Virugavur	99.400	Virugavur	97.900	3000	3	1/2000	-	0.60	
2	Kallanatham Anicut S.Channel	Kallanatham	148.400	Kallanatham	148.250	300	2	1/2000	-	0.40	
3	Thimmapuram Anicut	Thimmapuram	144.800	Thimmapuram	144.700	200	2	1/2000	-	0.60	
4	Pandiyankuppam Anicut S.Channel	Pandiyankuppa m	143.000	Pandiyankuppam	142.750	500	2	1/2000	-	0.45	
5	Maravanatham Anicut	Maravanatham	135.350	Maravanatham	134.750	1200	2	1/2000	-	0.45	
6	(Namasivayapuram) Anicut. S.Channel	Namasivayapura m	131.200	Namasivayapura m	130.150	2100	2	1/2000	-	0.95	
7	Sirumangalam Anicut S.Channel	Pukkiravari	106.500	Pukkiravari	105.250	2500	2	1/2000	-	0.45	
8	Selliyampalayam Anicut S.Channel	Selliyampalaya m	145.250	Selliyampalayam	145.000	500	2	1/2000	-	0.45	
9	Vasudevanur Anicut	Vasudevanur	135.000	Vasudevanur	133.750	2500	2	1/2000	-	0.45	
10	Ammaiyagaram Anicut S.Channel	Ammaiyagaram	138.800	Ammaiyagaram	137.850	1900	2	1/2000	-	0.45	
11	Nainarpalayam Anicut S.Channel	Nainarpalayam	128.900	Nainarpalayam	127.900	2000	1.5	1/2000	-	0.60	
12	Sembakurichi Anicut S.Channel	A.Nandal	117.050	Sembakurichi	116.550	1000	3	1/2000	-	0.90	
13	Maruthamalaiyan Anicut S.Channel	A.Kulathur	112.450	Eriyur	111.450	2000	2	1/2000		0.45	

1.4 Participatory Irrigation Management (PIM)

Salient features of Implementation of PIM Gomukhi Sub - basin

1. The sub - basin :

This is one of the seven sub basins of the Vellar river basin totally 80 irrigation tanks are under the control of Water Resources Department (WRD) of Public works Department (PWD) in this sub - basin. The list of tanks covered with more details are furnished in the Annexure - 1. These 80 tanks are located within the sub - basin's hydraulic boundary spread over 83 Villages of Vadakkanadal of Villupuram District, Seppakkam of Cuddalore District. The total command ara under these 80 tanks works out to 4345.82 Ha. (Annexure 1)

2. Command area :

under Non - System tanks (80 tanks	s)-	4345.82 Ha
Anicut (43 Nos)	-	661.76 Ha
Total	-	5007.58 Ha

3. An assessment of number of WUA's

a. Association	
Proposed to be formed under	
IAWARM Project covering 80	60 Nos (5007.58
tanks and villages only.	Ha)
	, í

4. An account of "Awareness creation"

Activates undertaken and "Walkthrough Surveys" carried out.

- iv) There are 80 tanks in the sub-basin spread over 83 villages.
- v) As detailed out in Anexure 01. All these villages were visited by the WRO officials and awareness about various activities, contemplated under IAMWARM Project has been created.
- vi) Details of Villages covered, walkthrough surveys conducted, farmers attended, list of works suggested by the farmers, list of works officials are all furnished in the Annexure - 02.
 - 5. Schedule for completion of delineation and preparation for WUA documents, comprising of :-
- iv) Form I : Details to be notified by District collectors, (End of March 09)
- v) Form II : WUA document to be notified by district collectors (End of April 09)
- vi) Completion of preparatory works for the conduct of Elections for WUA's (End of May 09)

- 6. Schedule for Conduct of Elections in the Sub basin for farming management committees will be completed by end of Jan 2010.
- 7. Initiating and completing the process of publishing EOI to hire support Organisation at sub-bsin level. (End Jun 2009)
- 8. Providing request for proposals (RFPs) to all the short listed agencies, and obtaining technical and cost proposals. (Middle of August 2009)
- 9. Selection and deployment of support Organisation to the sub basin (End of sep 2009)
- 10. Appointment and the Role of competent Authorities.
 - a. Section 26 of the Tamil Nadu Farmers Management of Irrigation Systems (TNFMIS) act provides for the appoint of "competent Authorities" to assist the respective farmers organization (WUA, Distributory committee and Project Committee) in the implementation and execution of all decisions taken by such farmers Organization similarly every farmer's organization shall extend such co-option or assistance as may be required by the competent authority, for carrying out all the tasks related to implementation of TNFMIS Act.
 - b. It is kproposed to form 60 WUAs only under IAMWARM Project to cover a command area of 5123.89 Ha.
 - c. Appointment of competent Authorities for the WUAs proposed to be formed under IAMWARM Project is based on the WRO section officer wise" distribution as indicated below.
 Name of the WRO Sub Division officers working in the

GOMUKHI SUB BASIN

a Assistant Executive Engineer W.R.O., P.W.D., Vellar Basin Sub Division, Kallakurichi.

List of Competent A	Authorities.
---------------------	--------------

e.	Section officer, WRO Irrigation section Vellar Basin. Kallakurichi.	WUAs GOMI - 2 to 13, 22 to 34, 36
f.	Section officer WRO Irrigation section Vellar Basin. Chinnasalem.	WUAs GOMI - 14 to 21, 35, 37 to 52
g.	Section officer WRO Irrigation Gomukhi Nadhi Project section. Vadakkandal	WUAs GOMI- 1
h.	Section officer WRO Irrigation section. Vellar Basin, Veppur.	WUAs GOMI- 53 to60

11. Involvement of farmers in the preparation "Scheme Modernisation Plans"

- a. Based on the outcome of the "Awareness Creation Programme" and walkthrough survey carried out with the involvement of farmers, a list of tasks proposed to be taken up for "Modernization" under IAMWARM project was discussed with No.of farmers from 83 villages and the tasks was also prepared and exhibited in the notice Board of the village Administrative officers and panchayat office.
- b. During the meeting, the farmers present were also informed that soon after finalization of contract for carrying out "Modernization of Irrigation systems" a Notice Board" with the details about the nature of works. its cost period of contract and name of the contractor will all be fixed at the site of the work as well as in the panchayath office, for information of the farmers. They have also been informed that they are free to supervise the work by the contractor and any lapse in the quality of work may be reported to the field officers of WRO as wall as the Executive Engineer of WRO, who has been designated as the Nodal officer for the sub basin concerned.
- c. The field officers of WRO have all been informed about the problems in handing over the operation and maintenance responsibilities to the farmers concerned, if the tasks as desired by them are not included in the modernization of the system and also in case some of the tasks already planned are not implanted due to some reasons or other.
- d. The WRO officers were also informed that hey are personally responsible for handing over the irrigation systems after completing the tasks related to modernization of irrigation systems.

12. Current status of Recovry of water charges.

- a. An enquiry conduced with the "village Adminstrative officers" (VAO's) of randomly selected villages (15 numbers out of 83 Village) the normal water charges recovery as informed by the VAO works out to 50-60% only. about the expected percentage of 80-90%.
- b. With the proposal to form New WUAs under IAMWARM in Gomukhi sub basin the managing committee will be trained to take up the responsibility of improving the water charges recovery percentage. These wll be followed up after coimpleting the modernization tasks and handing over of the O & M responsibilities to WUAs.

13. "Capacity Building" of the WUA farmers:

- a. The Support Organisation Group" will prepare "Training Modules" required for building the capacity of the WUA farmers. based on a "Training Needs" Analysis. They will also Organize various "Capacity building" Programmes at suitable locations within the sub - basin command area, to benefit the farmers of the WUAs in the sub - basin.
- b. The "Support Organization" will also arrange for organizing the "Study Tours" both within and outside the state to enhance their knowledge and experiences which will help them to improve the crop productivity and there by the farmer's income.

- c. The support Organization will also conduct necessary "awareness programme" and impart training to educate the farmers of the WUAs in all aspects of the TNFMIS act, TNFMS rules and election procedures for constituting the "Managing committees" of the WUAs
- 14. The competent Authorities appointed for the sub-bains will also be trained to effectively to interact with WUA farmers and maintain good rapport and relationship with the farming community in the sub-basin.

	DETAIL	S OF WUA's PROPOSED /	EXISTING IN GOMUKHI SUE	B-BASIN
SI No.	WUA No	Tank & Village it covers	Name of the WUA	Ayacut Area in Ha
		Existir	ng WUA's	
			NIL	
		Dronoo		
	GOM-	Vadakanandal Large	ed WUA's	
1	1	Tank	Users Association	104.71
2	GOM- 2	Pasungayamangalam Tank	Pasungayamangalam tank Water Users Association	36.89
		Somandarkudi Anicut		21.82
		Emapair Anicut		402.60
3	GOM- 3	Kallakurichi Large Tank	Kallakurichi tank Water	158.96
		Kallakurichi Small Tank	Users Association	12.04
4	GOM- 4	Neelamangalam Tank	Neelamangalam tank Water Users Association	109.22
		Niraimathi Tank		32.21
5	GOM- 5	Kurur Tank	Kurur tank Water Users Association	96.76
6	GOM- 6	Mudiyanur Tank	Mudiyanur tank Water Users Association	54.31
7	GOM- 7	Virugavur Tank	Virugavur tank Water Users Association	34.79
		Virugavur Anicut		57.46
8	GOM- 8	Nagalur Tank	Nagalur tank Water Users Association	116.18
9	GOM- 9	Samikulam Tank	Kadathur tank Water Users Association	31.47
		Kadathur Tank	Kadathur tank Water Users Association	57.89
10	GOM- 10	Nallathur Tank	Nallathur tank Water Users Association	52.31
11	GOM- 11	Kuthiraichandal Tank		29.93
		Karanur Peria Eri	Karanur tank Water Users Association	46.69

		Karanur Chitteri		18.40
		Vilangthangal Tank		23.28
12	GOM- 12	Ulagamkathan Tank	Ulagamkathan tank Water Users Association	69.00
13	GOM- 13	Emapair Tank	Emapair tank Water Users Association	115.68
14	GOM- 14	Thatchur Tank	Thatchur tank Water Users Association	64.12
15	GOM- 15	Thenkeeranur Large Tank	Thenkeeranur tank Water	68.02
		Thenkeeranur Small Tank	Users Association	39.47
		Thenkeeranur Anicut		166.31
16	GOM- 16	Vilambar Tank	Vilambar tank Water Users Association	61.69
17	GOM- 17	Malaikottalam Tank	Malaikottalam tank Water Users Association	95.95
18	GOM- 18	Kanangur Tank	Kanangur tank Water Users Association	58.77
19	GOM- 19	Porasakurichi Tank	Porasakurichi tank Water Users Association	41.03
		Porasakurichi Anicut		57.45
20	GOM- 20	Varanjaram Tank	Varanjaram tank Water Users Association	38.19
		Velakurichi Anicut		79.89
21	GOM- 21	Latchiyam Tank	Latchiyam tank Water Users Association	77.47
22	GOM- 22	Vanavaretti Tank	Vanavaretti tank Water Users Association	61.70
23	GOM- 23	Ogaiyur Tank	Ogaiyur tank Water Users Association	71.85
24	GOM- 24	Thengiyanatham Tank	Thengiyanatham tank Water Users Association	32.41
		Paithanthurai Tank		97.73
25	GOM- 25	Thenchettiyandal Tank	Thenchettiyandal tank Water Users Association	35.33
		Namasivayapuram Tank		37.64
26	GOM- 26	Eliyathur Large Tank	Eliyathur tank Water Users Association	32.16

		Eliyathur Small Tank		12.97
27	GOM- 27	Thottiyam Tank	Thottiyam tank Water Users Association	32.93
		Bangaram Tank	Bangaram tank Water Users Association	37.85
28	GOM- 28	Thagarai Tank	Thagarai tank Water Users Association	145.75
29	GOM- 29	Elavadi Tank	Elavadi tank Water Users Association	41.99
		Elavadi Anicut		43.50
		Kallanatham Anicut		7.00
		Thimmapuram Anicut		12.18
		Pandiyankuppam Anicut		16.75
30	GOM- 30	Vettiperumalagaram Tank	Vettiperumalagaram tank Water Users Association	105.38
		Maravanatham Anicut		28.44
31	GOM- 31	Chinnasalem Tank	Chinnasalem tank Water Users Association	143.70
		Chinnasalem Anicut		164.35
32	GOM- 32	Kaniyamoor Tank	Kaniyamoor tank Water Users Association	48.57
		Theerthapuram Anicut		23.67
		Kaniyamoor Anicut		71.67
33	GOM- 33	Rayarpalayam Tank	Rayarpalayam tank Water Users Association	53.21
		Pethanur Tank		36.44
34	GOM- 34	Siruvathur Large Tank	Siruvathur tank Water	42.01
		Siruvathur Chitteri	Users Association	22.27
		Veppudaiyanthangal Anicut		91.71
35	GOM- 35	Ulagiyanallur Tank	Ulagiyanallur tank Water Users Association	67.05

36	GOM- 36	Varathapanur Tank	Varathapanur tank Water Users Association	54.99
37	GOM- 37	Pukkiravari Tank	Pukkiravari tank Water Users Association	51.08
38	GOM- 38	Perumangalam Tank	Perumangalam tank Water Users Association	28.44
		Sirumangalam Anicut		41.36
39	GOM- 39	Kilnarriyappanur Tank	Kilnarriyappanur tank Water Users Association	43.62
40	GOM- 40	Rayappanur Tank	Rayappanur tank Water Users Association	47.80
		Selliyampalayam Anicut		13.84
41	GOM- 41	Thenponporappy Tank	Thenponporappy tank Water Users Association	70.87
		Poondi Tank		41.99
		Ammaiyagaram Anicut		13.95
42	GOM- 42	Thagamtheerthapuram Tank	Thagamtheerthapuram tank Water Users Association	30.29
		Vasudevanur Anicut		18.37
43	GOM- 43	Thottapadi Tank	Thottapadi tank Water Users Association	77.42
44	GOM- 44	Kalasamudram Tank	Kalasamudram tank Water Users Association	43.45
		Pethasamudram Tank		18.42
45	GOM- 45	Nainarpalayam Tank	Nainarpalayam tank Water Users Association	28.56
		Nainarpalayam Anicut		13.83
46	GOM- 46	Anumanandal Tank	Anumanandal tank Water Users Association	14.22
		Anumanandal Anicut		42.48
47	GOM- 47	Karunkuli Tank	Karunkuli	32.90
		Sembakurichi Anicut		32.91
		Karunkuli Anicut	Karunguzhi	64.61

48	GOM- 48	Eriyur Tank	Eriyur tank Water Users Association	43.90
		Maruthamalaiyan Anicut		9.31
49	GOM- 49	Asakalathur Tank	Asakalathur tank Water Users Association	78.22
		Kolavai Anicut		105.91
50	GOM- 50	Kural Tank	Kural tank Water Users Association	32.74
		Thattathiripuram Tank		16.30
51	GOM- 51	V. Alambalam Tank	V. Alambalam tank Water Users Association	45.65
52	GOM- 52	Krishnapuram Tank	Krishnapuram tank Water Users Association	37.77
		Ponneri Tank		21.87
		Madathu Eri		43.15
		Karunthalakurichi Tank		25.23
53	GOM- 53	S. Naraiyur Tank	S. Naraiyur tank Water Users Association	70.87
54	GOM- 54	Arasankudi Tank		33.40
		Sirupakkam Tank	Sirupakkam tank Water Users Association	74.29
55	GOM- 55	Rettakurichi Tank	Rettakurichi tank Water Users Association	49.71
56	GOM- 56	J. Endal Tank	J. Endal tank Water Users Association	28.26
57	GOM- 57	Kolavai Tank	Kolavai tank Water Users Association	77.18
58	GOM- 58	A. Marur Tank	A. Marur tank Water Users Association	41.19
59	GOM- 59	Nagar Tank	Nagar tank Water Users Association	80.77
60	GOM- 60	Seppakkam Tank	Seppakkam tank Water Users Association	56.90

NOTE:

- a. St. TB Standardisation of Tank Bund
- b. RC Sluices Reconstruction of Sluices
- c. RE Sluices Repairs to Sluices
- d. RC weir Reconstruction of Weir
- e. RE weir Repairs to weir
- f. DS chl Desilting of Supply Channels

Annexure - 1

AN ASSESSMENT OF COMMAND AREA AND WUAS UNDER THE CONTROL OF WRO OF PWD IN GOMUKHI NADHI SUB BASIN.

		Name of Invigation	Command	Location of the Comm	nand A	Location of the Command Area			Status of formation of WUAs in the Sub-Basin		
Sl.No		Name of Irrigation System and Tanks	Area in (Ha)	Village	Taluk	District	WRCP and Others	IAMWARM	Formed under WRCP (Code)	To be formed under IAMWARM (Code)	
1	1	Vadakanandal Large Tank	104.71	Vadakanandal				104.71		Yes	
2	1	Pasungayamangalam Tank	10(50	Kallakurichi				126.59		Yes	
	2	Somandarkudi Anicut	126.58	Somandarkudi				126.58			
	3	Emapair Anicut		Emapair							
3	1	Kallakurichi Large Tank	171.00	Kallakurichi				171.00		Yes	
	2	Kallakurichi Small Tank	171.00	Kallakurichi	hi	B		171.00			
4	1	Neelamangalam Tank	1 4 1 4 2	Neelamangalam	uric	ura		- 141.43		37	
	2	Niraimathi Tank	141.43	Niraimathi	Kallakurichi	Villupuram				Yes	
5	1	Kurur Tank	96.76	Kurur	Ka			96.76		Yes	
6	1	Mudiyanur Tank	54.31	Mudiyanur				54.31		Yes	
7	1	Virugavur Tank	92.25	Virugavur				92.25		Yes	
	2	Virugavur Anicut	92.23	Virugavur				92.23		105	
8	1	Nagalur Tank	116.18	Nagalur				116.18		Yes	
9	1	Samikulam Tank	89.36	Kadathur				89.36		Yes	
	2	Kadathur Tank	07.30	Kadathur				07.30		r es	
10	1	Nallathur Tank	52.31	Nallathur				52.31		Yes	
11	1	Kuthiraichandal Tank	118.30	Kuthiraichandal	ak uri	nd		118.30		Yes	

	2	Karanur Peria Eri		Karanur				
	3	Karanur Chitteri	-	Karanur			 -	
	4	Villangthangal Tank	-	Kallakurichi				
12	1	Ulagamkathan Tank	69.00	Ulagamkathan]		 69.00	 Yes
13	1	Emapair Tank	115.68	Emapair]		 115.68	 Yes
14	1	Tatchur Tank	64.12	Tatchur			 64.12	 Yes
15	1	Thenkeeranur Large Tank		Thenkeeranur				
	2	Thenkeeranur Small Tank	141.77	Thenkeeranur			 141.77	 Yes
	3	Thenkeeranur Anicut		Thenkeeranur				
16	1	Vilambar Tank	61.69	Vilambar			 61.69	 Yes
17	1	Malaikottalam Tank	95.95	Malaikottalam			 95.95	 Yes
18	1	Kanangur Tank	58.77	Kanangur			 58.77	 Yes
19	1	Porasakurichi Tank	59.66	Porasakurichi			 59.66	 Yes
		Porasakurichi Anicut	39.00	Porasakurichi			 39.00	 ies
20	1	Varanjaram Tank	87.01	Varanjaram]		 87.01	 Yes
	2	Velakurichi Anicut	07.01	Velakurichi]		 87.01	 ies
21	1	Latchiyam Tank	77.47	Latchiyam]		 77.47	 Yes
22	1	Vanavaretti Tank	61.70	Vanavaretti			 61.70	 Yes
23	1	Ogaiyur Tank	71.85	Ogaiyur	chi	m	 71.85	 Yes
24	1	Thengiyanatham Tank	100.14	Thengiyanatham	kuri	Ipura	 120.14	
	2	Paithanthurai Tank	130.14	Paithanthurai	Kallakurichi	Villupuram	 130.14	 Yes
25	1	Thenchettiyandal Tank	72.97	Thenchettiyandal			 72.97	 Yes

	2	Namasivayapuram Tank		Namasivayapuram				
26	1	Eliyathur Large Tank	45.13	Eliyathur			 45.13	 Yes
	2	Eliyathur Small Tank	10110	Eliyathur			 	
27	1	Thottiyam Tank	70.79	Thottiyam			 70.79	 V
	2	Bangaram Tank	70.78	Bangaram			 70.78	 Yes
28	1	Thagarai Tank	145.75	Thagarai			 145.75	 Yes
29	1	Elavadi Tank		Elavadi				
	2	Elavadi Anicut		Elavadi				
	3	Kallanatham Anicut	79.95	Kallanatham			 79.95	 Yes
	4	Thimmapuram Anicut		Thimmapuram				
	5	Pandiyankuppam Anicut		Pandiyankuppam				
30	1	Vettiperumalagaram Tank	123.68	Vettiperumalagaram			 123.68	 Yes
	2	Maravanatham Anicut		Maravanatham			 120.00	 100
31	1	Chinnasalem Tank	154.2	Chinnasalem			 154.2	 Yes
	2	Chinnasalem Anicut	134.2	Chinnasalem			 134.2	 105
32	1	Kaniyamoor Tank		Kaniyamoor				
	2	Theerthapuram Anicut	95.29	Theerthapuram			 95.29	 Yes
	3	Kaniyamoor Anicut		Kaniyamoor	chi	н		
33	1	Rayarpalayam Tank	89.65	Rayarpalayam	kurić	pura	 89.65	 Yes
	2	Pethanur Tank	89.03	Pethanur	L L Kallakurichi	Villupuram	 89.03	 res
34	1	Siruvathur Large Tank		Siruvathur	X	-		
	2	Siruvathur Chitteri	80.26	Siruvathur	1		 80.26	 Yes
	3	Veppudaiyanthangal Anicut	00.20	Veppudaiyanthangal			 00.20	 105
35	1	Ulagiyanallur Tank	67.05	Ulagiyanallur]		 67.05	 Yes

36	1	Varathapanur	54.99	Varathapanur			 54.99	 Yes
37	1	Pukkiravari Tank	51.08	Pukkiravari			 51.08	 Yes
38	1	Perumangalam Tank	(0.90	Perumangalam			 (0.90	 V
	2	Sirumangalam Anicut	69.80	Sirumangalam			 69.80	 Yes
39	1	Kilnarriyappanur Tank	43.62	Kilnarriyappanur			 43.62	 Yes
40	1	Rayappanur Tank	(1 (4	Rayappanur			 (1.(4	 V
	2	Selliyampalayam Anicut	61.64	Selliyampalayam			 61.64	 Yes
41	1	Thenponporappy Tank		Thenponporappy				
	2	Poondi Tank	123.09	Poondi			 123.09	 Yes
	3	Ammaiyagaram Anicut		Ammaiyagaram				
42	1	Thagamtheerthapuram Tank	48.66	Thagamtheerthapuram			 48.66	 Yes
	2	Vasudevanur Anicut		Vasudevanur				
43	1	Thottapadi Tank	77.42	Thottapadi			 77.42	 Yes
44	1	Kalasamudram Tank	61.87	Kalasamudram	chi	am	 61.87	 Yes
	2	Pethasamudram Tank	01.07	Pethasamudram	Kallakurichi	Villupuram	 01.87	 1 05
45	1	Nainarpalayam Tank	42.90	Nainarpalayam	Xalla	Villı	 42.90	 Yes
	2	Nainarpalayam Anicut	42.90	Nainarpalayam			 42.90	 1 05
46	1	Anumanandal Tank	43.05	Anumanandal			 43.05	 Yes
	2	Anumanandal Anicut	45.05	Anumanandal			 43.03	 1 08
47	1	Karunkuli Tank		Karunkuli	_			
	2	Sembakurichi Anicut	94.51	Sembakurichi			 94.51	 Yes
	3	Karunguzhi Anicut		Karunguzhi				
48	1	Eriyur Tank	53.21	Eriyur			 53.21	 Yes

	2	Maruthamalaiyan Anicut		Maruthamalaiyan				
49	1	Asakalathur Tank	105.49	Asakalathur			 105.49	 Yes
	2	Kolavai Anicut	103.49	Asakalathur			 105.49	 1 05
50	1	Kural Tank	40.04	Kural	. ₌	Ч	 40.04	 N/
	2	Thattathiripuram Tank	49.04	Thattathiripuram	Kallakurichi	Villupuram	 49.04	 Yes
51	1	V. Alambalam Tank	45.65	V. Alambalam	lakı	lup	 45.65	 Yes
52	1	Krishnapuram Tank		Krishnapuram	Kal	Vil		
	2	Ponneri Tank	128.02	Ponneri			 128.02	 Yes
	3	Madathu Eri	128.02	Krishanapuram Madathu			 120.02	 1 05
	4	Karunthalakurichi Tank		Karunthalakurichi				
53	1	S. Naraiyur Tank	70.87	S. Naraiyur			 70.87	 Yes
54	1	Arasankudi Tank	33.40	Arasankudi			 33.40	 Yes
	2	Sirupakkam Tank	74.29	Sirupakkam	adi		 74.29	 Yes
55	1	Rettakurichi Tank	49.71	Rettakurichi	Tittakudi	ore	 49.71	 Yes
56	1	J. Endal Tank	28.26	J. Endal		ldal	 28.26	 Yes
57	1	Kolavai Tank	77.18	Kolavai		Cuddalore	 77.18	 Yes
58	1	A. Marur Tank	41.19	A. Marur	ac		 41.19	 Yes
59	1	Nagar Tank	80.77	Nagar	riudha halam		 80.77	 Yes
60	1	Seppakkam Tank	56.90	Seppakkam	Vriudhac halam		 56.90	 Yes

1 Command Ares already conered under WRCP and other projects / schemes Nil

2 Command Ares Proposed to be conered under IAMWARM project <u>5007.58 ha.</u>

3 Total Command area controlled by WRO of PWD in the sub basin 5007.58 ha.

4 Total No.of WUA's already formed under WRCP Nil

5 Total No. of WUA's proposed to be formed under IAMWARM <u>60 Nos.</u>

6 Total No.of WUA's that will cover the entire sub - basin 60 Nos.

Annexure - 2 Details of "Awarness Creation Activities and Walk Through Surveys"

Name		sin : Gomukhi.	Aware		Walk Thi Survey (
SI.No	Date of Visit	Names if the Villages Visited	progra (No.of F atten (Prepare of farme ackonolw t sperat atta	armers ded) the list ers with rdgemen ely and	Farmers Participated) (Prepare the list of farmers with ackonolwdgement sperately and attach)		Remarks
1	2	3	4		5		6
1	15.10.08	Vadakanandal	10	Nos	10	Nos	
2	15.10.08	Kadathur	42	Nos	42	Nos	
3	15.10.08	Nallathur	12	Nos	12	Nos	
4	15.10.08	Kuthiraichandal	11	Nos	11	Nos	
5	15.10.08	Karanur	21	Nos	21	Nos	
6	16.10.08	Somandarkudi	15	Nos	15	Nos	
7	16.10.08	Ka.Mammanadhal	4	Nos	4	Nos	
8	16.10.08	Kallakurichi	7	Nos	7	Nos	
9	16.10.08	Emapair	5	Nos	5	Nos	
10	16.10.08	Thenkeeranur	7	Nos	7	Nos	
11	16.10.08	Thatchur	12	Nos	12	Nos	
12	22.10.08	Neelamangalam	11	Nos	11	Nos	
13	22.10.08	Niraimathi	14	Nos	14	Nos	
14	22.10.08	Vilambar	5	Nos	5	Nos	
15	22.10.08	Malaikottalam	3	Nos	3	Nos	
16	22.10.08	Latchiyam	4	Nos	4	Nos	
17	22.10.08	Vanavaretti	5	Nos	5	Nos	
18	29.10.08	Kurur	12	Nos	12	Nos	
19	29.10.08	Mudiyanur	11	Nos	11	Nos	
20	29.10.08	Virugavur	15	Nos	15	Nos	
21	29.10.08	Nagalur	12	Nos	12	Nos	
22	29.10.08	Kanangur	24	Nos	24	Nos	

Name of Sub Basin : Gomukhi.

23	29.10.08	Porasakurichi	5	Nos	5	Nos	
24	30.10.08	Ogaiyur	5	Nos	5	Nos	
25	30.10.08	Velakurichi	11	Nos	11	Nos	
26	30.10.08	Varanjaram	12	Nos	12	Nos	
27	30.10.08	Asakalathur	10	Nos	10	Nos	
28	4.11.08	Thengiyanatham	9	Nos	9	Nos	
29	4.11.08	Paithanthurai	11	Nos	11	Nos	
30	4.11.08	Thenchettiyandal	7	Nos	7	Nos	
31	4.11.08	Eliyathur	12	Nos	12	Nos	
32	4.11.08	Thagarai	9	Nos	9	Nos	
33	6.11.08	Thottiyam	7	Nos	7	Nos	
34	6.11.08	Bangaram	6	Nos	6	Nos	
35	6.11.08	Namasivayapuram	7	Nos	7	Nos	
36	6.11.08	Ulangakathan	9	Nos	9	Nos	
37	10.12.08	Elavadi	12	Nos	12	Nos	
38	10.12.08	Kallanatham	11	Nos	11	Nos	
39	10.12.08	Thimmapuram	13	Nos	13	Nos	
40	10.12.08	Pandiyakuppam	12	Nos	12	Nos	
41	10.12.08	Maravanatham	7	Nos	7	Nos	
42	10.12.08	V.P.Agaram	6	Nos	6	Nos	
43	12.12.08	Chinnasalem	15	Nos	15	Nos	
44	12.12.08	Kaniyamoor	7	Nos	7	Nos	
45	12.12.08	Rayarpalayam	9	Nos	9	Nos	
46	12.12.08	Pethanur	7	Nos	7	Nos	
47	12.12.08	Ulagiyanallur	7	Nos	7	Nos	
48	13.12.08	Siruvathur	12	Nos	12	Nos	
49	13.12.08	V.Theerthapuram	7	Nos	7	Nos	
50	13.12.08	Varadhappanur	6	Nos	6	Nos	
51	13.12.08	Pukkiravari	9	Nos	9	Nos	
52	13.12.08	Sirumangalam	7	Nos	7	Nos	
53	13.12.08	Perumangalam	16	Nos	16	Nos	

54	13.12.08	Kilnarriyappanur	7	Nos	7	Nos	
55	15.12.08	Rayappanur	9	Nos	9	Nos	
56	15.12.08	Thenponporappy	8	Nos	8	Nos	
57	15.12.08	Vasudavanur	7	Nos	7	Nos	
58	15.12.08	Ammaiyagaram	10	Nos	10	Nos	
59	16.12.08	Poondi	6	Nos	6	Nos	
		Thagamtheerthapura					
60	16.12.08	m	7	Nos	7	Nos	
61	16.12.08	Thottapadi	8	Nos	8	Nos	
62	16.12.08	Kalasamudram	7	Nos	7	Nos	
63	16.12.08	Pethasamudram	10	Nos	10	Nos	
64	17.12.08	Kural	9	Nos	9	Nos	
65	17.12.08	Thattathiripuram	8	Nos	8	Nos	
66	17.12.08	Alambalam	7	Nos	7	Nos	
67	17.12.08	Krishnapuram	11	Nos	11	Nos	
68	17.12.08	Karunthalakurichi	10	Nos	10	Nos	
69	18.12.08	Nainarpalayam	12	Nos	12	Nos	
70	18.12.08	Anumanandal	9	Nos	9	Nos	
71	18.12.08	Sampakurichi	7	Nos	7	Nos	
72	18.12.08	Karunkuli	9	Nos	9	Nos	
73	18.12.08	Ammmakalathur	10	Nos	10	Nos	
74	18.12.08	Eriyur	11	Nos	11	Nos	
75	19.1.09	S. Naraiyur	10	Nos	10	Nos	
76	19.1.09	Arasankudi	7	Nos	7	Nos	
77	19.1.09	Sirupakkam	6	Nos	6	Nos	
78	19.1.09	Rettakurichi	5	Nos	5	Nos	
79	19.1.09	J. Endal	4	Nos	4	Nos	
80	19.1.09	Kolavai	6	Nos	6	Nos	
81	6.2.09	A. Marur	7	Nos	7	Nos	
82	6.2.09	Nagar	5	Nos	5	Nos	
83	6.2.09	Seppakkam	6	Nos	6	Nos	

Annexure-3

Details of Modernisation works as suggested by the Farmers and as finalised by the Officials od WRO

Name of the Sub Basin: Gomughi

		Nome if the Villeges	Outcome of walk through survey and discussions	with farmers	
SI.No	Date of Visit	Name if the Villages Visited	Works suggedted by Farmers	Works finalized by WRO officials	
1	2	3	4	5	
			Dividing dam to be reconstructed	Included	
			Supply channel to be widened and desilted	Included	
4	15.10.08	Vadakanandal	Removal of encroachments	Included	
I	15.10.08	vadakanandai	Retaining wall in Vulnerable points in supply channel to be provided.	Included	
			Small culverts in supply channel	Included	
			Repairs to Anicut & Shutters	Included	
			Small culverts in supply channel	Included	
			Tank sluices to be repaired and reconstructed	Included	
			Field channel lining for 200 m lemgth from sluice is required	Not included	
2	15.10.08	Kadathur	Supply channel to be widened and desilted	Included	
			Weir to be repaired	Included	
			Tank bund to be widened and strengthened	Included	
			Separate leading channel in each tank is requested	Included	
			Tank sluices to be repaired and reconstructed	Included	
			Field channel lining for 200 m lemgth from sluice is required	Not included	
			Supply channel to be widened and desilted	Included	
3	15.10.08	Nallathur	Weir to be repaired	Included	
			Tank bund to be widened and strengthened	Included	
			Small culverts in supply channel	Included	
			Separate leading channel in each tank is requested	Included	
			Removal of encroachments	Included	
4	15.10.08	Kuthiraichandal	Supply channel to be widened and desilted	Included	

			Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
			Small culverts in supply channel	Included
			Separate leading channel in each tank is requested	Included
			Removal of encroachments	Included
			Tank bund to be widened and strengthened	Included
			Weir to be repaired	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
5	15.10.08	Karanur	Supply channel to be widened and desilted	Included
			Small culverts in supply channel	Included
			Separate leading channel in each tank is requested	Included
			Removal of encroachments	Included
			Small culverts in supply channel	Included
			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
6	16.10.08	Somandarkudi	Supply channel to be widened and desilted	Included
			Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Repairs to Anicut & Shutters	Included
			Small culverts in supply channel	Included
7	16.10.08	Ka.Mammanadhal	Supply channel to be widened and desilted	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
			Tank sluices to be repaired and reconstructed	Included
8	16.10.08	Kallakurichi	Field channel lining for 200 m lemgth from sluice is required	Not included
-			Supply channel to be widened and desilted	Included
			Weir to be repaired	Included

			Tank bund to be widened and strengthened Removal of encroachments Retaining wall in Vulnerable points in supply channel to be provided. Small culverts in supply channel Repairs to Anicut & Shutters	Included Included Included Included Included
			Supply channel to be widened and desilted	Included
			Small culverts in supply channel	Included
9	16.10.08	Emapair	Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
			Weir to be repaired	Included
10	16.10.08	Thenkeeranur	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Small culverts in supply channel	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
11	16.10.08	Tatchur	Supply channel to be widened and desilted	Included
11	16.10.08	Tatchur	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Small culverts in supply channel	Included
12	22.10.08	Neelamangalam	Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Repairs to Anicut & Shutters	Included
13	22.10.08	Niraimathi	Tank sluices to be repaired and reconstructed	Included

			Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
			Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
14	22.10.08	Vilambar	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Supply channel to be widened and desilted	Included
15	22.10.08	Malaikottalam	Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
16	22.10.08	Latchiyam	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
17		Vanavaretti	-	
			Tank sluices to be repaired and reconstructed	Included
18	29.10.08	Kurur	Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included

			Weir to be repaired	Included			
			Tank bund to be widened and strengthened	Included			
			Retaining wall in Vulnerable points in supply channel to be provided.	Included			
			Removal of encroachments	Included			
			Repairs to Anicut & Shutters	Included			
			Tank bund to be widened and strengthened	Included			
			Removal of encroachments	Included			
			Supply channel to be widened and desilted	Included			
19	19 29.10.08	Mudiyanur	Retaining wall in Vulnerable points in supply channel to be provided.	Included			
			Field channel lining for 200 m lemgth from sluice is required	Not included			
			Tank sluices to be repaired and reconstructed	Included			
			Repairs to Anicut & Shutters	Included			
			Tank sluices to be repaired and reconstructed	Included			
			Field channel lining for 200 m lemgth from sluice is required	Not included			
20	29 10 08	Virugavur	Supply channel to be widened and desilted	Included			
20	20 29.10.08	virugavur	Weir to be repaired	Included			
			Tank bund to be widened and strengthened	Included			
			Removal of encroachments	Included			
			Retaining wall in Vulnerable points in supply channel to be provided.	Included			
			WBM road over the top of the bank of supply channel	Not included			
21	29.10.08	Nagalur	Repairs to Anicut & Shutters	Included			
			Tank sluices to be repaired and reconstructed	Included			

			Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
			Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Tank bund to be widened and strengthened	Included
			Tank sluices to be repaired and reconstructed	Included
22	29.10.08	Kanangur	Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
			Weir to be repaired	Included
			Removal of encroachments	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Repairs to Anicut & Shutters	Included
23	29.10.08	Porasakurichi	Tank sluices to be repaired and reconstructed	Included
23	29.10.08	rorasakurtetti	Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
			Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
24	30.10.08	Ogaiyur	-	
			Repairs to Anicut & Shutters	Included
25	30.10.08	Valakurichi	Removal of encroachments	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included

			Tank sluices to be repaired and reconstructed	Included
			Field channel lining for 200 m lemgth from sluice is required	Not included
			Supply channel to be widened and desilted	Included
26	30.10.08	Varanjaram	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Removal of encroachments	Included
			Small culverts in supply channel	Included
			Tank sluices to be repaired and reconstructed	Included
27	30.10.08	Asakalathur	Supply channel to be widened and desilted	Included
			Tank bund to be widened and strengthened	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
28	4.11.08	Thengiyanatham	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
29	4.11.08	Paithanthurai	-	
20	4.11.00		Tank bund to be widened and strengthened	Included
30	4.11.08	Thenchettiyandal	Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
31	4.11.08	Eliyathur	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
22	4110	TT1.	Field channel lining for 200 m lemgth from sluice is required	Not included
32	4.11.0	Thagarai	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included

			Tank sluices to be repaired and reconstructed	Included
33	6.11.08	Thottiyam	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Weir to be repaired	Included
34	6.11.08	Bangaram	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
35	6.1108	Namasivayapuram	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
36	6.1108	Ulangakathan	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
37	10.12.08	Elavadi	Removal of encroachments	Included
38	10.12.08	Kallanatham	Repairs to Anicut & Shutters	Included
39	10.12.08	Thimmapuram	Repairs to Anicut & Shutters	Included
39	10.12.08	Pandiyakuppam	Repairs to Anicut & Shutters	Included
40	10.12.08	Maravanatham	Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
41	10.12.08	V.P.Agaram	Weir to be repaired	Included
41	10.12.08	v.i .Agaiaiii	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Small culverts in supply channel	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
42	12.12.08	Chinnasalem	Weir to be repaired Tank bund to be widened and strengthened	Included Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
43	12.12.08	Kaniyamoor	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included

			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
44	12.12.08	Rayarpalayam	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
45	12.12.08	Pethanur	Weir to be repaired	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
46	12.12.08	Ulagiyanallur	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
47	13.12.08	Siruvathur	Removal of encroachments	Included
			Repairs to Anicut & Shutters	
48	13.12.08	V.Theerthapuram	Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
49	13.12.08	Varadhappanur	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
50	13.12.08	Pukkiravari	Supply channel to be widened and desilted	Included
50	15.12.08	I UKKIIAVAII	Weir to be repaired	Included
			Repairs to Anicut & Shutters	Included
51	13.12.08	Sirumangalam	Repairs to Anicut & Shutters	Included
<i>c</i> 2	12.12.00		Tank sluices to be repaired and reconstructed	Included
52	13.12.08	Perumangalam	Supply channel to be widened and desilted	Included

		1	Weir to be repaired	Included
		1	Retaining wall in Vulnerable points in supply channel to be provided.	Included
		1	Repairs to Anicut & Shutters	Included
		1	Tank sluices to be repaired and reconstructed	Included
		1	Supply channel to be widened and desilted	Included
53	13.12.08	Kilnarriyappanur	Weir to be repaired	Included
		1	Removal of encroachments	Included
	† †	 	Tank sluices to be repaired and reconstructed	Included
54	15.12.08	Devennenun	Supply channel to be widened and desilted	Included
34	13.12.08	Rayappanur	Retaining wall in Vulnerable points in supply channel to be provided.	Included
		1	Repairs to Anicut & Shutters	Included
	+ +	1	Supply channel to be widened and desilted	Included
		1	Weir to be repaired	Included
55	15.12.08	Thenponporappy	Tank bund to be widened and strengthened	Included
			Retaining wall in Vulnerable points in supply channel to be provided.	Included
		ļ	Repairs to Anicut & Shutters	Included
56	15.1208	Vasudavanur	Repairs to Anicut & Shutters	Included
57	15.12.08	Ammaiyagaram	Repairs to Anicut & Shutters	Included
58	16.12.08	Poondi	Repairs to Anicut & Shutters	Included
	1612.00		Tank sluices to be repaired and reconstructed	Included
59	16.12.08	Thagamtheerthapuram	Tank bund to be widened and strengthened	Included
	1	1	Tank sluices to be repaired and reconstructed	Included
		1	Supply channel to be widened and desilted	Included
60	16.12.08	Thottapadi	Tank bund to be widened and strengthened	Included
		1	Repairs to Anicut & Shutters	Included
(1	1(12.08	Kalanan	Tank sluices to be repaired and reconstructed	Included
61	16.12.08	Kalasamudram	Tank bund to be widened and strengthened	Included
62	16.12.08	Pethasamudram	Tank sluices to be repaired and reconstructed	Included

			Supply channel to be widened and desilted	Included
			Tank bund to be widened and strengthened	Included
			Tank sluices to be repaired and reconstructed	Included
63	17.12.08	Kural	Supply channel to be widened and desilted	Included
			Tank bund to be widened and strengthened	Included
6.4	17.10.00		Tank sluices to be repaired and reconstructed	Included
64	17.12.08	Thattathiripuram	Tank bund to be widened and strengthened	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
65	17.12.08	Alambalam	Weir to be repaired	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Supply channel to be widened and desilted	Included
66	17.12.08	Krishnapuram	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
67	17.12.08	Karunthalakurichi	Tank bund to be widened and strengthened	Included
07	17.12.08	Karunnanakurieni	Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
68	18.12.08	Nainarpalayam	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
69	18.12.08	Anumanandal	Supply channel to be widened and desilted	Included
			Tank bund to be widened and strengthened	Included

70	18.12.08	Sampakurichi	Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
71	18.12.08	Karunkuli	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
72	18.12.08	Ammakulathur	Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
73	18.12.08	Eriyur	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
74	19.1.09	S. Naraiyur	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
			Supply channel to be widened and desilted	Included
75	19.1.09	Arasankudi	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Supply channel to be widened and desilted	Included
			Tank bund to be widened and strengthened	Included
76	19.1.09	Sirupakkam	Removal of encroachments	Included
10	19.1.09	Shupunnum	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
77	19.1.09	Rettakurichi	Supply channel to be widened and desilted	Included
11	19.1.09	INCUARUIUI	Tank bund to be widened and strengthened	Included
			Repairs to Anicut & Shutters	Included
78	19.1.09	J. Endal	Supply channel to be widened and desilted	Included

			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Tank sluices to be repaired and reconstructed	Included
70	10 1 00	Kalavai	Tank bund to be widened and strengthened	Included
79	19.1.09	Kolavai	Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
80	6.2.09	A. Marur	Tank bund to be widened and strengthened	Included
00	0.2.09		Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
81	6.2.09	Nagar	Supply channel to be widened and desilted	Included
			Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included
			Repairs to Anicut & Shutters	Included
			Tank sluices to be repaired and reconstructed	Included
82	6.2.09	Seppakkam	Supply channel to be widened and desilted	Included
02	0.2.09	Серраккат	Tank bund to be widened and strengthened	Included
			Removal of encroachments	Included
			Repairs to Anicut & Shutters	Included

1.4.1.WALK THROUGH SURVEY

	Walk	Through Survey	Farmers request			Techni	cal Sol	ution						Prop	osals ir	ı Plan				s
Sl.No	Date	Locati on	WRO	WRO	Agri	Horti	AED	TNAU	AGM T	AHD	Fisher ies	WRO	Agri	Horti	AED	TNAU	AGM T	AHD	Fisher ies	Remarks
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	<u>Villu</u>	<u>puram District</u>																		
1	15.10.08	Vadakanandal	Dividing dam to be reconstructed Supply channel to be widened and desilted Removal of encroachments Retaining wall in Vulnerable points in supply channel to be provided. Small culverts in supply channel Repairs to Anicut & Shutters	Can be reconstructed Can be provided Can be provided Can be provided Can be provided Can be provided								Included Included Included Included Included								
2	15.10.08	Kadathur	Small culverts in supply channel Tank sluices to be repaired and reconstructed Field channel lining for 200 m lemgth from sluice is required Supply channel to be widened and desilted Weir to be repaired Tank bund to be widened and strengthened Separate leading channel in each tank is requested	Can be provided To be repaired and reconstructed May be provided if funds are available in WRO account. Can be provided Can be provided Can be provided								Included Included Not included Included Included Included								
3	15.10.08	Nallathur	Tank sluices to be repaired and reconstructedField channel lining for 200 m lemgth from sluice is requiredSupply channel to be widened and desilted Weir to be repaired	To be repaired and reconstructed May be provided if funds are available in WRO account. Can be provided Can be provided								Included Not included Included Included								

			Tank bund to be widened and strengthened	Can be provided			Included			
			Small culverts in supply channel	Can be provided			Included			
			Separate leading channel in each tank is equested	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Supply channel to be widened and desilted	Can be provided			Included			
			Weir to be repaired	Can be provided			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
4	15.10.08	Kuthiraichandal	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
	10110100		Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.			Not included			
			Small culverts in supply channel	Can be provided			Included			
			Separate leading channel in each tank is requested	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
			Weir to be repaired	Can be provided			Included			
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.			Not included			
5	15.10.08	Karanur	Supply channel to be widened and desilted	Can be provided			Included			
			Small culverts in supply channel	Can be provided			Included			
			Separate leading channel in each tank is requested	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Small culverts in supply channel	Can be provided			Included			
6	16.10.08	Somandarkudi	Tank sluices to be repaired and	To be repaired and			Included			
			reconstructed	reconstructed						

			Field channel lining for 200 m lemgth from sluice is required Supply channel to be widened and desilted Weir to be repaired Tank bund to be widened and strengthened Retaining wall in Vulnerable points in	May be provided if funds are available in WRO account. Can be provided Can be provided Can be provided				Ir Ir Ir	Not ncluded ncluded ncluded ncluded				
			supply channel to be provided. Repairs to Anicut & Shutters	Can be provided					ncluded				
			Small culverts in supply channel	Can be provided				Ir	ncluded				
7	16.10.08	Ka.Mammanadhal	Supply channel to be widened and desilted	Can be provided				Ir	ncluded				
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account				ir	Not ncluded				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed				Ir	ncluded				
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.				ir	Not ncluded				
			Supply channel to be widened and desilted	Can be provided				Ir	ncluded				
			Weir to be repaired	Can be provided				Ir	ncluded				
8	16.10.08	Kallakurichi	Tank bund to be widened and strengthened	Can be provided				Ir	ncluded				
			Removal of encroachments	Can be provided				Ir	ncluded				
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided				Ir	ncluded				
			Small culverts in supply channel	Can be provided				Ir	ncluded				
			Repairs to Anicut & Shutters	Can be provided				Ir	ncluded				
9	16.10.08	Emapair	Supply channel to be widened and desilted	Can be provided				Ir	ncluded				

			Small culverts in supply channel	Can be provided		Inc	luded		
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		Inc	bluded		
			Removal of encroachments	Can be provided		Inc	luded		
			Repairs to Anicut & Shutters	Can be provided		Inc	cluded		
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed		Inc	eluded		
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.			Not		
			Supply channel to be widened and desilted	Can be provided		Inc	luded		
			Weir to be repaired Tank bund to be widened	Can be provided		Inc	luded		
10	16.10.08	Thenkeeranur	and strengthened	Can be provided		Inc	cluded		
			Removal of encroachments	Can be provided		Inc	eluded		
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		Inc	luded		
			Small culverts in supply channel	Can be provided		Inc	eluded		
			Repairs to Anicut & Shutters	Can be provided		Inc	luded		
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed		Inc	luded		
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.			Not Sluded		
11	16.10.08	• Tatchur	Supply channel to be widened and desilted	Can be provided		Inc	luded		
			Weir to be repaired Tank bund to be widened	Can be provided		Inc	cluded		
			and strengthened	Can be provided		Inc	luded		
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		Inc	bluded		
12	22 10 00	Naalamer la	Small culverts in supply channel	Can be provided		Inc	luded		
12	22.10.08	Neelamangalam	Retaining wall in Vulnerable points in	Can be provided		Inc	eluded		

			supply channel to be provided. Repairs to Anicut &						
			Shutters	Can be provided		Included			
13	22.10.08	Niraimathi	Tank sluices to be repaired and reconstructed Field channel lining for 200 m lemgth from sluice is required	To be repaired and reconstructed May be provided if funds are available in WRO account.		Included Not included			
15	22.10.00	Tanaani	Supply channel to be widened and desilted	Can be provided		Included			
			Weir to be repaired	Can be provided		Included			
			Tank bund to be widened and strengthened	Can be provided		Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed		Included			
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.		Not included			
			Supply channel to be widened and desilted	Can be provided		Included			
			Weir to be repaired	Can be provided		Included			
14	22.10.08	Vilambar	Tank bund to be widened and strengthened	Can be provided		Included			
			Removal of encroachments	Can be provided		Included			
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		Included			
			Supply channel to be widened and desilted	Can be provided		Included			
15	22.10.08	Malaikottalam	Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		Included			
			Removal of encroachments	Can be provided		Included			
16	22.10.08	Latchiyam	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed		Included			

12	22.10.02		Field channel lining for 200 m lemgth from sluice is required Supply channel to be widened and desilted Weir to be repaired Tank bund to be widened and strengthened Removal of encroachments Retaining wall in Vulnerable points in supply channel to be provided.	May be provided if funds are available in WRO account. Can be provided Can be provided Can be provided Can be provided Can be provided			Not included Included Included Included Included			
17	22.10.08	Vanavareddi	-				 			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.			Not included			
			Supply channel to be widened and desilted	Can be provided			Included			
18	29.10.08	Kurur	Weir to be repaired	Can be provided			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Repairs to Anicut & Shutters	Can be provided			Included			
			Tank bund to be widened and strengthened Removal of	Can be provided			Included			
			encroachments	Can be provided			Included			
10	20.10.00	Mal	Supply channel to be widened and desilted	Can be provided			Included			
19	29.10.08	Mudiyanur	Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided			Included			
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in			Not included			
L	1	1	- requires	a analiable in	1 I	I (1 1 1	i i i	1

				WRO account.			1	1			1	1	
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed					Included				
			Repairs to Anicut & Shutters	Can be provided					Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed					Included				
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.					Not included				
20	29.10.08	Virugavur	Supply channel to be widened and desilted	Can be provided					Included				
			Weir to be repaired	Can be provided					Included				
			Tank bund to be widened and strengthened	Can be provided					Included				
			Removal of encroachments Retaining wall in	Can be provided					Included				
			Vulnerable points in supply channel to be provided.	Can be provided					Included				
			WBM road over the top of the bank of supply channel	Can be considered provided fund are available					Not included				
			Repairs to Anicut & Shutters	Can be provided					Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed					Included				
21	29.10.08	Nagalur	Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.					Not included				
			Supply channel to be widened and desilted	Can be provided					Included				
			Weir to be repaired	Can be provided					Included				
			Tank bund to be widened and strengthened	Can be provided					Included				
			Removal of encroachments	Can be provided					Included				

			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		I	Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
22	29.10.08	Kanangur	Field channel lining for 200 m length from sluice is required	May be provided if funds are available in WRO account.		i	Not included			
			Supply channel to be widened and desilted	Can be provided			Included			
			Weir to be repaired	Can be provided			Included			
			Removal of encroachments	Can be provided		I	Included			
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided		I	Included			
			Repairs to Anicut & Shutters	Can be provided			Included			
23	29.10.08	Porasakurichi	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
			Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.		l i	Not included			
			Supply channel to be widened and desilted	Can be provided		I	Included			
			Weir to be repaired Tank bund to be widened	Can be provided		1	Included			
			and strengthened	Can be provided			Included			
24	30.10.08	Ogaiyur	- -							
25	30.10.08	Velakurichi	Repairs to Anicut & Shutters Removal of encroachments	Can be provided			Included			

			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided			Included				
			Tank sluices to be repaired and reconstructed Field channel lining for 200 m lemgth from sluice is required Supply channel to be	To be repaired and reconstructed May be provided if funds are available in WRO account.			Included Not included				
			widened and desilted Weir to be repaired	Can be provided Can be provided			Included Included				
26	30.10.08	Varanjaram	Tank bund to be widened and strengthened	Can be provided			Included				
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided			Included				
			Removal of encroachments	Can be provided			Included				
			Small culverts in supply channel	Can be provided			Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included				
27	30.10.08	Asakalathur	Supply channel to be widened and desilted	Can be provided			Included				
			Tank bund to be widened and strengthened	Can be provided			Included				
			Retaining wall in Vulnerable points in supply channel to be provided.	Can be provided			Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included				
28	4.11.08	Thengiyanatham	Supply channel to be widened and desilted	Can be provided			Included				
			Weir to be repaired	Can be provided			Included				
			Tank bund to be widened	Can be provided			Included				

			and strengthened							
			Removal of encroachments	Can be provided			Included			
29	4.11.08	Paithanthurai	-							
30	4.11.08	Thenchettiyandal	Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
31	4.11.08	Eliyathur	Tank bund to be widened and strengthened Removal of	Can be provided			Included			
			encroachments	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
32	4.11.08	Thagarai	Field channel lining for 200 m lemgth from sluice is required	May be provided if funds are available in WRO account.			Not included			
			Weir to be repaired	Can be provided			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
33	6.11.08	Thottiyam	Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
34	6.11.08	Bangaram	Weir to be repaired Tank bund to be widened and strengthened	Can be provided Can be provided			Included Included			
			Removal of encroachments	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
35	6.11.08	Namasivayapuram	Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			

36	6.11.08	Ulangakathan	Removal of encroachments	Can be provided			Included		
37	10.12.08	Elavadi	Removal of encroachments	Can be provided			Included		
38	10.12.08	Kallanatham	Repairs to Anicut & Shutters	Can be provided			Included		
39	10.12.08	Thimmapuram	Repairs to Anicut & Shutters	Can be provided			Included		
40	10.12.08	Pandiyakuppam	Repairs to Anicut & Shutters	Can be provided			Included		
41	10.12.08	Maravanatham	Repairs to Anicut & Shutters	Can be provided			Included		
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included		
42	10.12.08	V.P.Agaram	Weir to be repaired	Can be provided			Included		
			Tank bund to be widened and strengthened	Can be provided			Included		
			Removal of encroachments	Can be provided			Included		
			Small culverts in supply channel	Can be provided			Included		
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included		
43	12.12.08	Chinnasalem	Supply channel to be widened and desilted	Can be provided			Included		
	12.12.00	Chininasalem	Weir to be repaired	Can be provided			Included		
			Tank bund to be widened and strengthened	Can be provided			Included		
			Removal of encroachments	Can be provided			Included		
			Repairs to Anicut & Shutters	Can be provided			Included		
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included		
44	12.12.08	Kaniyamoor	Tank bund to be widened and strengthened	Can be provided			Included		
			Removal of encroachments	Can be provided			Included		
			Repairs to Anicut & Shutters	Can be provided			Included		

45	12.12.08	Rayarpalayam	Tank sluices to be repaired and reconstructed Tank bund to be widened and strengthened Removal of encroachments	To be repaired and reconstructed Can be provided Can be provided				Included Included Included				
46	12.012.08	Pethanur	Tank sluices to be repaired and reconstructed Supply channel to be widened and desilted Weir to be repaired Removal of	To be repaired and reconstructed Can be provided Can be provided				Included Included Included				
			encroachments Repairs to Anicut & Shutters	Can be provided Can be provided				Included Included				
			Tank sluices to be repaired and reconstructed Supply channel to be widened and desilted	To be repaired and reconstructed Can be provided				Included Included				
47	12.12.08	Ulagiyanallur	Tank bund to be widened and strengthened	Can be provided				Included				
			Removal of encroachments Repairs to Anicut & Shutters	Can be provided Can be provided				Included Included				
48	13.12.08	Siruvathur	Removal of encroachments	Can be provided				Included				
49	13.12.08	V.Theerthapuram	Repairs to Anicut & Shutters	Can be provided				Included				
			Repairs to Anicut & Shutters	Can be provided				Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed				Included				
50	13.12.08	Varadhappanur	Tank bund to be widened and strengthened	Can be provided				Included				
			Removal of encroachments	Can be provided				Included				
			Repairs to Anicut & Shutters	Can be provided				Included				
51	13.12.08	Pukkiravari	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed				Included				

			Supply channel to be widened and desilted	Can be provided			Includ	d				
			Weir to be repaired	Can be provided			Includ	:d				
			Repairs to Anicut & Shutters	Can be provided			Includ	d				
52	13.12.08	Sirumangalam	Repairs to Anicut & Shutters	Can be provided			Includ	d				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Includ	d				
			Supply channel to be widened and desilted	Can be provided			Includ	d				
53	13.12.08	Perumangalam	Weir to be repaired Retaining wall in	Can be provided			Includ	d				
			Vulnerable points in supply channel to be provided.	Can be provided			Includ	d				
			Repairs to Anicut & Shutters	Can be provided			Includ	d				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Includ	d				
54	13.12.08	Kilnarriyappanur	Supply channel to be widened and desilted	Can be provided			Includ	d				
			Weir to be repaired	Can be provided			Includ	d				
			Removal of encroachments	Can be provided			Includ	d				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Includ	d				
55	15.12.08	Rayappanur	Supply channel to be widened and desilted Retaining wall in	Can be provided			Includ	d				
		. caj ap parta	Vulnerable points in supply channel to be provided.	Can be provided			Includ	d				
			Repairs to Anicut & Shutters	Can be provided			Includ	d				
			Supply channel to be widened and desilted	Can be provided			Includ	d				
56	15.12.08	Thenponporappy	Weir to be repaired Tank bund to be widened	Can be provided Can be provided			Includ Includ					
56	15.12.08	Thenponporappy	Weir to be repaired	Can be provided Can be provided								

			Retaining wall in Vulnerable points in supply channel to be provided. Repairs to Anicut & Shutters	Can be provided Can be provided			Included				
57	15.12.08	Vasudavanur	Repairs to Anicut & Shutters	Can be provided			Included				
58	15.12.08	Ammaiyagaram	Repairs to Anicut & Shutters	Can be provided			Included				
59	16.12.08	Poondi	Repairs to Anicut & Shutters	Can be provided			Included				
60	16.12.08	Thagamtheerthapuram	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included				
00	10.12.00	Thagannineerinapuram	Tank bund to be widened and strengthened	Can be provided			Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included				
	16.10.00		Supply channel to be widened and desilted	Can be provided			Included				
61	16.12.08	Thottapadi	Tank bund to be widened and strengthened	Can be provided			Included				
			Repairs to Anicut & Shutters	Can be provided			Included				
62	16.12.08	Kalasamudram	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included				
			Tank bund to be widened and strengthened	Can be provided			Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included				
63	16.12.08	Pethasamudram	Supply channel to be widened and desilted Tank bund to be widened	Can be provided Can be provided			Included Included				
64	17.12.08	Kural	and strengthened Tank sluices to be repaired and	To be repaired and			Included			 	
	17.12.00	ixutat	reconstructed Supply channel to be	reconstructed Can be provided			Included				

			widened and desilted Tank bund to be widened and strengthened	Can be provided			Included			
65	17.12.08	Thattathiripuram	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
			Supply channel to be widened and desilted	Can be provided			Included			
66	17.12.08	Alambalam	Weir to be repaired	Can be provided			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Supply channel to be widened and desilted	Can be provided			Included			
67	17.12.08	Krishnapuram	Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Tank bund to be widened and strengthened	Can be provided			Included			
68	17.12.08	Karunthalakurichi	Removal of encroachments	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
			Supply channel to be widened and desilted	Can be provided			Included			
69	18.12.08	Nainarpalayam	Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Repairs to Anicut & Shutters	Can be provided			Included			
70	18.12.08	Anumanandal	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			

			Supply channel to be widened and desilted	Can be provided				Included				
			Tank bund to be widened and strengthened	Can be provided				Included				
71	18.12.08	Sampakurichi	Repairs to Anicut & Shutters	Can be provided				Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed				Included				
			Supply channel to be widened and desilted	Can be provided				Included				
72	18.12.08	Karunkuli	Tank bund to be widened and strengthened	Can be provided				Included				
			Removal of encroachments	Can be provided				Included				
			Repairs to Anicut & Shutters	Can be provided				Included				
73	18.12.08	Ammakulathur	Repairs to Anicut & Shutters	Can be provided				Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed				Included				
74	18.12.08	Eriyur	Supply channel to be widened and desilted	Can be provided				Included				
	10.12.00	Liiyu	Tank bund to be widened and strengthened	Can be provided				Included				
			Removal of encroachments	Can be provided				Included				
			Repairs to Anicut & Shutters	Can be provided				Included				
	Cuc	Idalore District										
75	19.1.09	S. Naraiyur	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed				Included				

			Supply channel to be widened and desilted	Can be provided			Included		
			Tank bund to be widened and strengthened	Can be provided			Included		
			Removal of encroachments	Can be provided			Included		
			Repairs to Anicut & Shutters	Can be provided			Included		
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included		
			Supply channel to be widened and desilted	Can be provided			Included		
76	19.1.09	Arasankudi	Tank bund to be widened and strengthened	Can be provided			Included		
			Removal of encroachments	Can be provided			Included		
			Repairs to Anicut & Shutters	Can be provided			Included		
			Supply channel to be widened and desilted	Can be provided			Included		
			Tank bund to be widened and strengthened	Can be provided			Included		
77	19.1.09	Sirupakkam	Removal of encroachments	Can be provided			Included		
			Tank bund to be widened and strengthened	Can be provided			Included		
			Removal of encroachments	Can be provided			Included		
			Tank sluices to be repaired and reconstructed	Can be provided			Included		
78	19.1.09	Rettakurichi	Supply channel to be widened and desilted	Can be provided			Included		
			Tank bund to be widened and strengthened	Can be provided			Included		

			Repairs to Anicut & Shutters	Can be provided			Included			
			Supply channel to be widened and desilted				Included			
			Tank bund to be widened and strengthened				Included			
79	19.1.09	J. Endal	Removal of encroachments				Included			
			Tank bund to be widened and strengthened				Included			
			Removal of encroachments				Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
80	19.1.09	Kolavai	Tank bund to be widened and strengthened	Can be provided			Included			
			Removal of encroachments	Can be provided			Included			
			Repairs to Anicut & Shutters	Can be provided			Included			
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
81	6.2.09	A. Marur	Tank bund to be widened and strengthened	Can be provided			Included			
81	6.2.09	A. Marur	Removal of encroachments	Can be provided			Included			
			Repairs to Anicut & Shutters	Can be provided			Included			
			Repairs to Anicut & Shutters	Can be provided			Included			
82	6.2.09	Nagar	Tank sluices to be repaired and reconstructed	To be repaired and reconstructed			Included			
			Supply channel to be widened and desilted	Can be provided			Included			

			Tank bund to be widened and strengthened	Can be provided		Included				
			Removal of encroachments	Can be provided		Included				
			Repairs to Anicut & Shutters	Can be provided		Included				
			Repairs to Anicut & Shutters	Can be provided		Included				
			Tank sluices to be repaired and reconstructed	To be repaired and reconstructed		Included				
83	6.2.09	Seppakkam	Supply channel to be widened and desilted	Can be provided		Included				
	0.2.09	Сорражини	Tank bund to be widened and strengthened	Can be provided		Included				
			Removal of encroachments	Can be provided		Included				
			Repairs to Anicut & Shutters	Can be provided		Included				

1.4 IRRIGATION INFRASTRUCTURE

1.5.1.LIST OF ANICUTS

NAME OF THE SUB BASIN : GOMUKHI

Sl.No	Anicuts	Village	Block	Taluk	District	Direct Ayacut Area in Ha	Capacity
	Villupura	m District					
1	Vadakkanandal Anicut	Vadakkanandal	Chinnasalem	Kallakurichi	Villupuram	1014.44	
2	Somandarkudi Anicut	Somandarkudi	Chinnasalem	Sankarapuram	Villupuram	478.29	
3	Pasungayamangalam Kondam	Pasungayamangalam Kondam	Kallakurichi	Kallakurichi	Villupuram	15.55	
4	Emapair Anicut	Emapair	Kallakurichi	Kallakurichi	Villupuram	402.6	
5	Kallakurichi Anicut	Kallakurichi	Kallakurichi	Kallakurichi	Villupuram	158.21	
6	Thenkeeranur Anicut	Thenkeeranur	Kallakurichi	Kallakurichi	Villupuram	166.31	
7	Neelamangalam Anicut	Neelamangalam	Kallakurichi	Kallakurichi	Villupuram	102.83	
8	Kurur	Kurur	Kallakurichi	Kallakurichi	Villupuram	179.70	
9	Porasakurichi Anicut	Porasakurichi	Thiyagai	Kallakurichi	Villupuram	57.45	
10	Virugavur Anicut	Virugavur	Thiyagadurugam	Kallakurichi	Villupuram	57.46	
11	Nagalur Anicut	Nagalur	Thiyagadurugam	Kallakurichi	Villupuram	114.11	
12	Velakurichi Anicut	Velakurichi	Chinnasalem	Kallakurichi	Villupuram	79.89	
13	Elavadi Anicut	Elavadi	Chinnasalem	Kallakurichi	Villupuram	43.5	
14	Kallanatham Anicut	Kallanatham	Chinnasalem	Kallakurichi	Villupuram	7	
15	Thimmapuram Anicut	Thimmapuram	Chinnasalem	Kallakurichi	Villupuram	12.18	
16	Pandiyankuppam Anicut	Pandiyankuppam	Chinnasalem	Kallakurichi	Villupuram	16.75	
17	Chinnasalem Anicut	Chinnasalem	Chinnasalem	Kallakurichi	Villupuram	164.35	
18	Maravanatham Anicut	Maravanatham	Chinnasalem	Kallakurichi	Villupuram	28.44	
19	Theerthapuram Anicut	Theerthapuram	Chinnasalem	Kallakurichi	Villupuram	23.67	
20	Pethanur Anicut	Pethanur	Chinnasalem	Kallakurichi	Villupuram	36.44	
21	Kaniyamoor Anicut	Kaniyamoor	Chinnasalem	Kallakurichi	Villupuram	71.67	
22	Veppudaiyanthangal Anicut	Veppudaiyanthangal	Chinnasalem	Kallakurichi	Villupuram	91.71	
23	Siruvathur Anicut	Siruvathur	Chinnasalem	Kallakurichi	Villupuram	68.83	

24	Ulagiyanallur Anicut	Ulagiyanallur	Chinnasalem	Kallakurichi	Villupuram	67.17	
25	Varadhappanur Anicut	Varadhappanur	Chinnasalem	Kallakurichi	Villupuram	39.98	
26	Pukkiravari Anicut	Pukkiravari	Kallakurichi	Kallakurichi	Villupuram	50.76	
27	Sirumangalam Anicut	Sirumangalam	Kallakurichi	Kallakurichi	Villupuram	41.36	
28	Perumangalam Anicut	Perumangalam	Kallakurichi	Kallakurichi	Villupuram	24.32	
29	Selliyampalayam Anicut	Selliyampalayam	Chinnasalem	Kallakurichi	Villupuram	13.84	
30	Rayappanur Anicut	Rayappanur	Chinnasalem	Kallakurichi	Villupuram	47.8	
31	Thenponparappi Anicut	Thenponparappi	Chinnasalem	Kallakurichi	Villupuram	70.87	
32	Poondi Anicut	Poondi	Chinnasalem	Kallakurichi	Villupuram	41.99	
33	Vasudevanur Anicut	Vasudevanur	Chinnasalem	Kallakurichi	Villupuram	18.37	
34	Ammaiyagaram Anicut	Ammaiyagaram	Chinnasalem	Kallakurichi	Villupuram	13.95	
35	Thottapadi Anicut	Thottapadi	Chinnasalem	Kallakurichi	Villupuram	71.19	
36	Anumanandal Anicut	Anumanandal	Chinnasalem	Kallakurichi	Villupuram	42.48	
37	Nainarpalayam Anicut	Nainarpalayam	Chinnasalem	Kallakurichi	Villupuram	13.83	
38	Sembakurichi Anicut	Sembakurichi	Chinnasalem	Kallakurichi	Villupuram	32.91	
39	Karunguzhi Anicut	Karunguzhi	Chinnasalem	Kallakurichi	Villupuram	64.61	
40	Maruthamalaiyan Anicut	Maruthamalaiyan	Chinnasalem	Kallakurichi	Villupuram	9.31	
41	Eriyur Anicut	Eriyur	Chinnasalem	Kallakurichi	Villupuram	43.9	
	Cuddalor	<u>•e District</u>					
42	Kattumailur Anicut	Sepakkam	Nallur	Virudhachalam	Cuddalore	28.45	
43	Ja. Endal Anicut	Ja. Endal	Mangalore	Tittakudi	Cuddalore	28.26	

1.5.3.LIST OF SUPPLY CHANNEL

NAME OF THE SUB BASIN : GOMUKHI SUB BASIN

Sl.No.	Name of Supply Channel	Off take point	Length in mm	Village	Block	Taluk	District
	<u>Villupuram District</u>	-					
1	Vadakanandal Anicut supply channel	Vadakanandal Anicut	1900	Vadakanandal			
2	Somandarkudi Anicut Supply Channel	Somandarkudi Anicut	500	Somandarkudi			
3	Pasungayamangalam Tank Supply Channel	Open off tank	2000	Kallakurichi			
4	Emapair Anicut Supply Channel	Emapair Anicut	5600	Kallakurichi			
5	Vilangthangal Tank surplus channel	Vilangthangal tank surplus.	1500	Kallakurichi			
6	Kallakurichi Anicut Supply Channel	Kallakurichi Anicut	2100	Kallakurichi			
7	Kallakurichi Small Tank Supply Channel	Kallakurichi Large Tank surplus	800	Kallakurichi			
8	Thenkeeranur Anicut Supply Channel	Thenkeeranur Anicut	2300	Thenkeeranur			
9	Thenkeeranur Small Tank SupplyChannel	Thenkeeranur large tank surplus	1200	Thenkeeranur			
10	Thenkeeranur - Vilambar Tank Supply Channel	Thenkeeranur small tank surplus	1500	Vilambar			
11	Emapair -Tatchur Tank SupplyChannel	Emapair tank surplus	1000	Thatchur			
12	Tatchur Tank - Vilambar Tank Supply Channel	Thatchur tank surplus	1750	Vilambar			
13	Latchiyam Tank Supply Channel	Reinfed tanks	1400	Malaikottalam			

14	Neelamangalam Anicut Supply Channel	Neelamangalam Anicut	3000	Neelamangalam		
15	Neelamangalam - Kurur Tank Supply Channel	Neelamangalam tank surplus	1900	Kurur		
16	Niraimathi Tank - Kurur SupplyChannel	Niraimathi tank surplus	1350	Kurur		
17	Kurur Anicut SupplyChannel	Kurur Anicut	3800	Mudiyanur		
18	Porasakurichi Anicut SupplyChannel	Porasakurichi Anicut	6400	Porasakurichi		
19	Kanangur - Porasakurichi Tank Supply Channel	Kanangur tank surplus	1300	Porasakurichi		
20	Virugavur Anicut SupplyChannel	Virugavur Anicut	2600	Virugavur		
21	Nagalur Anicut SupplyChannel	Nagalur Ancut	4400	Nagalur		
22	Velakurichi Anicut SupplyChannel	Velakurichi Anicut	4600	Varanjaram		
23	Vadakanandal - Kadathur dividing dam Supply Channel	Vadakanandal Anicut	4200	Kadathur		
24	Kadathur Tank Supplychannel	Dividing dam	2500	Kadathur		
25	Nallathur tank Supplychannel	Kadathur surplus	2600	Nallathur		
26	Kudiraichandal tank Supplychannel	Nallathur surplus	1000	Kudiraichandal		
27	Karanur Peri Eri Supplychannel	Kudiraichandal surplus	500	Karanur		
28	Karanur Chitt Eri Supplychannel	Karanur peri eri surplus	300	Karanur		
29	Villanthangal Tank Supplychannel	Karanur chitt eri surplus	1000	Kallakurichi		
30	Eliyathur Large Tank Supplychannel	Kadathur surplus	1000	Eliyathur		
31	Eliyathur Small Tank Supplychannel	Eliyathur large surplus	1500	Eliyathur		

32	Thottiyam Tank Supplychannel	Eliyathur small surplus	2000	Thottiyam		
33	Bangaram Tank Supplychannel	Thottiyam surplus	1500	Bangaram		
34	Thengiyanatham Tank Supplychannel	Kadathur dividing dam	3000	Kadathur		
35	Thengiyanatham Tank Surplus channel	Thengiyanatham surplus	3500	Paithanthurai		
36	Thenchettiyandal Tank Supplychannel	Paithanthurai surplus	1000	Thenchettiyandal		
37	Namasivayapuram Tank Supply channel	Thenchettiyandal surplus	1000	Namasivayapuram		
38	Paithanthurai -Thottiyam tank supply channel	Paithanthurai surplus	2000.00	Thottiyam		
39	Thenchettiyandal - Chinnasalem Anicut supply channel	Thenchettiyandal surplus	4100	Thenchettiyandal		
40	Kaniyamoor Anicut Supplychannel	Kaniyamoor anicut	1500	Kaniyamoor		
41	Veppudayanthangal Anicut Supplychannel	Veppudayanthangal Anicut	1000	Siruvathur		
42	Elavadi Anicut Supplychannel	Elavadi Anicut	2900	Elavadi		
43	Kallanatham Anicut Supplychannel	Kallanatham Anicut	300	Kallanatham		
44	Thimmapuram Anicut Supplychannel	Thimmapuram Anicut	200	Thimmapuram		
45	Pandiyankuppam Anicut Supplychannel	Pandiyankuppam Anicut	500	Pandiyankuppam		
46	Chinnasalem Anicut Supplychannel	Chinnasalem Anicut	4000	Chinnasalem		
47	Maravanatham Anicut Supplychannel	Maravanatham Anicut	1200	Maravanatham		
48	V.Theerthapuram Anicut Supplychannel	V.Theerthapuram Anicut	2100	V.Theerthapuram		

49	Pethanur Anicut Supplychannel	Pethanur Anicut	2600	Pethanur		
50	Siruvathur Anicut Supplychannel	Siruvathur Anicut	2000	Siruvathur		
51	Ulugiyanallur Anicut Supplychannel	Ulugiyanallur Anicut	1200	Ulagiyanallur		
52	Varadappanur Anicut Supplychannel	Varadappanur Anicut	1600	Varadappanur		
53	Pukkiravari Anicut Supplychannel	Pukkiravari Anicut	1000	Pukkiravari		
54	Sirumangalam Anicut Supplychannel	Sirumangalam Anicut	2500	Sirumangalam		
55	Perumangalam Anicut Supplychannel	Perumangalam Anicut	1600	Perumangalam		
56	Selliyampalayam Anicut Supplychannel	Salliyampalayam Anicut	1450	Rayappanur		
57	Rayappanur Anicut Supplychannel	Rayappanur Anicut	950	Rayappanur		
58	Thenponporappy Anicut Supplychannel	Thenponporappy Anicut	1650	Thenponporappy		
59	Poondi Anicut Supply channel	Poondi Anicut	2750	Poondi		
60	Thenponporappy -Poondi Tank Supply channel	Thenponporappy surplus	1700	Poondi		
61	Vasudevanur Anicut Supplychannel	Vasudevanur Anicut	2200	Vasudevanur		
62	Ammaiyagaram Anicut supply channel	Ammaiyagaram Anicut	1050	Ammaiyagaram		
63	Tottapadi Anicut Supply channel	Tottapadi Anicut	900	Tottapadi		
64	Thagamtheerthapuram - Tottapadi Tank Supply channel	Thagamtheerthapuram surplus	1860	Tottapadi		

65	Tottapadi - Nainarpalayam Tank Supply channel	Tottapadi surplus	2500	Nainarpalayam		
66	Nainarpalayam -Anumanandal Tank Supplychannel	Nainarpalayam surplus	1300	Anumanandal		
67	Anumanandal Anicut Supplychannel	Anumanandal Anicut	3700	Anumanandal		
68	Nainarpalayam Anicut Supplychannel	Nainarpalayam Anicut	2000	Nainarpalayam		
69	Sembakuruchi Anicut Supplychannel	Sembakuruchi Anicut	1000	Sembakuruchi		
70	Karunkuli Anicut Supplychannel	Karunkuli Anicut	1250	Karunkuli		
71	Maruthamalaiyan Anicut Supplychannel	Maruthamalaiyan Anicut	2000	Ammakulathur		
72	Eriyur Anicut Supplychannel	Eriyur Anicut	1640	Eriyur		
73	Asakalathur Anicut Supplychannel	Asakulathur Anicut	4100	Asakulathur		
74	Pakkambadi - Kalasamudram Tank Supply channel	Pakkambadi tank	2250	Kalasamudram		
75	Pethasamudram Tank Supply channel	Kalasamudram surplus	3800	Pethasamudram		
76	Pakkambadi - Thagamtheerthapuram Tank Supply channel	Pakkambadi tank	4250	Thagamtheerthapuram		
77	Pakkambadi - Kural Tank Supply channel	Pakkambadi tank	2300	Kural		
78	Thattathiripuram Tank Supplychannel	Kural surplus	650	Thattathiripuram		
79	V.Alambalam Tank Supplychannel	Thattathiripuram surplus	1150	V.Alambalam		
80	Krishnapuram Tank Supplychannel	V. Alambalam surplus	1660	Krishnapuram		

81	Ponneri Tank Supplychannel	Krishnapuram surplus	1270	Krishnapuram		
82	Madatheri Tank Supplychannel	Krishnapuram surplus	1360	Krishnapuram		
83	Karunthalakurichi Tank Supplychannel	Gugaiyur surplus	3800	Karunthalakurichi		
	<u>Cuddalore District</u>					
84	S. Naraiyur Tank Supply Channel	Karunthalakurichi Tank surplus	2600	S. Naraiyur		
85	Arasankudi Tank SupplyChannel	karunkuli tank surplus	1600	Arasankudi		
86	Sirupakkam Tank SupplyChannel	Arasankudi Tank surplus	800	Sirupakkam		
87	Rettakurichi Tank SupplyChannel	Sirupakkam Tank surplus	3500	Rettakurichi		
88	J. Endal Tank SupplyChannel	Rettakurichi Tank surplus	3200	J. Endal		
89	J.Endal Anicut SupplyChannel	A. Kalathur	100	Kalavai		
90	A. Marur tank SupplyChannel	Asakalathur	1500	A. Marur		
91	Kattumayilur Anicut SupplyChannel	Kattumailur Anicut	6300	Nagar		
92	Seppakam tank supply channel	Kattumailur Anicut	300	Sappakkam		
		Total	189980			

1.5.4.List of Tanks / Anicuts Executed under various Schemes (Viz, Part II Scheme, NABARD, WRCP I etc.,) Since 2000

NAME	OF THE SUB	BASIN:	GOMUKHI
------	------------	--------	---------

Sl.No	Name of Anicut / Tank	Ayacut	Scheme in which executed	Amount	Details of Components executed	Details of Components Proposed IAMWARM	Remarks
	Villupuram District						
	PILOT SCHEME C.W.C.						
1	Neelamangalam Tank	102.83		22.94			
2	Thenkeeranur Large Tank	68.02		15.63			
3	Malaikottalam Tank	95.95		22.84			
4	Vanavaretti Tank	63.51		13.12			
5	Ulagamkathan Tank	68.95		14.48		Nil	
6	Siruvathur Large Tank	75.71	Pilot Scheme - Centrel Water	13.33	Reconstruction of Sluice, improvements to weir,		Work Completed
7	Siruvathur Chitteri	68.83	Commission		strengthing of bund desiting of supply channel		2005 - 06
8	Elavadi Tank	41.48		8.82			
9	Vadakanandal Large Tank	84.21		23.6			
	Part II scheme						
10	Emapair Tank	115.68	Part II scheme	10.00	Reconstruction of Sluice, improvements to weir, strengthing of bund.	Nil	Work Completed 2007 - 08
	MLA scheme						
11	Paithanthurai Tank	94.10		10.00	Reconstruction of Sluice,	Nil	
12	Ogaiyur Tank	71.86	MLA Scheme	10.00	improvements to weir, strengthing of bund desiting of supply channel		Work Completed 2008 - 09
		951.13					

1.5.5.ABSTRACT ON THE DETAILS OF IRRIGATION INFRASTRUCTURE AVAILABLE AND WORKS TAKEUP UNDER IAMWARM PROJECT

NAME OF THE SUB BASIN : GOMUKHINADHI

SI.			ANICU	Г		SYSTEM TA	ANK	NO	N SYSTE	M TANK	O SU	ANY THER JPPLY ANNEL	NRKS
No	DETAILS	SON	SUPPLY CHANNE L IN KM	DIRECT AYACUT	SON	SUPPLY CHANNE L IN KM	DIRECT AYACUT	SON	SUPPLY CHANNE L IN KM	DIRECT AYACUT	LENGTH	DIREC T AYACU T	REMARKS
1	Available Infrastructure in Sub basin	43	114.24	661.76	-	-	-	80	99.74	4345.82	-	-	
2	Infrastructure excluded in iamwarm project since works carried out under various schmes from 2000	-	-	-	-	-	-	12	24	951.13	-	-	
3	Infrastructures that does not require any rehabilitaion works	-	-	-	-	-	-	-	-	-	-	-	
4	works taken up in iamwarm project. i) Works taken up under Part II but also in IAMWARM	-	-	-	-	-	-				-	-	
	ii) Work proposed in IAMWARM	43	114.24	661.76	-	-	-	68	75.74	3394.69	-	-	-

Certified that the Panchayat Union Tanks are not considered in this project.
 Certified that the executed under various scheme (Viz. WRCP I, NABARD, PART II Schemes etc.,) since 2000 were not proposed in this project.

1.6 REHABILATATION OF IRRIGATION INFRASTRUCTURE

1.6.1. Details of proposals in each Infrastructure of the sub basin

Name of the subbasin: GOMUKHI NADHI

				Aı	nicut				Sh	utter			Sup	ply Chann	el		
SI.No	Name of tank / Anicut /	Flood	bank	Re	epairs	Reco	nstruction	Re	pairs	N	ew	Retainin	ıg wall	D	esiltin	g	Total
51.100	Reservior	Length in K.M.	Amt	No	Amt	No	Amt	No	Amt	No	Amt	Length in 'm'	Amt	Length	No.	Amt	Amount
1	Vadakanandal Anicut	1	5.84	1	5.15					9.00	2			11600	2	14.18	27.17
2	Somandarkudi Anicut	1	1.87	1	25.01									2000	1	1.6	28.48
3	Kallakurichi Anicut	1	5.44	1	10.21									2100	1	4.53	20.18
4	Emapair Anicut	1	2.62	1	9.02									5600	1	1.29	12.93
5	Thenkeeranur Anicut	1	1.87	1	8.27									2300	1	0.62	10.76
6	Neelamangalam Anicut			1	4.98									3000	1	4.49	9.47
7	Kurur Anicut	1	7.66	1	67.70									3800	1	5.52	80.88
8	Virugavur Anicut			1	23.35									2600	1	0.47	23.82
9	Nagalur Anicut			1	15.52									4400	1	1.23	16.75
10	Porasakurichi Anicut			1	11.61									6400	1	1.57	13.18
11	Velakurichi Anicut			1	8.84									4600	1	5.13	13.97
12	Asakalathur Anicut			1	11.32									4100	1	5.36	16.68

13	Elavadi Anicut	1	4.18	1	5.90	2900	1	0.97	11.05
14	Kallanatham Anicut	1	3.03	1	1.89	300	1	0.08	5.00
15	Thimmapuram Anicut	1	3.89	1	5.77	200	1	0.06	9.72
16	Pandiyankuppam Anicut	1	3.08	1	4.49	500	1	0.1	7.67
17	Chinnasalem Anicut	1	1.91	1	4.73	8100	2	0.61	7.25
18	Maravanantham Anicut	1	4.20	1	1.58	1200	1	3.36	9.14
19	Theerthapuram Anicut	1	3.33	1	3.31	2100	1	0.98	7.62
20	Kaniyamoor Anicut	1	2.07	1	4.97	1500	1	0.57	7.61
21	Pethanur Anicut	1	5.36	1	2.84	2600	1	1.77	9.97
22	Vepudiyanthangal Anicut	1	4.98	1	7.85	1000	1	1.11	13.94
23	Siruvathur Anicut	1	2.01	1	7.83	2000	1	0.83	10.67
24	Ulagiyanallur Anicut	1	1.59	1	5.18	1200	1	0.66	7.43
25	Varathappanur Anicut	1	2.31	1	3.47	1600	1	0.72	6.5
26	Pukkiravari Anicut	1	5.07	1	2.38	1000	1	0.32	7.77
27	Sirumangalam Anicut	1	4.83	1	5.18	2500	1	0.54	10.55
28	Perumangalam Anicut	1	2.38	1	4.90	1600	1	0.54	7.82
29	Selliyampalayam Anicut	1	3.54	1	5.47	1450	1	0.29	9.3
30	Rayappanur Anicut	1	2.20	1	5.47	950	1	0.32	7.99
31	Thenponporappy Anicut	1	2.98	1	9.57	1650	1	0.55	13.1
32	Poondi Anicut	1	4.07	1	4.18	2750	1	1.73	9.98

	Total	31	102.07	41	344.42		0	0	9.00	2.00	30	0.91	114240	45	78.22	527.62
43	Kattumailur Anicut			1	12.62								6300	1	2.55	15.17
42	J. Endal Anicut												2600	1	0.85	0.85
41	Eriyur Anicut			1	3.06								1640	1	4.28	7.34
40	Maruthamalayan Anicut			1	6.81								2000	1	4.35	11.16
39	Karunkuli Anicut			1	2.88								1250	1	0.29	3.17
38	Sembakurichi Anicut	1	0.70	1	4.57								1000	1	0.19	5.46
37	Nainarpalayam Anicut			1	3.14								2000	1	0.26	3.4
36	Anumanandal Anicut	1	1.33	1	6.03								3700	1	0.48	7.84
35	Thottapadi Anicut	1	3.98	1	1.89								900	1	0.15	6.02
34	Ammaiyagaram Anicut	1	1.34								30	0.91	1050	1	2.3	4.55
33	Vasudevanur Anicut	1	2.41	1	5.48								2200	1	0.42	8.31

1.6.1. Details of proposals in each Infrastructure of the sub basin

Name of the sub basin : GOMUKHI NADHI

								Sluice				,	Weir		Sup	oly chan	nel	
SI.N	Name of tank / Anicut /		Bund		Re	pairs	Reco on	onstructi	Field char		Rep	oairs	Reco on	nstructi		lesilting		Total Amou
0.	Reservior	Lengt h	Quanti ty in M3	Amt	N o	Amt	N o	Amt	No	Amoun t.	N o	Amt	No	Amt	Lengt h	Qty. m3	Amt	nt
1	Samikulam Tank	400	4800	2.81			1	3.1	1	1.00	1	1.57						8.48
2	Kadathur Tank	1200	12900	6.64			1	3.45	2	2.00	2	0.76						12.85
3	Nallathur Tank	1900	16000	9.06			1	3.86	2	2.00	1	0.55			2600	4680	4.62	20.09
4	Kuthiraichandal Tank	1100	13000	7.32	1	0.53			1	1.00	1	1.48			1000	1350	0.38	10.71
5	Karanur Peria Eri	1000	13800	7.63	1	0.53			1	1.00	1	0.64			500	700	0.2	10.00
6	Karanur Chitteri	800	9400	4.84	1	0.53			1	1.00	1	5.06			300	450	0.13	11.56
7	Vilangthangal Tank	900	10700	6.05	1	0.52			1	1.00	1				1000	1600	0.44	8.01
8	Eliyathur Large Tank	1200	12700	7.33	1	0.98			1	1.00	1	0.48			1000	1350	0.38	10.17
9	Eliyathur Small Tank	600	7100	4.18	1	0.71			1	1.00	1	1.01			1500	2025	0.56	7.46
10	Thottiyam Tank	1700	17500	8.64	1	1.16			2	2.00	1	0.77			2000	2700	0.79	13.36
11	Bangaram Tank	900	10900	6.47			1	3.99	2	2.00	1	0.88			1500	2400	0.66	14.00
12	Thengiyanatham Tank	800	9200	5.35	1	1.2			2	2.00	1	0.83						9.38
13	Thenchettiyandal Tank	1100	13800	7.87	1	0.82			1	1.00	1	0.88			1000	1650	0.46	11.03

14	Namasivayapuram Tank	1000	12000	6.87	1	0.54			1	1.00	1	0.42	1000	1350	0.38	9.21
14	Pasungayamangalam	1000	12000	0.67	1	0.54				1.00	1	0.42	1000	1550	0.56	9.21
15	Tank	1000	10200	5.86			1	2.64	1	1.00	1	0.87				10.37
10	The serve: Te al.	1700	27000	24.50	4	2.00			1	1 00	1	2.71				22.42
16	Thagarai Tank Vettiperumalagaram	1700	27000	24.56	1	3.86			1	1.00	1	2.71				32.13
17	Tank	1200	12700	7.04	1	1.11			2	2.00	1	0.37				10.52
					_											
18	Kallakurichi Large Tank	950	17200	6.91			1	3.86	4	3.99	1	1.41				16.17
19	Kallakurichi Small Tank	825	3200				1	2.89	1	1.00	1	7.27	800	2100	0.56	11.72
	Thenkeeranur Small															
20	Tank	1330	12000	6.87			2	5.71	1	0.99	1	2.55	 1200	3085	0.82	16.94
21	Tatchur Tank	1600	14160	9.57			1	2.88	1	0.99	2	0.33	1000	2590	0.53	14.30
22	Latchiyam Tank	750	8100	5.00			1	2.86	1	1.00	1	1.15	1400	2100	0.56	10.57
23	Vilambar Tank	1930	19600	10.63			1	3.58	4	3.97	3	1.23	2100	5450	1.12	20.53
24	Niraimathi Tank	1230	13750	7.75			1	3.11	2	1.99	1	0.44				13.29
25	Kurur Tank	2200	24150	12.79			1	2.9	1	1.00	2	0.55	2800	7260	1.44	18.68
26	Mudiyanur Tank	1500	17600	9.62			1	2.97	1	1.00	1	1.04				14.63
27	Virugavur Tank	750	9500	5.68			1	3.13	2	1.99	1	1.19				11.99
28	Nagalur Tank	2000	19200	10.36			1	3.42	3	2.99						16.77
29	Kanangur Tank	1630	14000	8.12			1	4.8	2	1.99	1	1.07				15.98

30	Porasakurichi Tank	1080	13000	7.40			1	3.07	2	1.99	1	0.34		700	1800	0.48	13.28
31	Varanjaram Tank	825	9800	5.84			1	3.17	2	1.99	1	0.78					11.78
32	Chinnasalem Tank	1300	15900	9.30			1	4.54	3	3.00	2	1.75					18.59
33	Kaniyamoor Tank	1500	18100	10.22			1	3.78	3	3.01	1	0.73					17.74
34	Rayarpalayam Tank	950	11100	6.45	1	0.76			1	1.00	1	0.51					8.72
35	Pethanur Tank	1000	12000	6.78			1	3.57	1	1.00	1	0.66					12.01
36	Ulagiyanallur Tank	1500	17900	10.18			1	4.29	4	3.12	1	0.44					18.03
37	Varathappanur Tank	1000	12200	6.85			1	3.01	1	1.00	1	0.68					11.54
38	Pukkiravari Tank	1400	16700	9.46			1	3.94	3	3.00	2	1.82					18.22
39	Perumangalam Tank	1400	17200	9.75			1	3.47	2	1.99	1	0.84					16.05
40	Kilnarriyappanur Tank	1500	18300	10.36	2	1.32			2	2.00	1	1.89					15.57
41	Rayappanur Tank	1400	10300	5.93	2	1.27			2	2.01	1	0.15					9.36
42	Thenponporappy Tank	1200	9800	5.66	2	1.17			2	2.01	1	0.91		1700	2550	0.7	10.45
43	Poondi Tank	1200	7700	4.90	1	1.22			2	2.01	1	0.24		1700	2600	0.71	9.08
44	Thagamtheerthapuram Tank	1300	10200	5.32	1	0.92			2	2.01	1	1.58		2250	7500	2.14	11.97
45	Thottapadi Tank	1600	13000	7.45	2	1.11			2	2.00	1	0.88		1860	2430	2.98	14.42

46	Kalasamudram Tank	1400	7900	4.90			1	3.52	2	2.01	1	0.17	22	50	3000	0.83	11.43
47	Pethasamudram Tank	1000	9500	5.37	2	1.49			2	2.00	2	0.83	38	00			9.69
48	Nainarpalayam Tank	1100	13930	7.88			1	3.35	2	2.00	1	0.62	25	00	3750	2.55	16.40
49	Anumanandal Tank	500	5200	3.03	1	1.18			2	2.00	1	1.19	13	00	1950	0.54	7.94
50	Kural Tank	1000	8300	4.79	1	0.74			1	1.00	1	0.5	23	00	4140	1.12	8.15
51	Thattathiripuram Tank	600	3600	2.38	1	0.99			2	2.00	1	0.27	65	0	1000	1.25	6.89
52	V. Alambalam Tank	1300	10000	5.93	1	1.22			2	2.00	3	2.18	11	50	1750	0.48	11.81
53	Krishnapuram Tank	1250	15000	8.53			1	3.47	2	2.00	2	1.12	16	50 2	2100	8.64	23.76
54	Ponneri Tank	1100	9000	5.15	1	0.69			1	1.00	1	0.59	12	70	1450	0.41	7.84
55	Madathu Eri	800	6900	3.96	1	0.91			1	1.00	1	1.23	13	50	1020	0.32	7.42
56	Karunkuli Tank	1400	13300	7.37	2	1.4			2	2.00	2	1.76					12.53
57	Eriyur Tank	1300	15700	9.22	3	1.74			3	3.01	1	1.04					15.01
58	Karunthalakurichi Tank	1000	12000	6.99	2	1.18			2	2.00	2	0.34	38	00	8400	2.28	12.79
59	Asakalathur Tank	2200	22000	12.27	2	1.68			2	2.00	1	1.04					16.99
	Cuddalore District																0.00
60	S. Naraiyur Tank	2435	18100	10.55			1	2.4	3	3.13	2	3.88	30	00		0.01	19.97
61	Arasankudi Tank	788	6800	4.16			2	4.37	3	3.13	1	1.19	29	00		0.08	12.93
62	Sirupakkam Tank	2000					2	4.5	4	4.14	1	1.48	30	00		0.17	10.29

63	Rettakurichi Tank	2000	7000	4.56			2	4.32	3	3.10	3	5.51			6200		5.85	23.34
	L Fridel Terris	1000	7000	4.00			1	2.22	2	2.07					2200			0.10
64	J. Endal Tank	1800	7600	4.88			T	2.23	2	2.07					3200			9.18
65	Kolavai Tank	1000	7850	4.41	1	0.46			1	1.04					500		0.06	5.97
66	A. Marur Tank	1500	10300	5.91			1	2.25	2	2.08	1	3.31			1500		0.06	13.61
67	Nagar Tank	1170	7300	5.27			1	2.33	3	3.03							4.43	15.06
68	Seppakkam tank	1600	10600	5.98			1	2.15	1	1.01	1	0.81			2490		5.77	15.72
		8559		477.1		33.9			12			80.7			7574	8828	55.8	
	Total	3	827240	6	41	4	41	126.88	8	127.79	80	7	0	0	0	0	9	902.43

1.6.2.TANK DETAILS WITH FREE BOARD PROVIDED

NAME OF THE SUB BASIN: GOMUKHI

~		Maximum	Free I	Board	Length of	
SI.No.	Name of the Tank	Height of Bund	Provided Previously	Provided now	Bund	
	Villupuram District					
1	Pasungayamangalam Tank	3.10	0.90	1.50	1000	
2	Kallakurichi Large Tank	4.00	1.20	1.50	950	
3	Kallakurichi Small Tank	3.70	1.10	1.50	825	
4	Thenkeeranur Small Tank	3.30	0.90	1.50	1330	
5	Tatchur Tank	4.00	1.20	1.50	1600	
6	Latchiyam Tank	3.30	1.10	1.50	750	
7	Vilambar Tank	3.30	1.10	1.50	1930	
8	Niraimathi Tank	3.70	1.10	1.50	1230	
9	Kurur Tank	4.20	1.30	1.50	2200	
10	Mudiyanur Tank	3.30	1.10	1.50	1500	
11	Virugavur Tank	3.30	1.10	1.50	750	
12	Nagalur Tank	3.60	1.20	1.50	2000	
13	Kanangur Tank	3.40	1.10	1.50	1630	
14	Porasakurichi Tank	3.70	1.20	1.50	1080	
15	Varanjaram Tank	3.40	1.20	1.50	825	
16	Samikulam Tank	3.30	1.10	1.50	400	
17	Kadathur Tank	3.90	1.30	1.50	1200	
18	Nallathur Tank	3.60	1.20	1.50	1900	
19	Kuthiraichandal Tank	3.90	1.30	1.50	1100	
20	Karanur Peria Eri	3.90	1.30	1.50	1000	
21	Karanur Chitteri	3.90	1.30	1.50	800	
22	Vilangthangal Tank	3.60	1.20	1.50	900	
23	Varadhapanur	2.40	0.75	1.25	1000	

24	Eliyathur Large Tank	3.60	1.00	1.50	1200
25	Eliyathur Small Tank	3.00	1.00	1.50	600
26	Thottiyam Tank	3.90	1.20	1.50	1700
27	Bangaram Tank	2.75	0.75	1.25	900
28	Thengiyanatham Tank	3.30	0.90	1.50	800
29	Thenchettiyandal Tank	4.00	1.20	1.50	1100
30	Namasivayapuram Tank	4.50	1.30	1.50	1000
31	Thagarai Tank	9.50	1.40	1.50	1700
32	Vettiperumalagaram Tank	4.20	1.20	1.50	1200
33	Chinnasalem Tank	5.10	1.40	1.50	1300
34	Kaniyamoor Tank	4.50	1.40	1.50	1500
35	Rayarpalayam Tank	3.90	1.30	1.50	950
36	Pethanur Tank	3.50	1.20	1.50	1000
37	Ulagiyanallur Tank	4.50	1.40	1.50	1500
38	Pukkiravari Tank	3.60	1.20	1.50	1400
39	Perumangalam Tank	3.90	1.30	1.50	1400
40	Kilnarriyappanur Tank	3.90	1.30	1.50	1500
41	Rayappanur Tank	3.90	1.30	1.50	1400
42	Thenponporappy Tank	4.50	1.40	1.50	1200
43	Poondi Tank	3.90	1.30	1.50	1200
44	Thagamtheerthapuram Tank	3.50	1.20	1.50	1300
45	Thottapadi Tank	3.60	1.20	1.50	1600
46	Nainarpalayam Tank	3.50	1.10	1.50	1100
47	Anumanandal Tank	3.30	1.00	1.50	500
48	Kalasamudram Tank	3.30	1.00	1.50	1400
49	Pethasamudram Tank	3.30	1.00	1.50	1000
50	Kural Tank	3.30	1.00	1.50	1000
51	Thattathiripuram Tank	3.00	0.90	1.50	600
52	V. Alambalam Tank	4.20	1.30	1.50	1300
53	Krishnapuram Tank	3.30	1.00	1.50	1250

54	Ponneri Tank	3.25	1.00	1.50	1100
55	Krishanapuram Madathu Eri	3.30	1.00	1.50	800
56	Karunkuli Tank	2.75	0.75	1.25	1400
57	Eriyur Tank	3.90	1.30	1.50	1300
58	Asakalathur Tank	4.20	1.40	1.50	2200
59	Karunthalakurichi Tank	3.30	1.00	1.50	1000
	Cuddalore District				
60	S. Naraiyur Tank	3.50	1.10	1.50	2435
61	Arasankudi Tank	3.25	1.10	1.50	788
62	Sirupakkam Tank	3.10	0.90	1.50	2000
63	Rettakurichi Tank	3.20	1.00	1.50	2000
64	J. Endal Tank	3.40	1.10	1.50	1200
65	Kalavai Tank	3.20	1.00	1.50	1000
66	A. Marur Tank	3.40	1.10	1.50	1500
67	Nagar Tank	3.60	1.20	1.50	1170
68	Seppakkam	3.10	1.00	1.50	1600

Note:-

- 1) For height of bund up to 3.0 m Free board is 1.25 m
- 2) For height of bund more than 3.0 m Free board is 1.50 m

1.6.3.WRO COST TABLE

NAME OF THE SUB BASIN: GOMUKHI

SI.No.	Description of work	Qu	antity	Amount in Lakhs	Remarks
1. Tanl	k Component	-			
1	Standardisation of tank Bund	85593m	827240 m3	477.16	
2	Desilting of Supply Channel	75740m	88280 m3	55.90	
3	Repairs to Sluice		41 Nos.	33.94	
4	Reconstruction of Sluice		41 Nos.	105.75	
5	Field channel in Sluices		128 Nos.	127.79	
6	Repairs to Weir		80 Nos.	80.77	
7	Reconstruction of Weir				
8	Providing measuring device		132 Nos.	21.12	
	Sub Total			902.43	
1. Non	Tank Component	-			
1	Improvements to Flood Bank	31 Km.	160098 m3	102.07	
2	Anicut Repairs		41 Nos.	344.42	
3	Improvements to Shutter - Repairs				
4	Providing Shutter - New		9 Nos.	2.00	
5	Desilting supply channel	114240 m	136762 m3	79.13	
	Sub Total			527.62	
	Grand Total			1430.05	
	Environment cell			10.00	
	Ground water			Nil	
	Total			1440.05	
1).	Tank component		=	902.43	
2).	Non tank component		=	527.62	

2). Non tank component=527.623) Envirionment cell=10.00

^{1440.05}

1.6.4.PHYSICAL AND FINANCIAL PROGRAMME

NAME OF THE SUB BASIN : GOMUKHI

Total

Sl.No.	Description of work	I Year(200	9-2010)	II Year(201	10-2011)	Тс	otal
		Qty	Amt. in Lakhs	Qty	Amt. in Lakhs	Quantity (Component Wise)	Amount in Lakhs
1. Tanl	<u>k Component</u>	-	-	-	-		
1	Standardization of tank bund	400000 m3	230.72	427240 m3	246.44	827240 m3	477.16
2	Desilting of supply channel	42140 m3	26.68	40140 m3	29.22	88280m3	55.90
3	Reconstruction of Sluice	21 Nos	65.00	20 Nos	61.87	41 Nos	126.87
4	Repairs to Sluice	21 Nos	17.4	20 Nos	16.54	41 Nos	33.94
5	Field channel in sluices.	65 Nos.	64.9	63 Nos	62.89	128 Nos	127.79
6	Improvements to weirs	42 Nos	42.66	38 Nos	38.11	80 Nos	80.77
7	Reconstruction of weir						
	Sub total		447.36		455.07		902.43
II	Non tank component						
1	Improvements to flood bank	78000 m3	49.73	82098 m3	52.34	160098 m3	102.07
2	Anicut repairs	22 Nos	184.80	20 Nos	159.62	41 Nos	344.42
3	Shutters repairs	0	0	0	0	0	0
4	Shutters New	5 Nos	1.20	4 Nos	0.80	9 Nos	2.00
5	Desilting of supply channel	65000 m3	37.17	71762 m3	41.05	136762 m3	78.22
6	Retaining wall	15 RM	0.46	15 RM	0.45	30 RM	0.91
8	Environmental		5.00		5.00		10.00
	Sub Total		278.36		259.26		537.62
	Tank Component	447.36		455.07		902.43	
	Non tank component	278.36		259.26		537.62	

714.33

1440.05

725.72

<u>Name of Work:</u> Rehabilitation of Anicuts, non system tanks and its supply channels from Vadakkanandal anicut to Emapair anicut under Gomukhi nadhi sub basin in Kallakurichi taluk of Villupuram district.

PACKAGE NO.I

Sl.No.	Name of tank / Anicut / Reservior	Amount in Lakhs
	Tank Component	
1	Samikulam Tank	8.48
2	Kadathur Tank	12.85
3	Nallathur Tank	20.09
4	Kuthiraichandal Tank	10.71
5	Karanur Peria Eri	10.00
6	Karanur Chitteri	11.56
7	Vilangthangal Tank	8.01
8	Eliyathur Large Tank	10.17
9	Eliyathur Small Tank	7.46
10	Thottiyam Tank	13.36
11	Bangaram Tank	14.00
12	Thengiyanatham Tank	9.38
13	Thenchettiyandal Tank	11.03
14	Namasivayapuram Tank	9.21

15	Thagarai Tank	32.13
16	Vettiperumalagaram Tank	10.52
17	Pasungayamangalam Tank	10.37
	Total	209.33
	Non tank Component	
1	Vadakanandal Anicut	27.17
2	Somandarkudi Anicut	28.48
3	Emapair Anicut	12.93
	Total	68.58
	Grand Total.	277.91
	Total	277.91

<u>Name of Work:</u> Rehabilitation of Anicuts, non system tanks and its supply channels from Kallakurichi anicut to Velakurichi anicut under Gomukhi nadhi sub basin in Kallakurichi taluk of Villupuram district.

Sl.No.	Name of tank / Anicut / Reservior	Amount in Lakhs
	Tank Component	
1	Kallakurichi Large Tank	16.17
2	Kallakurichi Small Tank	11.72
3	Thenkeeranur Small Tank	16.94
4	Tatchur Tank	14.30
5	Latchiyam Tank	10.57
6	Vilambar Tank	20.53
7	Niraimathi Tank	13.29
8	Kurur Tank	18.68
9	Mudiyanur Tank	14.63
10	Virugavur Tank	11.99
11	Nagalur Tank	16.77
12	Kanangur Tank	15.98
13	Porasakurichi Tank	13.28
14	Varanjaram Tank	11.78
	Total	206.63

PACKAGE NO.II

	Non tank Component	
1	Kallakurichi Anicut	20.18
2	Thenkeeranur Anicut	10.76
3	Neelamangalam Anicut	9.47
4	Kurur Anicut	80.88
5	Virugavur Anicut	23.82
6	Nagalur Anicut	16.75
7	Porasakurichi Anicut	13.18
8	Velakurichi Anicut	13.97
	Total	189.01
	Grand total	395.64

Name of work :

REHABILITATION OF ANICUT, NON SYSTEM TANKS AND ITS SUPPLY CHANNELS IN MAYURA RIVER UNDER GOMUKHI SUB BASIN IN KALLAKURICHI TALUK OF VILLUPURAM DISTIRICT

PACKAGE NO.III

Sl.No.	Name of tank / Anicut / Reservior	Amount in Lakhs
	Tank Component	
1	Chinnasalem Tank	18.59
2	Kaniyamoor Tank	17.74
3	Rayarpalayam Tank	8.72
4	Pethanur Tank	12.01
5	Ulagiyanallur Tank	18.03
6	Varathappanur Tank	11.54
7	Pukkiravari Tank	18.22
8	Perumangalam Tank	16.05
9	Kilnarriyappanur Tank	15.57
	Total	136.47

	Non tank Component	
1	Elavadi Anicut	11.05
2	Kallanatham Anicut	5.00
3	Thimmapuram Anicut	9.72
4	Pandiyankuppam Anicut	7.67
5	Chinnasalem Anicut	7.25
6	Maravanantham Anicut	9.14
7	Theerthapuram Anicut	7.62
8	Kaniyamoor Anicut	7.61
9	Pethanur Anicut	9.97
10	Vepudiyanthangal Anicut	13.94
11	Siruvathur Anicut	10.67
12	Ulagiyanallur Anicut	7.43
13	Varathappanur Anicut	6.50
14	Pukkiravari Anicut	7.77
15	Sirumangalam Anicut	10.55
16	Perumangalam Anicut	7.82
	Total	139.71
	Grand Total	276.18

Name of work :

REHABILITATION OF ANICUT, NON SYSTEM TANKS AND ITS SUPPLY CHANNELS IN THIRUMANIMUKTHA RIVER UNDER GOMUKHI SUB BASIN IN KALLAKURICHI TALUK OF VILLUPURAM DISTIRICT

SI.No.	Name of tank / Anicut / Reservior	Amount in Lakhs
	Tank Component	
1	Rayappanur Tank	9.36
2	Thenponporappy Tank	10.45
3	Poondi Tank	9.08
4	Thagamtheerthapuram Tank	11.97
5	Thottapadi Tank	14.42
6	Kalasamudram Tank	11.43
7	Pethasamudram Tank	9.69
8	Nainarpalayam Tank	16.40
9	Anumanandal Tank	7.94
10	Kural Tank	8.15
11	Thattathiripuram Tank	6.89
12	V. Alambalam Tank	11.81
13	Krishnapuram Tank	23.76
14	Ponneri Tank	7.84
15	Madathu Eri	7.42
16	Karunkuli Tank	12.53
17	Eriyur Tank	15.01
18	Karunthalakurichi Tank	12.79
19	Asakalathur Tank	16.99
	Total	223.93

PACKAGE NO.IV

	Non tank Component	
1	Selliyampalayam Anicut	9.30
2	Rayappanur Anicut	7.99
3	Thenponporappy Anicut	13.10
4	Poondi Anicut	9.98
5	Vasudananur Anicut	8.31
6	Ammaiyagaram Anicut	4.55
7	Thottapadi Anicut	6.02
8	Anumanandal Anicut	7.84
9	Nainarpalayam Anicut	3.40
10	Sembakurichi Anicut	5.46
11	Karunkuli Anicut	3.17
12	Maruthamalayan Anicut	11.16
13	Eriyur Anicut	7.34
14	Asakalathur Anicut	16.68
	Total	114.30
	Total	338.23

Name of work :

REHABILITATION OF ANICUT, NON SYSTEM TANKS AND ITS SUPPLY CHANNELS IN MAYURA RIVER UNDER GOMUKHI SUB BASIN IN TITATAKUDI & VRITHACHALAM TALUK OF CUDDALORE DISTIRICT

Sl.No.	Name of tank / Anicut / Reservior	Amount in Lakhs
	Tank Component	
1	A.Marur Tank	13.61
2	Arasankudi Tank	12.93
3	Kolavai Tank	5.97
4	Rettakurichi Tank	23.34
5	S.Naraiyur Tank	19.97
6	Seppakkam Tank	15.72
7	Sirupakkam Tank	10.29
8	Ja. Endal Tank	9.18
9	Nagar Tank	15.06
	Total	126.07
	Non tank Component	
1	Ja.Endal Anicut	0.85
2	Kattumailur Anicut	15.17
	Total	16.02
	Grand Total	142.09

PACKAGE NO.V

-

1.6.7.PACKAGE -1 Calculation of machineries Requirement

NAME OF THE SUB BASIN: GOMUKHI

	avator & 4 Tippers / bund earthwork.	12 Hours / Day						
(2 No x 8 loa	ads / hour x 12 Hr x 5 m	3 / trip)	960 m3	/ Day				
	ator for desilting supply hannel.	12 Hours / Day						
(2 No	o x 20 m3 /hour x 10 Hr)		400 m3 / Day					
For 1 month (25 Working days)	25 x 960 m3	24000 m3	/ month				
Total quan	tity of earth work	11:	5015+26300 =141	315 m ³				
Working per	iod for earth work		5 month.					
Machineries req	uired for earth work:	1)Tank bun	d Earthwork = 11	5015 m3				
m3		2) Supply	channel Earthwo	ork = 26300				
1. Hydraulic exca . <u>+</u> 0.90 m3/1 m								
2. Hydraulic exc . <u>+</u> 0.30 m3/1 m								
2. Tippers / Lorrie	es = 8 nos							
3. Power roller 8-	• 10 T = 2 nos							
4. Vibratory comp . (1 <u>+</u> 0.90 m wid								
5. Truck mounted (10000 -15 2 nos								
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day				
Total quantity of	concrete	2829 m3						
Mixer machine r	required	3 nos for 1	I4 days / months	5 month				

PACKAGE NO 1 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE SUB BASIN: GOMUKHI NADHI

		E	QUIPMEN	NTS REQ			RS		MATERIAL REQUIRED							
PACKAGE NUMBER	Hydraulic excavator <u>+</u> 0.90 m3/1 m3 - Hydraulic excavator <u>+</u> 0.30 m3/1 m3 Tippers / Lorries Power roller 8- 10 T				Vibratory compactor (1 <u>+</u> 0.90 m width)	Truck mounted Water Iorries (10000 -15000 litres)	Concrete mixer machine	Concrete vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3		
Package - I	2	2	8	2	2	2	3	3	876	1432	85	396	2154	435		

PACKAGE - I 1.6.9.Construction Methodology

NAME OF THE SUB BASIN: GOMUKHI NADHI

Name of Work: Rehabilitation of non system tanks under Gomukhi Nadhi Sub Basin in Kallakurichi Taluk of Villupuram District.

SI.N	Description of										Working	g Month	s								
0	Item	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1 6	1 7	1 8	Tota	al I
								Rain easo									-				
1	Earth Work Bund	1950 0	2050 0	2250 0	2550 0	2701 5				1400 0	1410 0	1420 0	1411 5	1950 0	1960 0	1980 0				23033 0	m³
2	Earth Work Channel	5000	5200	5500	5500	5100				3200	3250	3300	3300	4300	4400	4455				52505	m³
3	Earth Work Foundation		500	500	1200	1500				120	1500	1680								7000	m³
4	Cement Concret 1:4:8		50	175	175	175					167	140								882	m³
5	PCC 1:3:6		175	150	200	150					175	175	180	171						1376	m³
6	P.C.C. 1:2:4		250	450	350	25					50	25	25	25						1200	m³
7	RCC 1:11/2:3		250	300	275	200					200	250	200	200	150	150				2175	m³
8	Steel					20.00					35.00	35.00	35	25.00	10.00	5.00				165	M T
9	RR Masonry					200					200	200	117	115						832	m³
10	RSDP												100	22						122	m²

GOMUKHI SUB BASIN

PACKAGE-I

Sl.No.	Description of work	Tot	al qua	antity	Μ	ilesto	ne-I	M	ilestor	ne-II	Milestone-III				
<u>1. Tank</u>	Component			Amount			Amount		A	Mount			Amount		
-	-	Qty	7	Rs in Lakh	Qty		Rs in Lakh	Qty	Rs in Lakh		Qt	Rs in Lakh			
- <u> </u>	Desilting of		M ³	128.50	106850	M ³	64.25	53425	M ³	32.13	53425	M ³	32.13		
2	Desilting of Supply Channel	20255	M ³	9.00	10125	M ³	4.50	5067	M ³	2.25	5064	M ³	2.25		
3	Reconstruction of Sluice	5	5 Nos		3	Nos	8.52	1	Nos	4.26	1	Nos	4.26		
4	Repairs to Sluice	12	Nos	12.49	6	Nos	6.25	3	Nos	3.12	3	Nos	3.12		
5	Field channel in sluices	23	Nos	23.02	12	Nos	11.51	6	Nos	5.76	6	Nos	5.76		
6	Improvements to weirs	18	Nos	19.28	9	Nos	9.64	5	Nos	4.82	5	Nos	4.82		
7	Reconstruction of weir	-	-	-	-	-	-	-	-	-	-	-	-		
	Sub total			209.33			104.67			52.33			52.33		

	Non tank component												
1	Improvements to flood bank	16330	M^3	10.33	8165	M^3	5.17	4082	M^3	2.58	4083	M^3	2.58
2	Anicut repairs	3	Nos	39.18	2	Nos	19.59	1	Nos	9.80	1	Nos	9.80
3	Shutters repairs	-	-	-	-	-	-	-	-	-	-	-	-
4	Shutters new	9	Nos	2	5	Nos	1.00	2	Nos	0.50	2	Nos	0.50
5	Desilting of Supply Channel	32350	M ³	17.07	16175	Nos	8.54	8087	M ³	4.27	8088	M ³	4.27
6	Retaining wall	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			68.58			34.29			17.15			17.15

1.6.7.PACKAGE - 2

Calculation of machineries Requirement

NAME OF THE SUB BASIN: GOMUKHI

	avator & 4 Tippers / ound earthwork.	12 Hours / Day									
(2 No x 8	loads / hour x 12 Hr x	5 m3 / trip)		960 m3 / Day							
	avator for desilting y channel.	12 Hours / Day									
(2	No x 20 m3 /hour x 10	Hr)		400 m3 / Day							
For 1 month (2	25 Working days)	25 x 960 m3	24	000 m3 / month							
Total quant	ity of earth work	109500+27500 = m ³	109500+27500 =137000 m ³								
Working peri	od for earth work		6 mont	h.							
Machineries req	uired for earth work:	1)Tank bund Ear	rthwork =	109500 m3							
		2) Supply chan	nel Earth	work = 27500 m3							
1. Hydraulic exc . <u>+</u> 0.90 m3/1 n											
2. Hydraulic exc . <u>+</u> 0.30 m3/1 n											
2. Tippers / Lorrie	es = 8 nos										
3. Power roller 8-	- 10 T = 2 nos										
4. Vibratory com . (1 <u>+</u> 0.90 m wic											
5. Truck mounted (10000 -15 2 nos											
Mixer machine	2 m3 / Hour	For 7 hours / day		14 m3 / day							
Total quantity of	concrete	3290 m3) m3								
Mixer machine r	required	3 nos for 14 o months		6 month							

PACKAGE NO 2 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE SUB BASIN: GOMUKHI NADHI

		EQ	UIPMEN	TS REQI	JIRED IN	I NUMBE	RS		MATERIAL REQUIRED								
PACKAGE NUMBER	Hydraulic excavator <u>+</u> 0.90 m3/1 m3 -	Hydraulic excavator <u>+</u> 0.30 m3/1 m3	Tippers / Lorries	Power roller 8- 10 T	Vibratory compactor (1 <u>+</u> 0.90 m width)	Truck mounted Water lorries (10000 -15000 litres)	Concrete mixer machine	Concrete vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3			
Package - II	2	2	8	2	2	2	3	3	995	1670	87	347	2614	701			

PACKAGE - II

1.6.9. Construction Methodology

NAME OF THE SUB BASIN: GOMUKHI NADHI

Name of Work: Rehabilitation of non system tanks under Gomukhi Nadhi Sub Basin in Kallakurichi Taluk of Villupuram District.

SI.N	Description of									١	Norkin	g Mont	hs								
0	Item	1	2	3	4	5	6	7 8	9		10	11	12	13	14	15	16	17	18	Tota	al
								Rainy eason													
1	Earth Work Bund	182 00	185 00	182 00	182 00	182 00			182 00	1095 00	109 00	109 00	111 00	110 00	111 00	138 00	135 00	137 00	136 47	3286 47	m 3
2	Earth Work Channel	460 0	450 0	440 0	460 0	470 0			470 0	2750 0	280 0	270 0	260 0	280 0	280 0	340 0	350 0	360 0	333 7	8253 7	m 3
3	Earth Work Foundation	210 0	200 0	210 0	200 0	210 0			200 0	1230 0	120 0	120 0	130 0	120 0	120 0	150 0	160 0	170 0	140 0	3690 0	m 3
4	Cement Concret 1:4:8	64	65	66	64	63			64	386	38	39	37	38	40	48	46	45	53	1156	m 3
	P.C.C. 1:2:4	81	82	83	81	84			82	493	49	47	46	49	50	61	60	62	63	1473	m 3
5	PCC 1:3:6	206	210	208	207	204			210	1245	123	125	127	126	125	155	153	154	141	3719	m 3
6	RCC 1:11/2:3	195	193	196	194	195			193	1166	115	117	120	119	117	143	143	145	117	3468	m 3
7	Steel	15	16	13	14	15			15	88	9	10	11	10	9.00	11.0 0	12	14	5	267	M T
8	RR Masonry	92	91	93	94	95			93	558	55	54	52	51	55	69	71	68	67	1658	m 3
9	RSDP	47	48	49	47	49			50	290	28	29	30	28	27	35	34	36	33	860	m 2

GOMUKHI SUB BASIN

PACKAGE-II

Sl.No.	Description of work	,	Fotal (Qty	N	filestor	ne-I	N	filesto	ne-II		Mile	stone-III
<u>1. Tank</u>	Component			Amount			Amount			Amount			Amount
-	-	Qty	7	Rs in Lakh	Qty	7	Rs in Lakh	Qt	y	Rs in Lakh	Qty	y	Rs in Lakh
1	Standardisation of tank Bund	195260	M^3	106.54	97600	M^3	53.27	48830	M^3	26.64	48830	M^3	26.64
2	Desilting of Supply Channel	24385	M^3	5.51	12174	M^3	2.76	6105	M^3	1.38	6106	M^3	1.38
3	Reconstruction of Sluice	15	Nos	48.35	8	Nos	24.18	4	Nos	12.09	4	Nos	12.09
4	Repairs to Sluice	0	Nos	0.00	0	Nos	0.00	0	Nos	0.00	0	Nos	0.00
5	Field channel in sluices	27	Nos	26.88	14	Nos	13.44	7	Nos	6.72	7	Nos	6.72
6	Improvements to weirs	17	Nos	19.35	9	Nos	9.68	4	Nos	4.84	4	Nos	4.84
7	Reconstruction of weir	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			206.63			103.32			51.66			51.66

	Non tank component								
1	Improvements to flood bank	23887 M ³	14.97	11900 M ³	7.49	5993 M ³	3.74	5994 M ³	3.74
2	Anicut repairs	8 Nos	150.48	4 Nos	75.24	2 Nos	37.62	2 Nos	37.62
3	Shutters repairs		-		-		-		-
4	Shutters new		-		-		-		-
5	Desilting of Supply Channel	30652 M ³	23.56	15326 Nos	11.78	7663 Nos	5.89	7663 Nos	5.89
6	Retaining wall		-		-		-		-
	Sub total		189.01		94.51		47.25		47.25

1.6.7.PACKAGE -3 Calculation of machineries Requirement

NAME OF THE SUB BASIN: GOMUKHI

	UB BASIN: GUMUKHI		
Hydraulic excav	ator & 4 Tippers / Lorries	8 Hours / Day	
(10	No x 4 loads / hour x 8 Hr x	x 4 m3 / trip)	1280 m3 / Day
For 1 month	n (20 Working days)	20 x 1280 m3	25600 m3 / month
Total qua	ntity of earth work	26900 m ³	
Working p	eriod for earth work	11 months + 3 Month	ns rainy season
Machineries re	quired for earth work:	269000 m3	
1. Hydraulic exc	avator - 10nos		
2. Tippers / Lorr	ies - 40 nos		
3. Power roller	- 10 nos		
4. Vibrated com	pactor - 10 nos		
5. Water lorries	- 10 nos		
Mixer machine	2 m3 / Hour	For 6 hours / day	12 m3 / day
Total quantity of	concrete	2300 m3	
Mixer machine	required	2 nos for 10 days / months	8 month
Materi	al conveyence	Tippers / Lorries	
Cement	10 mt / Trip	1 trip / day	10 mt / day
Sand	5.66 m3 / Trip	2 trips / day	11.32m3 / day
Metal / stone	5.60 m3 / Trip	3 trips / day	16.80 m3 / day
Total quantity of	<u> </u>	703 MT	
Lorry required for	nr conveyence	703/10	71 Lorries
Total quantity of		1035 m3	
Lorry required for		1035 / 11.20	92 Lorries
Total quantity of		2070 m3	
Lorry required for	or conveyence	2070/16.8	124 Lorries
Total quantity o	fstone	1870 m3	
Lorry required for		1870/16.8	112 Lorries
Tipper / Lorry fo materials	or conveyence of	5 Nos for 20 days	for 8months

PACKAGE NO 3 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE SUB BASIN: GOMUKHI NADHI

PACKAGE NUMBER	EQUIPMENTS REQUIRED IN NUMBERS								MATERIAL REQUIRED					
	Hydraulic excavator <u>+</u> 0.90 m3/1 m3 -	Hydraulic excavator <u>+</u> 0.30 m3/1 m3	Tippers / Lorries	Power roller 8-10 T	Vibratory compactor (1 <u>+</u> 0.90 m width)	Truck mounted Water Iorries (10000 -15000 litres)	Concrete mixer machine	Concrete vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - III	2	2	8	2	2	2	2	2	513	862	104	202	1313	389

PACKAGE - III

1.6.9. Construction Methodology

NAME OF THE SUB BASIN:

GOMUKHI NADHI

Name of Work: Rehabilitation of non system tanks under Gomukhi Nadhi Sub Basin in Kallakurichi Taluk of Villupuram District.

SI.N	Descripti										Workin	g Mont	hs								
ο	on of Item	1	2	3	4	5	6	78	9		10	11	12	13	14	15	16	17	18	Tota	al
							Rai seas														
1	Earth Work Bund	187 00	186 00	1860 0	187 00	1880 0			1880 0	11220 0	1150 0	114 00	1120 0	1160 0	1170 0	150 00	1600 0	1300 0	1074 1	3365 41	m 3
2	Earth Work Channel	290 0	300 0	2800	300 0	2900			2900	17500	2200	210 0	2300	2100	2300	170 0	1500	1700	1660	5256 0	m 3
3	Earth Work Foundatio n	700	800	700	700	800			800	4500	600	500	700	600	500	600	500	400	100	1350 0	m 3
4	Cement Concret 1:4:8	37	38	39	35	37			38	224	25	27	24	22	23	25	26	24	20	664	m 3
5	PCC 1:3:6	32	33	31	30	33			32	191	24	23	25	26	28	20	16	18	9	571	m 3
6	PCC 1:2:4	101	103	105	103	102			101	615	76	80	80	73	75	61	63	64	35	1837	m 3
7	RCC 1:11/2:3	109	111	110	108	106			109	653	73	75	74	69	60	62	63	58	51	1891	m 3
8	Steel	15	17	19	20	18			15	104	11	10	8	11	10	9	7	9	6	289	M T
9	RR Masonry	52	54	53	50	51			49	309	39	40	35	37	35	30	25	33	17	909	m 3
10	RSDP	93	92	90	91	92			95	553	69	70	68	68	65	55	50	53	49	1653	m 2

GOMUKHI SUB BASIN PACKAGE-III

Value of work Rs. DURATION:15 Months including rainy season

Sl.No.	Description of work	T	otal Q	lty	Ν	lilesto	ne-I	M	ilestor	ne-II	ľ	Milesto	one-III
<u>1. Tan</u> l	k Component			Amoun t			Amount			Amount			Amount
-	-	Qty		Rs in Lakh	Qt	y	Rs in Lakh	Qty	ý	Rs in Lakh	Qt	y	Rs in Lakh
1	Standardisation of tank Bund	139400	M^3	79.35	69700	M^3	39.68	34850	M^3	19.84	34850	M ³	19.84
2	Desilting of Supply Channel	-	-	-	-	-	-	-	-	-	-	-	-
3	Reconstruction of Sluice	7	Nos	26.60	4	Nos	13.30	2	Nos	6.65	2	Nos	6.65
4	Repairs to Sluice	3	2	2.08	2	Nos	1.04	1	Nos	0.52	1	Nos	0.52
5	Field channel in sluices	20	Nos	19.12	10	Nos	9.56	5	Nos	4.78	5	Nos	4.78
6	Improvements to weirs	11	Nos	9.32	6	Nos	4.66	3	Nos	2.33	3	Nos	2.33
7	Reconstruction of weir	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			136.47			68.24			34.12			34.12
	Non tank component												

1	Improvements to flood bank	84941	M^3	54.22	42500	M^3	27.11	21220	M^3	13.56	21221	M^3	13.56
2	Anicut repairs	16	Nos	72.27	8	Nos	36.14	4	Nos	18.07	4	Nos	18.07
3	Shutters repairs	-	-	-	-	-	-	-	-	-	-	-	-
4	Shutters new	-	-	-	-	-	-	-	-	-	-	-	-
5	Desilting of Supply Channel	35060	M ³	13.22	17500	Nos	6.61	8765	M^3	3.31	8765	M^3	3.31
6	Retaining wall	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			139.71			69.86			34.93			34.93

1.6.7.PACKAGE -4 Calculation of machineries Requirement

NAME OF THE SUB BASIN: GOMUKHI

Hydraulic excava	ator & 4 Tippers / Lorries	8 Hours / Day	
(1 <mark>1 N</mark>	lo x 4 loads / hour x 8 Hr	x 4 m3 / trip)	1408 m3 / Day
For 1 month	(20 Working days)	20 x 14080m3	28160 m3 / month
Total qua	ntity of earth work	261600 m ³	
Working pe	eriod for earth work	11 months + 3 Montl	hs rainy season
Machineries rec	quired for earth work:	261600 m3	
1. Hydraulic exca	avator - 11 nos		
2. Tippers / Lorri	es - 44 nos		
3. Power roller	- 11 nos		
4. Vibrated comp	pactor - 11 nos		
5. Water lorries	- 11 nos		
Mixer machine	2 m3 / Hour	For 6 hours / day	12 m3 / day
Total quantity of	concrete	2970 m3	
Mixer machine	required	3 nos for 14 days / months	6 month
Materia	al conveyence	Tippers / Lorries	
Cement	10 mt / Trip	1 trip / day	10 mt / day
Sand	5.66 m3 / Trip	2 trips / day	11.32m3 / day
Metal / stone	5.60 m3 / Trip	3 trips / day	16.80 m3 / day
Total quantity of	cement	820 MT	
Lorry required fo	r conveyence	820/10	82 Lorries
Total quantity of	sand	1337 m3	
Lorry required fo	r conveyence	1337 / 11.20	118 Lorries
Total quantity of	metal	2675 m3	
Lorry required fo	r conveyence	2675/16.8	159 Lorries
Total quantity of	stone	1991 m3	
Lorry required fo	r conveyence	1991/16.8	119 Lorries
Tipper / Lorry fo materials	r conveyence of	5 Nos for 20 days	s for 8months

PACKAGE NO 4 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE SUB BASIN: GOMUKHI

		EC	UIPMEN	TS REQI	JIRED IN	NUMBE	RS			MA	TERIAL	REQUIR	ED	
PACKAGE NUMBER	Hydraulic excavator <u>+</u> 0.90 m3/1 m3 -	Hydraulic excavator <u>+</u> 0.30 m3/1 m3	Tippers / Lorries	Power roller 8-10 T	Vibratory compactor (1 <u>+</u> 0.90 m width)	Truck mounted Water Iorries (10000 -15000 litres)	Concrete mixer machine	Concrete vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3
Package - IV	2	2	8	2	2	2	4	4	1537	2262	285	265	3953	666

1.6.9.Construction Methodology

NAME OF THE SUB BASIN: GOMUKHI NADHI

Name of Work: Rehabilitation of non system tanks under Gomukhi Nadhi Sub Basin in Kallakurichi Taluk of Villupuram District.

SI.	Description of										Wo	rking N	Months	;								
No	ltem	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	Tota	al
								Rain easo	-													
1	Earth Work Bund	198 00	199 00	200 00	197 00	198 00				197 00	1189 00	149 00	150 00	148 00	149 00	148 00	119 00	120 00	118 00	927 0	2382 70	m 3
2	Earth Work Supply Channel	590 0	580 0	570 0	600 0	580 0				580 0	3500 0	440 0	430 0	450 0	440 0	430 0	350 0	360 0	350 0	274 0	7024 0	m 3
3	Earth Work Foundation	400	450	500	480	460				450	2740	300	340	350	310	300	290	270	250	50	5200	m 3
4	Cement Concret 1:4:8	50	49	48	47	51				49	294	38	39	41	36	35	32	30	31	24	600	m 3
5	PCC 1:3:6 Plain	88	87	85	84	86				85	515	70	68	69	65	64	55	58	51	45	1060	m 3
6	P.C.C. 1:2:4	272	270	268	273	275				271	1629	200	210	210	235	215	169	161	160	63	3252	m 3
7	RCC 1:11/2:3	380	375	376	374	372				371	2248	282	280	278	271	279	220	249	215	190	4512	m 3
8	Steel	48	49	50	47	46				45	285	39	37	36	35	37	35	29	28	22	583	M T
9	RR Masonry	75	76	73	75	78				75	452	56	55	54	52	51	46	48	41	35	890	m 3
10	RSDP	78	80	79	81	77				75	470	58	60	57	54	53	46	40	43	39	920	m 3

GOMUKHI SUB BASIN PACKAGE-IV

Sl.No.	Description of work	Т	`otal ()ty	Μ	ilesto	ne-I	М	ilesto	ne-II	Mi	ileston	e-III
<u>1. Tanl</u>	k Component			Amount			Amount			Amount			Amount
-	-	Qty	7	Rs in Lakh	Qty	7	Rs in Lakh	Qt	y	Rs in Lakh	Qty		Rs in Lakh
1	Standardisation of tank Bund	203330	M^3	117.03	101430	M^3	58.52	50950	M^3	29.26	50950	M^3	29.26
2	Desilting of Supply Channel	43640	M^3	24.95	21700	M^3	12.48	10970	M^3	6.24	10970	M ³	6.24
3	Reconstruction of Sluice	3	Nos	10.34	2	Nos	5.17	1	Nos	2.59	1	Nos	2.59
4	Repairs to Sluice	25	Nos	18.91	13	Nos	9.46	6	Nos	4.73	6	Nos	4.73
5	Field channel in sluices	36	Nos	36.06	18	Nos	18.03	9	Nos	9.02	9	Nos	9.02
6	Improvements to weirs	25	Nos	16.64	13	Nos	8.32	6	Nos	4.16	6	Nos	4.16
7	Reconstruction of weir	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			223.93			111.97			55.98			55.98

	Non tank component												
1	Improvements to flood bank	34940	M^3	22.55	17470	M^3	11.28	8735	M^3	5.64	8735	M^3	5.64
2	Anicut repairs	14	Nos	69.87	7	Nos	34.94	4	Nos	17.47	4	Nos	17.47
3	Shutters repairs	-	-	-	-	-	-	-	-	-	-	-	-
4	Shutters new	-	-	-	-	-	-	-	-	-	-	-	-
5	Desilting of Supply Channel	26600	M ³	20.97	13300	Nos	10.49	6650	M^3	5.24	6650	M^3	5.24
6	Retaining wall	30	RM	0.91	15	Nos	0.46	8	RM	0.23	8	RM	0.23
	Sub total			114.30			57.15			28.58			28.58

1.6.7.PACKAGE -5

Calculation of machineries Requirement

NAME OF THE SUB BASIN: GOMUKHI

Hydraulic excava	ator & 4 Tippers / Lorries	8 Hours / Day	
(6 N	o x 4 loads / hour x 8 Hr x	: 4 m3 / trip)	768 m3 / Day
For 1 month	(20 Working days)	20 x 768 m3	15360 m3 / month
Total qua	ntity of earth work	92300 m ³	
Working pe	eriod for earth work	6 months + 3 M	Months rainy season
Machineries rec	uired for earth work:	92300 m3	
1. Hydraulic exca	avator - 6 nos		
2. Tippers / Lorri	es - 24 nos		
 Power roller Vibrated comp 	- 6 nos pactor - 6 nos		
5. Water lorries	- 6 nos		
Mixer machine	2 m3 / Hour	For 6 hours / day	12 m3 / day
Total quantity of	concrete	1390 m3	
Mixer machine	required	2 nos for 10 days / mo	onths 6 month
Materia	al conveyence	Tippers / Lorries	
Cement	10 mt / Trip	1 trip / day	10 mt / day
Sand	5.66 m3 / Trip	2 trips / day	11.32m3 / day
Metal / stone	5.60 m3 / Trip	3 trips / day	16.80 m3 / day
Total quantity of	cement	426 MT	
Lorry required fo	r conveyence	426/10	43 Lorries
Total quantity of	sand	626 m3	
Lorry required fo	r conveyence	626 / 11.20	55 Lorries
Total quantity of	metal	1255 m3	
Lorry required fo	r conveyence	1255/16.8	75 Lorries
Total quantity of	stone	300 m3	
Lorry required fo	r conveyence	300/16.8	18 Lorries
Tipper / Lorry fo materials	r conveyence of	2 Nos for 20) days for 8months

PACKAGE NO 5 1.6.8.REQUIREMENT OF EQUIPMENTS AND MATERIALS

NAME OF THE SUB BASIN: GOMUKHI

	EQUIPMENTS REQUIRED IN NUMBERS							MATERIAL REQUIRED							
PACKAGE NUMBER	Hydraulic excavator <u>+</u> 0.90 m3/1 m3 -	Hydraulic excavator <u>+</u> 0.30 m3/1 m3	Tippers / Lorries	Power roller 8-10 T	Vibratory compactor (1 <u>+</u> 0.90 m width)	Truck mounted Water lorries (10000 -15000 litres)	Concrete mixer machine	Concrete vibrator.	Cement IN M.T.	Sand in m3	Steel in M.T.	Metel 40MM. in m3	Metel 20 MM. in m3	RR IN m3	
Package - V	1	1	4	1	1	1	2	2	179	536	53	129	869	38	

PACKAGE - V 1.6.9.Construction Methodology

NAME OF THE SUB BASIN: GOMUKHI NADHI

Name of Work: Rehabilitation of non system tanks under Gomukhi Nadhi Sub Basin in Kallakurichi Taluk of Villupuram District.

	Description of Item							w	orki	ng Mo	onths										
SI.No	Description of Item	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Tota	ıl
								Rainy easor													
1	Earth Work Bund	10000	14000	17000	18000	17000														76000	m³
2	Earth Work Supply Channel	15000	15000	15000	15000	12100														72100	m³
3	Earth Work Foundation	1200	1100	1500	400															4200	m³
4	Cement Concret 1:4:8	100	100	50	50															300	m³
5	PCC 1:3:6 Plain			75	75	85				60	80	55								430	m³
6	RCC 1:11/2:3				100	120				140	150	150								660	m³
7	Steel			10	8	10														28.00	m³
8	RR Masonry				5	10				10	20	25								70	m³
9	RSDP					50				50	50	50								200	m³

GOMUKHI SUB BASIN PACKAGE-V

Value of work Rs. DURATION:15 Months including rainy season

Sl.No.	Description of work	Total Qty			Milestone-I			Μ	lilesto	ne-II	M	ilestor	ne-III
<u>1. Tan</u>	<u>k Component</u>			Amount			Amount			Amount			Amount
-	-	Qty		Rs in Lakh	Qty		Rs in Lakh	Qt	У	Rs in Lakh	Qty		Rs in Lakh
1	Standardisation of tank Bund	75550	M^3	45.72	37900	M^3	22.86	18825	M^3	11.43	18825	M^3	11.43
2	Desilting of Supply Channel (Retaining wall)	133	RM	16.43	67	RM	8.22	33	RM	4.11	33	RM	4.11
3	Reconstruction of Sluice	11	Nos	24.55	6	Nos	12.28	3	Nos	6.14	3	Nos	6.14
4	Repairs to Sluice	1	Nos	0.46	1	Nos	0.23	0	Nos	0.12	0	Nos	0.12
5	Field channel in sluices	22	Nos	22.73	11	Nos	11.37	6	Nos	5.68	6	Nos	5.68
6	Improvements to weirs	9	Nos	16.18	5	Nos	8.09	2	Nos	4.05	2	Nos	4.05
7	Reconstruction of weir	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			126.07			63.04			31.52			31.52

	Non tank component												
1	Improvements to flood bank	-	-	-	-	-	-	-	-	-	-	-	-
2	Anicut repairs	2	Nos	12.62	1	Nos	6.31	1	Nos	3.16	1	Nos	3.16
3	Shutters repairs	-	-	-	-	-	-	-	-	-	-	-	-
4	Shutters new	-	-	-	-	-	-	-	-	-	-	-	-
5	Desilting of Supply Channel	12100	M^3	3.4	6050	M^3	1.70	3025	M ³	0.85	3025	M^3	0.85
6	Retaining wall	-	-	-	-	-	-	-	-	-	-	-	-
	Sub total			16.02			8.01			4.01			4.01

Description of Items

Sl. No.	Description of Items
1	Clearing Scrub jungle complete as per standard specifications.
2	Dismantling, with out damaging the near by structures if any clearing away and
	carefully stacking material useful for reuse for any thickness of brick or stone masonry in Cement Mortar walls under 3 (Three) meters high complying with standard
	specification and as directed by the Engineer
3	Dismantling with out damaging the near by structures if any ,clearing away plain cement concrete as directed by the Engineer in charge of the works as per technical Specification and as directed by the Engineer
4	Earth work excavation in all kind of soils except rock requiring blasting for open excavation and depositing the earth in places shown by the engineer with all leads and lifts including dewatering by baling, pumping, diverting water wherever necessary and spreading the earth at site in layers not exceeding 250 mm thickness breaking clods neat sectioning etc. including watering as desired by the engineer in charge based on the work for cut open the bund
5	Earthwork excavation for foundation in all soils and depositing on bank inclusive of shoring, strutting and bailing out water wherever necessary, well rammed, consolidated and depositing the surplus earth in places as shown by the departmental officers with an initial lead of 10 (Ten) metres and initial lift of 2 (Two) metres and clearing, leveling the site complete as per standard specifications.
6	Earthwork in all soils except hard rock requiring blasting and conveying for formation of bund with lead of 0 to 300 metre deploying earth moving machinery and tippers for formation of bund in layers of suitable thickness, depending upon type of compaction equipment deployed, and not exceeding 23 cm thickness, benching of slopes prior to placement of earth fill, breaking clods, watering to OMC (optimum moisture content) and compaction of each layer to 95% Proctor density through deployment of appropriate compaction equipment (8-10 T power roller / vibratory deployment of appropriate width (+ 0.90 m width drum) power roller or vibratory power roller / fuel- operated or elect – operated vibratory plate compactors, ensuring compaction of designed bund section including side slopes, complete as per specification.
7	Earthwork deploying earth moving machinery for de-silting channels, depositing earth on banks for forming bund, well consolidated and dressed, including sectioning and jungle clearance etc. complete. (having width upto 3 m) complying with the standard specification
8	Turfing in slopes of bund including watering and fixing with a lead of up to 3 KMCT complete as per standard specifications.
9	Providing and placing in Position of Cement concrete M7.5 grade with well graded aggregates and the nominal maximum size of coarse aggregate of 40 mm mixing by mixer machine including dewatering by bailing/pumping wherever necessary laying the concrete in layers and in bays with all leads and lifts, compacting and finishing the surface watering curing, so as to attain the profile and strength specified in the drawings for various depths below ground level and various heights above ground level as per the direction of the Engineer and complying with standard specification
10	Reinforced Cement concrete M20 grade for Cement Concrete works with well graded hard aggregates and the nominal maximum of coarse aggregate of 20 mm gauge weigh batching the ingredients and mixing in approved mixers/batching plant (to produce concrete of the specified characteristic strength of 20N/mm ² at 28days) including dewatering of placement site by bailing/pumping and by diverting wherever necessary

SI. No.	Description of Items
	laying the concrete in layers and in bays, compacting and finishing the surface water curing so as to attain the profile and strength specified in the approved drawing and specification and including the cost component of providing rigid and smooth centering and shuttering wherever necessary but excluding cost component of providing fabrication of reinforcements for various depths below ground level and various heights above ground level as per the direction of the Engineer complete in all respect but excluding the cost and placing of reinforced grill in position complying with standard specification
11	Supplying, fabricating & placing in position of ribbed tor steel grills for Reinforcement of RCC works including cost of steel and binding wire and labour charges for de- coiling, cutting, bending and tying the grills complete as per standard specifications.
12	Providing cut stone roughly dressed and set in cement mortar 1:3 (one cement and three sand) including fixing in position etc complete as directed by the Engineer in charge of work complying with the standard specification
13	Random rubble masonry in cement mortar 1:4 (one cement and four sand)mixed using mixer machine using new hard rough stone bond stones for various depth and height below and above ground level with all leads and lifts including simultaneous flush pointing the exposed surface with same mortar and withal incidental charges such as scaffolding and dewatering by baling pumping and diverting water wherever required water wherever required finishing curing complete so as to attain the profile and strength in the drawing and specification including providing shrinkage ,construction joint for closing the days work at intervals specificed wherever required and as directed by the Engineer complete complying with specification
14	Plastering with Cement Mortar 1:4 (One cement and four sand) 20mm thick including all incidental chares such as scaffolding finishing curing for various depth and height below and above ground level etc complete as directed by the Engineer in charge of work complying with the standard specification
15	Refilling with excavated earth (other than sand) available at site with all leads and lifts for filling the cut open portion wherever necessary including breaking clods sectioning etc. including extra watering and compaction of Earth Fill layers earth fill layers to specified density of 95% of proctor density through deployment of appropriate compaction equipment as directed by the Engineers and complying with standard specification
16	Rough stone dry packing for apron and revetment using new hard granite stone including stacking the stones for Pre-measurements complying with standard specification.
17	Supplying demarcation R.C.C. pre cast post in Cement concrete M15 grade with well graded aggregates and the nominal maximum size of coarse aggregate of size 20 mm of size 0.20 x 0.20 x 1.30 M and fixing the post 40 Cm depth below ground level, the post includes using 4 numbers of 8 mm RTS main rod to a length of 1.325 M, using 6 mm MS 9 numbers as strips with steel centering and painting the post with enamel paint to a height of 0.80 M around the post etc. complete and conveying the post to the site of demarcation boundary such as tank bund and foreshore including earth work excavation for foundation in HSC, and the post embedded by using Cement concrete M7.5 grade with well graded aggregates and the nominal maximum size of coarse aggregate of 40 mm, as per the direction of the Engineers and complying with standard specification

Sl. No.	Description of Items
18	Supplying and fixing of 'V' notch made up of steel plate of 6 mm thick and fixing it in concrete of grade M-10 using 20 mm grade metal to IS specified to the profile specified in the drawing including the cost of earthwork and all materials etc. complete as per the direction of the Engineers and complying with standard specification for Measuring device.
19	Fabricating, supplying and fixing of steel screw gearing shutters of following sizes made out of 75 x 40 mm M.S. Medium Channel for outer frame with same section of vertical stiffeners 3 Nos. with 10mm skin plate. The grooves 2 Nos. to a required height made out of 100 x 50 mm M.S. Channel with hold fast arrangements. The Top Beam to be made out of 200 x 100mm R.S. joists 2 Nos. to a width of shutter plus 0.60mm to a width of shutter plus 0.30M for bearing. Screw Gearing arrangements to be made using 80mm dia M.S. shaft to a required height duly threaded with capstain head arrangements [heavy type] with ball bearing arrangements suitable to operate the screw gearing rod with operating key. Necessary bed bolts and fish plates to be provided for anchorage arrangements to place the R.S.Joist in position. All the components to be painted with two coats of A.C. Black paint over one coat of quality red oxide (for Weir and Sluices) for the size of shutter 1.00 m X 1.00m.
20	Providing and placing in Position of Cement concrete of grade M10 using well graded aggregates and with maximum nominal size of 20mm to I.S. specified grading mixing in mixer machine (to produce concrete of the specified characteristic strength of 10N/mm2 at 28 days) including dewatering the placement site laying Vibrating, compacting and finishing the surface with all leads and lifts watering, curing complete so as to attain the profile and strength specified in the drawing and specification for various height above ground level complete as directed by the Engineer complying with standard specification.
21	Cement concrete M15 grade with well graded aggregates and the nominal maximum size of coarse aggregate of size 20mm weigh batching the ingredients and mixing in approved mixers/batching plant (to produce concrete of the specified characteristic strength of 15N/mm ² at 28days) including dewatering the placement site by bailing/pumping and by diverting wherever necessary laying the concrete in layers and in bays vibrating, compacting and finishing the surface water curing so as to attain the profile and strength specified in the approved drawing and specification and including the cost component of providing rigid and smooth centering and shuttering wherever necessary various heights above and below ground level and as per the direction of the Engineers complying with standard specification.
22	Earthwork in all soils except hard rock requiring blasting and conveying for formation of bund with lead of 0 to 100 metre deploying earth moving machinery and tippers for formation of bund in layers of suitable thickness, depending upon type of compaction equipment deployed, and not exceeding 23 cm thickness, benching of slopes prior to placement of earth fill, breaking clods, watering to OMC (optimum moisture content) and compaction of each layer to 95% Proctor density through deployment of appropriate compaction equipment (8-10 T power roller / vibratory deployment of appropriate width (+ 0.90 m width drum) power roller or vibratory power roller / fuel- operated or elect – operated vibratory plate compactors, ensuring compaction of designed bund section including side slopes, complete as per specification for forming foreshore bund.
23	Earth work excavating and depositing on bank with a lead of 10 m & initial lift of 2 m in Hard stiff clay, stiff black cotton, hard red earth, shales, murram, gravel, stoney earth and earth mixed with small size of boulders hard gravelly soil with a lead of 0 to 3 KM CT, complying with standard specification and as directed by the departmental officers, complete including extra watering and compaction of earth fill layers to specified

SI. No.	Description of Items
	density of 95% of proctor density @ OMC through deployment of appropriate compaction equipment including trimming the side slope for side compaction t (standard 8-10 ton power roller; short width drum vibratory power roller; vibratory power roller; fuel-operated vibratory plate compactor of adequate capacity, as per space available for compaction) for forming flood bank.
24	Cement concrete M20 grade with well graded aggregates and the nominal maximum size of coarse aggregate of size 20mm weigh batching the ingredients and mixing in approved mixers/batching plant (to produce concrete of the specified characteristic strength of 15N/mm ² at 28days) including dewatering the placement site by bailing/pumping and by diverting wherever necessary laying the concrete in layers and in bays vibrating, compacting and finishing the surface water curing so as to attain the profile and strength specified in the approved drawing and specification and including the cost component of providing rigid and smooth centering and shuttering wherever necessary various heights above and below ground level and as per the direction of the Engineers complying with standard specification.
25	Pointing with cement mortar 1:3(one cement and three sand) for flush pointing in Random rubble masonry using mixer machine for mixing water complying with standard specification.
26	Fabricating and supply of Teak wood plug size of 60 cm height . The plug rod with 63 mm mild steel rod size of 5 m height. The plug rod top side , middle, center and bottom side covered iron stap – 3 nos. Plate thickness size 3mm steel plate . The plug hold size 12 cm to 15 cm Dia. The plug rod fittings top side 2 numbers 200 X 100 mm channel total length of 1.80 metre -2 nos. and anchor bolt with plate 2 sets and the headset with thrust bearing type with Hexagonal nuts one set, with locking arrangements key one number the plug painted and conveyance to the work site including loading, unloading . (The rates should be inclusive of all taxes and duties and including fixing charges etc., complete complying specification and ad directed by the Engineer.)
27	Centering and sofitts of Reinforced concrete slabs plain surface including structing upto 3m height M.S sheet of size 90 cm x 60cm and B.G 10 Gauge screws with welding M.S Angle of size 25mm x 25mm lide over silver oad (country wood) joist of size 6.5cm spaced at about 90cm c/c and supported casurnia poles of 10cm to 13cm dia. Complying with standard specification.
28	Supplying and fixing of TBL stones and B.M. stones the exposed surface neatly dressed to a height of 15 cm including cutting letters 10x10x25 cm.as directed by the departmental officers.
29	Clean removal of lime plaster from walls and racking out joints 20 mm deep and Plastering with cement Mortar 1:4 (One cement and four sand) 20 mm thickness etc., complete complying with standard specification.

PACKAGE DETAILS

SI. No.	Package Nos.	Name of the Package	Package Amount in Lakhs.
1	PACKAGE NO.I IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts, Non system tanks and its supply channels from Vadakkanadal Anicut to Empair Anicut under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	277.91
2	PACKAGE NO.II IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts, Non system tanks and its supply channels from Kallakurichi anicut to Vellakurichi anicut under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	395.64
3	PACKAGE NO.III IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicut, Non system tanks and its supply channels in Mayura river under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	276.18
4	PACKAGE NO.IV IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts, Non system tanks and its supply channels in Thirumanimuktha river under Gomukhi sub basin in Kallakurichi taluk of Villupuram District.	338.23
5	PACKAGE NO.V IAMWARM/WRD/ GMN/WORKS/ III 2009 - 2010	Rehabilitation of Anicuts Non system tanks and its supply channels in Mayura river under Gomukhi sub basin in Tittakudi and Vrsithachalam taluk of Cuddalore District.	142.09
		Environment cell	10.00
		Sub total	1440.05

1.7 ENVIRONMENTAL CELL

IAMWARM PROJECT

ENVIRONMENTAL ACTIVITIES IN GOMUKHI NADHI SUB BASIN OF VELLAR RIVER BASIN

Sl.No.	Description of Work	No	Measure	ement		Contents
	•		L	В	D	
1	Environments Social Monitoring of River Basoli quality testing and documentation.	asin incl	uding peroidica	l wate	r and	
1	Collection and testing of water samples and	soil san	nples.			
a)	Water samples from river in one location collected once in Three months in a year for a period of Three Years $3x1x4 = 12$ Nos.					
b)	Soil samples collected near tanks 5 Nos once in a year for period of Three years = 5x1x3 = 15 Nos.					
c)	Testing charges for water samples (Rivers)	12				12 Nos
d)	Testing charges for soil samples from polluted sit (tanks and wells)	15				15 Nos
e)	Hiring Jeep driver on service contract basis fro the Dept Vehicle	1 No	3 x 2 = 6 Monts			6 Months
f)	Collection and conveyance charges including all purchases like cans, bottles, chemicals etc.,	Ls				Ls
Ш	Environments Social Knowledge base analy	vsis and	developements	;		
a)	Village level Environmental & Social Data Collection by engaging Technical Assistant / Research Assistant	1 No				6 Months
b)	Expert analysis and development reporting	Ls				Ls
111	Transfer of technical know how for solid w including source segregation, recycle of dry agancies.					
a)	Motivating the local bodies for soild waste managements project and Sewage treatment plants to prevent pollution of water sources and using for irrigation by transfering technical know how through demonstration Documentary film and technical visit.	Ls				Ls
b)	Formation of Herbal Garben	Ls				Ls

c)	Promoting Entrepreneurship Policy for Eradication for weeds by setting up Bio gas plant / Vermi compost by WUA through Awareness creation, Demonstration and consultative.	Ls		Ls
IV	Conducting Environmental and social Aware demostration and Exhibitions on various en issues including capacity building.		 -	
a)	Printing Stickers, Pamphlets, Tin Sheets, Providing Banners for Propagating Enviromental Awareness among public,	Ls		Ls
b)	Conducting Awareness programe for Public,	Ls		Ls
c)	Conducting Meetings for WRO officials / line department officals.	1 X 1		1 No
d)	Conducting Meetings in school / Institution	1 x 3		3 Nos
e)	Exposures and field visit to eco friendly practices	1 X 1		1 No
f)	Environmental fair / exhibition, bench marking, recognition of good eco friendly practices, green awards.	1 X 1		1 No
g)	Preparing and Publishing Environmental Atlas for the sub basin for the use of Line Departments / Institutins for better Management of sub basin			Ls
h)	Environmental related books./ journal, publishing, Annual report for the sub basin			Ls
i)	Documentatin of the entire activities, Up gradation of Computer and Accessories, Video films Website developments etc.,	Ls		Ls
v	Variation in Rates and unforeseen items	Ls		Ls

Assistant Engineer., PWD., WRO

Environmental Cell section - III Environmental Cell Sub Division-1 Chepauk, Chennai - 5. Assistant Engineer., PWD., WRO Environmental Cell Sub Division-1 Chepauk, Chennai - 5.

IAMWARM PROJECT

ENVIRONMENTAL ACTIVITIES IN GOMUKHI NADHI SUB BASIN OF VELLAR RIVER BASIN (Ayacut : 5007.58 Ha)

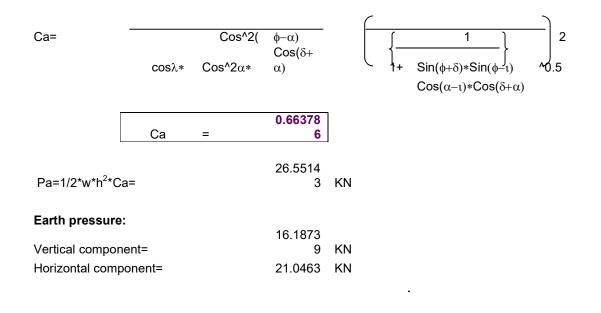
SI.No.	Qty	Description of Work	Rate	Per	Amount				
1 Environments Social Monitoring of River Basin including peroidical water and soil quality testing and documentation.									
c)	12 Nos	1000	Each	12000					
d)	15 Nos	Testing charges for soil samples from polluted sit (tanks and wells)	6000	Each	90000				
e)	6 Months	Hiring Jeep driver on service contract basis fro the Dept Vehicle	4000	Months	24000				
f)	Ls	Collection and conveyance charges including all purchases like cans, bottles, chemicals etc.,	Ls		7500				
II Environments Social Knowledge base analysis and developements									
a)	6 Months	Village level Environmental & Social Data Collection by engaging Technical Assistant / Research Assistant	6000	Each	36000				
b)	Ls	Expert analysis and development reporting	Ls		50000				
		nical know how for solid waste management sy on, recycle of dry waste and linkage with user a		•					
a)	Ls	Motivating the local bodies for soild waste managements project and Sewage treatment plants to prevent pollution of water sources and using for irrigation by transfering technical know how through demonstration Documentary film and technical visit.	Ls		30000				
b)	Ls	Formation of Herbal Garben	Ls		75000				

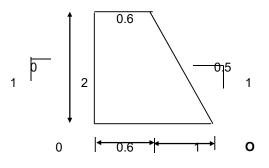
c)	Ls	Promoting Entrepreneurship Policy for Eradication for weeds by setting up Bio gas plant / Vermi compost by WUA through Awareness creation, Demonstration and consultative.	30000							
IV	Conducting Environmental and social Awareness meeting, programme, demostration and Exhibitions on various enviromentsal and social related issues including capacity building.									
a)	Ls	Printing Stickers, Pamphlets, Tin Sheets, Providing Banners for Propagating Enviromental Awareness among public,	Ls		50000					
b)	Ls	Conducting Awareness programe for Public,	Ls		125000					
d)	3 Nos	Conducting Meetings in school / Institution	30000	Each	90000					
c)	1 No	No Conducting Meetings for WRO officials / 12			125000					
e)	1 No	Exposures and field visit to eco friendly practices	50000	Each	50000					
f)	1 No	Environmental fair / exhibition, bench marking, recognition of good eco friendly practices, green awards.	50000	Each	50000					
g)	Ls	Preparing and Publishing Environmental Atlas for the sub basin for the use of Line Departments / Institutins for better Management of sub basin	Ls		40000					
h)	Ls	Environmental related books./ journal, publishing, Annual report for the sub basin	Ls		20000					
i)	Ls gradation of Computer and Accessories, Ls Video films Website developments etc.,				75000					
V	Ls	Variation in Rates and unforeseen items	Ls		20500					
		Total			1000000					

Assistant Engineer., PWD., WRO

Environmental Cell section - III Environmental Cell Sub Division-1 Chepauk, Chennai - 5. Assistant Engineer., PWD., WRO Environmental Cell Sub Division-1 Chepauk, Chennai - 5.

1.8 GROUND WATER


DESIGN


Thenkeeranur Anicut -Retaining wall in Supply c				
HYDRAULIC PARTICULARS				
Top level of wingwall	102.000	m		
Foundation level	100.000	m		
Height of abutment	2	m		
Width of platform b1 =	0.6	m		Stresses at O
Front slope	0	: 1		84.547 KN/m ²
Front batter	0	m		1.687 KN/m ²
Rear slope	0.5	: 1		
Rear batter	1	m		
b3 = Base width =	1.6	m		
Soil metwith at Foundation level	Coarse sand	with Clay		
SBC of Soil (Assumed)	200	KN/m ²	(As per	IS 1904-1978)
Density of Backfill material	20	KN/m ³		
Angle of Internal Friction, $\phi =$	22	0		
$\delta = \phi/2 =$	11	0		
$\alpha_{\rm o}$ =	0			
$\alpha_h = B^* I^* \alpha_o$	0			
$\alpha_v = 1/2^* \alpha_h =$	0			
$\lambda = \tan^{-1}\alpha(h)/(1\pm\alpha(v)=$	0	0	or	0 0
α =	26.57	0		
I =	0			
Increment =	0	%		
Unit weight of Concrete	24	KN/m ³		
Unit weight of Water	10	KN/m ³		

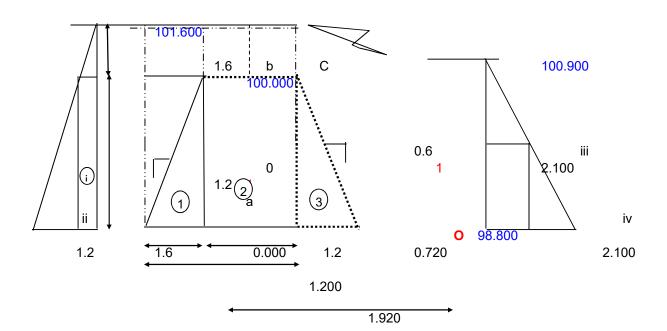
STRUCTURAL DESIGN OF RETAINING WALL

STRESS DUE TO EARTH PRESSURE (ACTIVE EARTH PRESSURE):

cosλ				1
$\cos^2(\phi - \lambda - \alpha) =$				0.9937
Cos^2α=				0.8000
$Cos(\delta + \lambda + \alpha) =$				0.7927
$Sin(\phi+\delta)=$				0.5446
$Sin(\phi-\iota-\lambda)=$				0.3746
Cos(α-ι)=				0.8944
$\cos(\delta + \lambda) \left\{ + \alpha \right\} = \frac{1}{1 + \alpha} \left\{ \frac{1}{1 + \alpha} \right\}$	$\frac{\sin(\phi+\delta)*\sin(\phi-\lambda)}{\cos(\alpha-\iota)*\cos(\delta+\alpha+\lambda)}$ $\frac{1}{\sin(\phi+\delta)*\sin(\phi-\lambda)}$ $\cos(\alpha-\iota)*\cos(\delta+\alpha+\lambda)$	^{0.5} = 2 0.5 =	1.53644557 0.42360945	0.7927
 cosλ*	Cos^2($φ-α-λ$)Cos^2α*Cos($δ+α+λ$)	=	1.56697575	

Coeff.	L	В	D	Unit.wt.	For	Forces(t)		Mome nt
	(m)	(m)	(m)	(t/m ³)	V	н	(m)	Tm
Weight of masonry								
1	1	0.6	2	24	28.8		1.3 0.66666	37.440
0.5	1	1	2	24	24		7	16.000
0.5	1	0	2	24	0		1.6	0.000
Static Earth pr	essure:							
					16.18739		0.33333	
Vertical compor	nent=				2		3	5.396
				1		21.046	0.66666	
Horizontal comp	ponent=					3	7	14.031
					68.98739	21.046		
					2	3		72.867
				ΣV=	68.98739 2		ΣM=	72.867

—	1.05623
х	2
	0.25623
e=	2
	0.96086
6e/b=	9

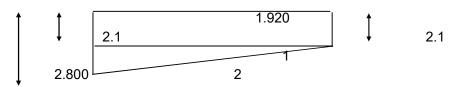

Maximum stress =	P/A(1+6e/b) =	84.547	KN/m ²	<	200	KN/m ²
Minimum stress =	P/A(1- 6e/b) =	1.687	KN/m ²	<	200	KN/m ²

Maximum Stress developed is less than assumed SBC of soil. Hence safe.

	STABILITY AN	ALYSIS O	F ANICUT		
	Kurur Anicut				
Hydraulic Particulars					
Maximum flood discharge		406	m³/sec	14337.9	c/s
Top of crest	+	100.000	m		
Front Maximum Water Level	+	101.600	m		
Rear Water Level	+	100.900	m		
Upstream bed level	+	98.800	m		
Downstream Bed level	+	97.600	m		
Head over Crest		1.6	m		
Downstream side slope		0.6	H to 1 V		
Upstream side slope		0	H to 1 V		
Top width		1.2	m		
Unit weight of Concrete		2.4	t/m ³		
The stability of body wall of the ani	out was shadled f	for the fell		ditiono	

The stability of body wall of the anicut was checked for the following conditions

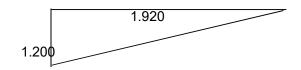
- 1 Reservoir empty without EQ
- Reservoir at MWL, with tailwater with uplift
 Reservoir at FRL, no tail water with
 uplift



Stability analysis: 1.Reservoir empty without EQ

SI. N0.		D	ESCRIPT	ION		FC	RCE	L.A	MOME	ENT
		Coefficient	length	depth	Unit wt.	v	н	+	+	_
Weight of masonry		Cochicient	length	deptit	vv t.	v		•	•	_
masoniy	1	0.5	0.000	1.200	2.4	0		1.920	0	
	2	1	1.2	1.200	2.4	3.456		1.320	4.562	
	3	0.5	0.720	1.200	2.4	1.04		0.480	0.498	
					ΣV=	4.4928		ΣΜ=	5.05958	

Base width=	1.920 m
X= _ ΣM / ΣV =	1.126 m
e = b/2-X 6e/b=	0.166 m 0.519
Maximum stress	= $\Sigma V/b^*(1+6e/b)$
Minimum stress	= 3.56 t/m^2 = $\Sigma V/b^*(1-6e/b)$
	= 1.13 t/m ²


2.Reservoir at MWL, with tailwater, weir with uplift

	D	ESCRIPT	ION		FC	RCE	L.A	MOME	ENT
SI. No.				Unit					
	Coefficient	length	depth	wt.	V	Н		+	-
Weight of									
masonry									
1	0.5	0.000	1.200	2.4	0		1.920	0	
2	1	1.2	1.200	2.4	3.456		1.320	4.562	
3	0.5	0.720	1.200	2.4	1.04		0.480	0.498	
Weight of water									
а	0.5	0.000	1.2	1	0		1.920	0	
b	1	0.000	1.600	1	0		1.920	0	
с	1	0.600	1.600	1	0.96		1.62	1.555	
Water Pressure									
i	1	1.6	1.2	1		1.92	0.6		1.152
ii	0.5	1.2	1.2	1		0.72	0.4		0.288

Uplift Pressure	1 2	1 0.5	1.920 1.920	2.1 0.70	1 1	-4.03 -0.67		0.960 1.280		3.871 0.860
					Σ V=	0.749		Σ M =	6.615	6.171
		Base width=				1.920	m			
		<u>X</u> = _	1		0.593	m				
		e = b/2-X 6e/b=				1.14744	m			
		Maximum stre	SS	=	ΣV/b*(1+	•				
		Minimum stres	SS	= = =	0.837 ΣV/b*(1- -0.057	6e/b)				

3.Reservoir at FRL, no tailwater, with uplift condition

DESCRIPTION			FORCE		L.A	MOMENT		
			Unit					
Coefficient	length	depth	wt.	V	Н		+	-
0.5	0.000	1.200	2.4	0		1.920	0	
1	1.2	1.200	2.4	3.456		1.320	4.562	
0.5	0.720	1.200	2.4	1.04		0.480	0.498	
0.5	0.000	1.2	1	0		1.920	0	
0.5	1.2	1.2	1		0.72	0.4		0.288
0.5	1.920	1.2	1	-1.152		1.28		1.475
						•		
			ΣV=	3.341		Σ M=	5.060	1.763
	Coefficient 0.5 1 0.5	Coefficient length 0.5 0.000 1 1.2 0.5 0.720 0.5 0.000 0.5 0.000 0.5 1.2 0.5 1.2	Coefficient length depth 0.5 0.000 1.200 1 1.2 1.200 0.5 0.720 1.200 0.5 0.0000 1.200 0.5 0.000 1.200 0.5 1.200 1.200 0.5 1.200 1.200 0.5 1.200 1.200	Coefficient length depth Unit wt. 0.5 0.000 1.200 2.4 1 1.2 1.200 2.4 0.5 0.720 1.200 2.4 0.5 0.720 1.200 2.4 0.5 0.720 1.200 2.4 0.5 1.200 1.2 1 0.5 1.2 1.2 1	CoefficientlengthdepthUnit wt.V 0.5 0.000 1.200 2.4 0 1 1.2 1.200 2.4 3.456 0.5 0.720 1.200 2.4 1.04 0.5 0.000 1.2 1 0 0.5 1.20 1.2 1 0 0.5 1.2 1.2 1 1 0.5 1.20 1.2 1 1 0.5 1.920 1.2 1 1	CoefficientlengthdepthUnit wt.VH 0.5 0.000 1.200 2.4 0 1 1.2 1.200 2.4 3.456 0.5 0.720 1.200 2.4 1.04 0.5 0.000 1.2 1 0 0.5 1.22 1.2 1 0 0.5 1.22 1.2 1 0.72 0.5 1.920 1.2 1 -1.152	CoefficientlengthdepthUnit wt.VH 0.5 0.000 1.200 2.4 0 1.920 1 1.2 1.200 2.4 3.456 1.320 0.5 0.720 1.200 2.4 1.04 1.920 0.5 0.720 1.200 2.4 1.04 1.920 0.5 0.000 1.2 1 0 1.920 0.5 0.000 1.2 1 0 1.920 0.5 1.22 1.2 1 0 0.72 0.5 1.22 1.2 1 0.72 0.4 0.5 1.920 1.2 1 -1.152 1.28	CoefficientlengthdepthUnit wt.VH+ 0.5 0.000 1.200 2.4 0 1.920 0 1 1.2 1.200 2.4 3.456 1.320 4.562 0.5 0.720 1.200 2.4 1.04 1.920 0 0.5 0.000 1.2 1 0.480 0.498 0.5 0.000 1.2 1 0 0.72 0.4 0.5 1.2 1.2 1 0.72 0.4 0.5 1.920 1.2 1 -1.152 1.28

Base width=

1.920 m

 $X = ___ \Sigma M / \Sigma V = 0.987 m$ e = b/2-X 0.027 m

6e/b=		0.084
Maximum stress	=	ΣV/b*(1+6e/b)
	=	1.886 t/m ²
Minimum stress	=	ΣV/b*(1-6e/b)
	=	1.594 t/m ²

STRESS		Maximum	Minimum		
Condition I	Empty condition	3.555 t/m ²	1.125 t/m ²		
Condition II	MWL condition	0.837 t/m ²	-0.057 t/m ²		
Condition III	FRL condition	1.886 t/m ²	1.594 t/m ²		

DESIGN OF ANICUT ON PERMEABLE FOUNDATION Check for Length of Apron

Surface Flow Condition						
Design Data:						
Top of Check dam		=	100.000	m		
Rear Water Level		=	100.900	m		
Front Maximum Water Lev	/el	=	101.600	m		
Maximum Flood Discharge		=	14338	c/s or	406	cumecs
Average Bed level / U/s bed level		=	98.800	m		
D/S bed level		=	97.600	m		
Length of Check Dam Concentration		=	117	m		
factor Depth of rear		=	0	%		
water		=	3.3	m		
Depth of u/s water		=	2.8	m		
Head over crest		=	1.60	m		
Design of structure for s	urface flow	consideration	ıs:			
Discharge intensity/Unit discharge, q = 406.000 / 117						
		q =	3.4701	m ³ /s/m		
Regime Width:		9	0.1101	,0,		
Regime width R	=	4.83√ Q				
	=	4.83 X sqrt (406.000)			
	=	97.3218	m			
	say	97.4	m			
Looseness factor	r all length / Reg	ime width				
	=	117 / 97.4				
	=	1.201232	>	1		
Hence, the scour depth m	av be calcul	ated as follows				

Hence, the scour depth may be calculated as follows **Scour depth:**

Assume silt factor, f	=	1		
Scour depth (R)	=	0.475 (Q / f) ′	^(1/3)	
	=	0.475 X (406	.000 / 1)^(1/3)	
Normal Scour depth (R) =		3.517	m	
Scour Depth with Concentration	on			
	=	0.475 X (406	.000 x (1 + 0%) / 1)^(1/3)
	=	3.517	m	
Energy level:				
Depth of water in front of w	oir	=	2.800	m
Scour Depth (With Concent		=	2.800	m m
Velocity of approach (V _a)	li alion)	=	Q/A	111
velocity of approach (v _a)		=		7 v (2 5 1 7))
		=	406.000 / (11)	
Velocity head $(h_{va}) = V_a^2/2g$		=	0.99 0.987^2 / (2 X	m/sec
velocity nead (n _{va}) – v _a /2g		=		,
			0.0496518	m
		say	0.05	m
U/s Energy Line (U/s E.L)		=	U/S F.S.L + h	va
		=	101.6 + 0.05	
U/s EL		=	101.65	m
V _d =	0.9867	m / sec	(From RWL ca	lculation)
D/s velocity (V _d)		=	0.99	m/sec
Velocity head $(h_{vd}) = V_d^2/2g$	ļ	=	0.99^2 /(2 X 9	.81)
		=	0.0499541	m
		say	0.05	m
D/s Energy Line (D/s E.L)		=	D/S W.L + h _{vd}	
		=	100.9 + 0.05	
		=	100.9 1 0.05	m
		-	100.95	
Head loss (H_L)		=	U/S E.L - D/S	E.L
		=	101.65 - 100.9	5
		=	0.7	m

2.Fixation of Stilling basin level:

Hydraulic jump calculations:

SI. No.	Item	High flood condition without concentration and retrogression	
1	Discharge intensity (q)	3.470 m ² /sec	
2	D/S Water level in m	100.900 m	
3	U/S Water level in m	101.600 m	

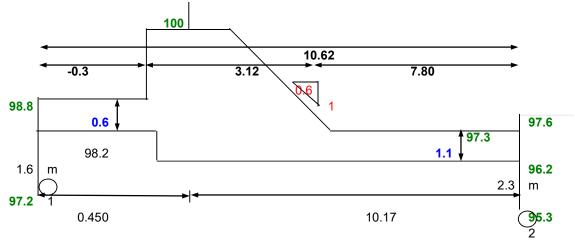
		1	I
4	D/S Total Energy Level(D/S E.L) in m	100.950	m
5	U/S Total Energy Level(U/S E.L) in m	101.650	m
6	Head Loss (H _L) in m	0.700	m
7	Postjump Depth D ₂ (Assume)	1.9294	m
8	Velocity (V ₂) = q / D ₂ = 3.47 / 1.92944269430126	1.798	m/sec
9	D/S specific energy E_{f2} $E_{f2} = D_2 + V_2^2/2g$	2.094	m
10	Froude's Number F ₂ =V ₂ / sqrt(gD ₂) = 1.798/ sqrt(9.81 X 1.92944269430126)	0.413	

11	Prejump Depth corresponding to D_2 (D_1) $D_1 = D_2/2$ (-1+sqrt(1+8F ₂ ²))		
	= 1.92944269430126/2 X (-1+ sqrt (1+ 8 X 0.4131^2))	0.519	m
12	Velocity (V ₁) = q / D ₁ = 3.4701 / 0.519	6.682	m/sec
13	Froude's Number F ₁ =V ₁ / sqrt(gD ₁) = 6.6821 / sqrt(9.81 X 0.5191)	2.960	
14	U/S specific energy $E_{f1} = D_1 + V_1^2 / 2g$	2.795	m
15	$E_{f1} - E_{f2} - H_L = 0$	0.001	<u>~</u> 0
16	Level at which jump would form (D/s Total Energy Lvl - E_{f2})	98.855	m
17	Length of concrete floor required beyond the jump Floor length = $5 * (D_2 D_1)$	7.05	m

Existing Floor level	=	97.600	m
The Stilling Basin level is	=	97.600	m
Depth of stilling basin	=	0	m
Provide a depth of stilling basin	=	0.3	m
The Stilling Basin level is	=	97.300	m
3.Total horizontal floor length:			
U/s floor level	=	98.800	m
D/s floor level	=	97.600	m

1. D/s floor length (hydraulic criteria) / Basin length + cutoff		=	7.651	m
2. Width of the body wall (from stability calculations) @ basin level		=	3.120	m
3. Length of U/s floor (Assumed)		=	0.000	m
Total Floor length required		=	10.771	m
However provide a total floor length of	11.22	m		
Hence Provide Stilling Basin length of	7.50	m		
Existing floor length is	11.70	m		

Hence Safe


KURUR ANICUT

Calculation for Depth of apron and scour depth for cutoff wall

Design Data:			
Maximum Flood Discharge	406.00	cumecs 14337. or 9	cusecs
Crest level	100.000	m	000000
Front Maximum Water Level	101.600	m	
Rear Water Level	100.900	m	
Crest level of anicut	100.000	m	
Exit gradient 1 in 5	0.2		
U/S bed level	98.800	m	
D/S bed level	97.600	m	
Total length of structure	117	m	
Discharge per unit length/discharge intensity	3.47	cumecs/m run	i.e., (406 /117)
Assume u/s floor thickness as	0.6	m	
Assume d/s floor thickness as	1.1	m	
Unit weight of the floor material	2.4	t/m ³	
Unit weight of water	1	t/m ³	
Specific gravity of floor material	2.4		
For static condition the FTL has been taken as FMFL	=	100.000 m	
For dynamic condition the MWL has been taken as FI	MFL =	101.600 m	
Normal Scour depth, R = 3.517	m		
Scour depth (with Concentration) = 3.517	m		
U/s Cut-Off :			
U/S scour level = U/s Water level - R			
= 101.6 - 1 X 3.517			
= 98.080 m			
Depth of upstream water = 2.80 Minimum depth of upstream cutoff Y/3+0.6	m		
= 1.533	m		
98.8 -			
Depth of u/s cut off = 98.08			
Depth of u/s cut off=0.72Depth of u/s cut off to be provided=1.533	m m		

Provide a depth	of			1.6	m
Bottom of u/s cut	off	=	+	97.200	m
D/s Cut-Off :					
Depth of downstro water	eam	=		3.30	m
Minimum depth o	f downstre	eam cutof	f	Y/2+0.6	
		=		2.25	m
		Rear W	ater	level - 1.25	
D/S scour level	=	R			
	=	100.9 -	1.25	X 3.517	
	=	96.5	504	m	
Depth of d/s cut c	off	=		1.096	m
(Based on scour	considerat	tions)			
Provide a depth of				2.3	m
Bottom of d/s cut	off	=	+	95.300	m

To draw Hydraulic Gradient Line

Proposed Floor

Floor Length Required Fr Exit gradient Taking head upto MFL	0.2					
Static head H = FRL - D/S	Bed level				2.4	m
d = Depth of d/s cutoff					2.3	m
	Ge =		<u>H</u> d	$\frac{1}{\Pi\sqrt{\lambda}}$		
				2.7580813		
	λ	=		7		
					4.40405	
	α	= √ (2	λ-1) ² -	1	8	
Length of floor required from exit						
gradient					3	m
						m
Length of floor required (Exit gradient criteria)					11	m
Length of floor provided (hydraulic jump criteria) 11.22					11.22	m

11.22 m

Uplift Pressures:for Pile1Total length of floor (b) =Depth of pile (d)		11.22 m 1.6 m
$\alpha = \alpha = \alpha = \alpha$	α = b/d 11.22/1.6 7.013	
$\lambda = (1 + \sqrt{1 + \lambda})$ $\lambda = \lambda = \lambda$		+ 7.013 ^2)) / 2
φ _c = 1 / π c 2)/λ) φ _c =	os ⁻¹ ((λ - 33.142	%
φ _D = 1 / π c 1)/λ)	os ⁻¹ ((λ -	
$\phi_{D} = \\ \phi_{C1} = \\ \phi_{C1} = $	22.880 100–φ _c 66.858	
φ _{C1} = φ _{D1} =	100-ф _D	70
φ _{D1} = φ _{E1} =	77.120 100	%

Corrections for C1 (a) Correction at C1 for mutual interference with pile2

Correction factor = 19 $(D/$	′b') (d+D) /	b	
D = Depth of interfering pile2 d = Depth of the pile 1= b' =Distance between pile1a b = Total length of the floor =	nd2	2.9 1 10.62 11.22	m m m
Correction =	3.4511361 4	% +ve	

(b) Correction due to floor thickness

Correction factor =	X Thickness of the $\frac{\phi_{D1} - \phi_{C1}}{Depth of}$ floor pile (77.12-66.86)/(98.8-97.2)*0.6
Correction =	3.848 % +ve

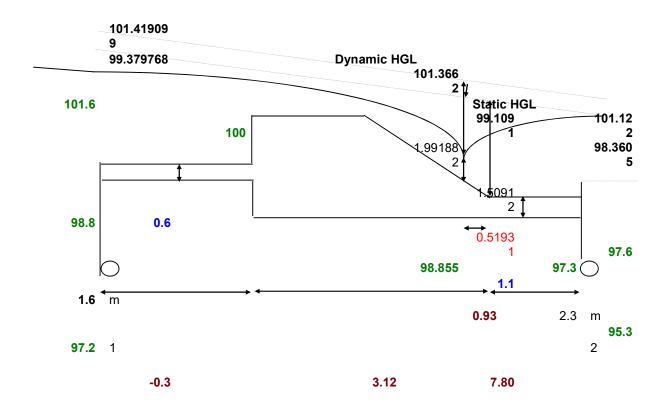
Corrected values

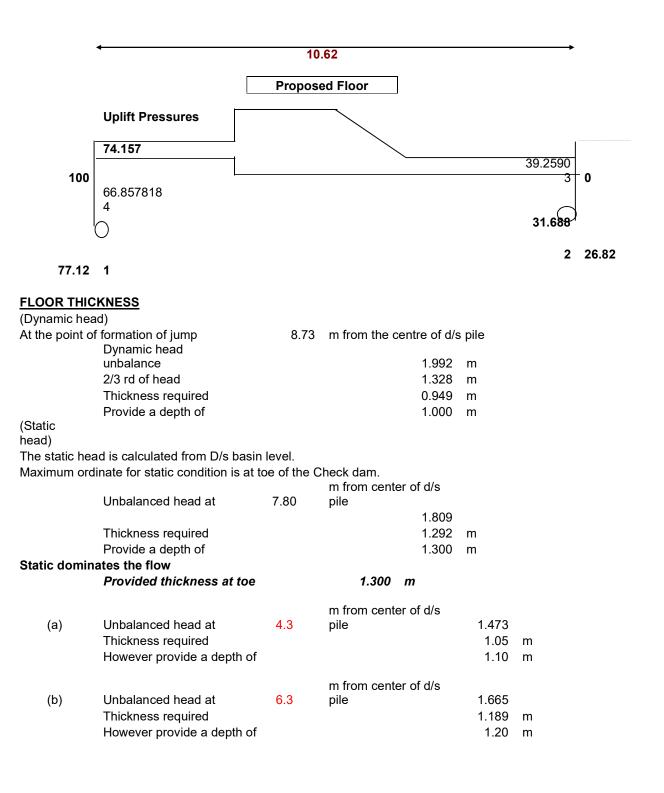
corrected	φ _{C1} =	74.157 %
-----------	-------------------	----------

	φ _{E1} =	100	%	
	φ _{D1} =	77.12	%	
	φ _{C1} =	74.157	%	
for Pile Total length o Depth of pile (11.2 2.	
	$\alpha = \alpha = \lambda = (1 + \sqrt{1 + \lambda})$ $\lambda = \lambda = \lambda = \lambda$	$\alpha = b / d$ 11.22 / 2.3 4.878261 α^2)/ 2 (1 + sqrt(1 + 2.9898509) 2	- 4.878261	^2)) / 2
	$\phi_{E} = 1 / \pi cc$ $2)/\lambda)$ $\phi_{E} =$ $\phi_{D} = 1 / \pi cc$	39.259026 2	%	
	$\phi_{\rm D} = \frac{1}{\lambda}$	26.820336 3	%	
	φ _{C2} =	0	%	
	φ _{D2} =	26.820336 3	%	
	φ _{E2} =	39.259026 2	%	

Corrections for E2 (a) Correction at E2 for mutual interference with pile1

Correction factor = $19 \sqrt{(D/b')(d+D)/b}$ D = Depth of interfering pile1 = 0 m d = Depth of the pile 2= 0.9 m b' = Distance between pile2and1 10.62 m b = Total length of the floor = 11.22 m Correction = 0 % -ve


(b) Correction due to floor thickness


					X Thickness of the
	Correction factor =			φ _{E4} - φ _{D4}	floor
			Depth of		
				pile	
			=(39.26-26.82)/(97.6-95.3)*(97.6-		
				96.2)	
	Correction	=		7.5713765	% -ve
Corrected val	ues				
corrected	φ _{E2} =		31.688	%	

φ _{E2} =	31.688	%	
φ _{D2} =	26.82	%	
φ _{C2} =	0	%	

Pile No	1		2	
	Upstream pile		Downstream	pile
Pressure	φ _{E1} =	100	φ _{E2} =	31.688
at the pt	φ _{D1} =	77.12	φ _{D2} =	26.82
	φ _{C1} =	74.157	φ _{C2} =	0

		Un-	Elevation of HGL						
U/S water	D/S water	balanced		Pile1			Pile1 Pile2		
Level	Level	Head	ф е1	ф D1	ф с1	ф е2	ф D2	ф с2	
			100	77.12	74.157	31.688	26.82	0	
Static condition	on 97.6	2.400	2.4 100	1.85088 99.45088	1.77976 8 99.3797 7	0.7605 1 98.360 5	0.64368 98.2436 8	0 97.6	
Dymanic cond 101.600	dition 100.9	0.700	0.7 101.6	0.53984 101.43984	0.51909 9 101.419 1	0.2218 2 101.12 2	0.18774 101.087 7	0 100.9	

SOMANDARKUDI ANICUT Design for cutoff wall

Design Data:			
Maximum Flood Discharge	265.51	cumecs or 9376.49	010000
Crest level	100.000		cusecs
		m	
Front Maximum Water Level	101.800	m	
Rear Water Level	100.500	m	
Crest level of anicut	100.000	m	
1 Exit gradient in <mark>5</mark>	0.2		
U/S bed level		m	
	99.000	m	
D/S bed level	97.500	m	
Total length of structure	130	m	
Discharge per unit length/discharge intensity	2.04	cumecs/m run	i.e., (265.51 /130)
Assume u/s floor thickness as	0.6	m	
Assume d/s floor thickness as	1.1	m	
Unit weight of the floor material	2.4	t/m ³	
Unit weight of water	1	t/m ³	
Specific gravity of floor material	2.4		
For static condition the FTL has been taken as FMF	=	100.000 m	
For dynamic condition the MWL has been taken as		101.800 m	
To dynamic condition the www has been taken as		101.000 111	
Normal Scour depth, R = 3.053	m		
Scour depth (with Concentration) = 3.053	m		
U/s Cut-Off :			
U/S scour level = U/s Water level - R			
U/S scour level = U/s Water level - R = 101.8 - 1 X 3.053			
U/S scour level = U/s Water level - R = 101.8 - 1 X 3.053 = 98.750 m			
U/S scour level=U/s Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80	m		
U/S scour level=U/s Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6			
U/S scour level=U/s Water level - R=101.8 - 1 X 3.053 =98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533	m m		
U/S scour level=U/s Water level - R= $101.8 - 1 \times 3.053$ = 98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoff $Y/3+0.6$ = 1.533 Depth of u/s cut off=99 - 98.75	m		
U/S scour level=U/s Water level - R= $101.8 - 1 \times 3.053$ = 98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6= 1.533 Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25			
U/S scour level=U/s Water level - R= $101.8 - 1 \times 3.053$ = 98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6= 1.533 Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25	m m		
U/S scour level=U/s Water level - R=101.8 - 1 X 3.053 =98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533	m m m		
U/S scour level=U/S Water level - R= $101.8 - 1 \times 3.053$ = 98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoff $Y/3+0.6$ = 1.533 Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided= 1.533 Provide a depth of1.6	m m m		
U/S scour level=U/s Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533Provide a depth of1.6Bottom of u/s cut off=+97.400	m m m		
U/S scour level=U/s Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533Provide a depth of1.6Bottom of u/s cut off=+97.400D/s Cut-Off :Depth of downstream	m m m m		
U/S scour level=U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533Provide a depth of1.6Bottom of u/s cut off=+97.400D/s Cut-Off :Depth of downstreamwater=3.00	m m m		
U/S scour level=U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533Provide a depth of1.6Bottom of u/s cut off=+97.400D/s Cut-Off :Depth of downstreamwater=3.00Minimum depth of downstream	m m m m		
U/S scour level=U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533Provide a depth of1.6Bottom of u/s cut off=+97.400D/s Cut-Off :Depth of downstreamwater=3.00	m m m m		
U/S scour level=U/S Water level - R=101.8 - 1 × 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off=0.25Depth of u/s cut off=1.533Provide a depth of1.6Bottom of u/s cut off=+97.400D/s Cut-Off :Depth of downstreamwater=3.00Minimum depth of downstreamcutoffY/2+0.6=2.1Rear Water level -	m m m m		
U/S scour level =U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water =2.80Minimum depth of upstream cutoff Y/3+0.6=1.533Depth of u/s cut off =99 - 98.75Depth of u/s cut off =0.25Depth of u/s cut off to be provided=1.533Provide a depth of 1.6Bottom of u/s cut off =+97.400D/S Cut-Off :Depth of downstreamcutoff =Y/2+0.6=2.1Rear Water level -D/S scour level =1.25 R	m m m m		
U/S scour level=U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off=0.25Depth of u/s cut off=0.25Depth of u/s cut off=1.6Bottom of u/s cut off=+97.400D/S Cut-Off :Depth of downstreamwater=3.00Minimum depth of downstreamcutoffY/2+0.6=2.1Rear Water level -D/S scour level=1.25 R=100.5 - 1.25 X 3.053	m m m m		
U/S scour level =U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water =2.80Minimum depth of upstream cutoff Y/3+0.6=1.533Depth of u/s cut off =99 - 98.75Depth of u/s cut off =0.25Depth of u/s cut off to be provided=1.533Provide a depth of 1.6Bottom of u/s cut off =+97.400D/S Cut-Off :Depth of downstreamcutoff Y/2+0.6=2.1Rear Water level -D/S scour level =1.25 R=100.5 - 1.25 X 3.053=96.684 m	m m m m		
U/S scour level =U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water =2.80Minimum depth of upstream cutoff Y/3+0.6=1.533Depth of u/s cut off =99 - 98.75Depth of u/s cut off =0.25Depth of u/s cut off to be provided=1.533Provide a depth of 1.6Bottom of u/s cut off =+97.400D/S Cut-Off :Depth of downstreamwater =3.00Minimum depth of downstreamcutoff =1.25 R=100.5 - 1.25 X 3.053=96.684 mDepth of d/s cut off =-0.816	m m m m		
U/S scour level=U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water=2.80Minimum depth of upstream cutoffY/3+0.6=1.533Depth of u/s cut off=99 - 98.75Depth of u/s cut off=0.25Depth of u/s cut off=0.25Depth of u/s cut off to be provided=1.533Provide a depth of1.6Bottom of u/s cut off=1.6Bottom of u/s cut off=1.7Depth of downstream cutoffcutoffY/2+0.6==2.1Rear Water level -D/S scour level=1.25 R ==100.5 - 1.25 X 3.053 ==96.684 mDepth of d/s cut off=0.816(Based on scour considerations)	m m m m m		
U/S scour level =U/S Water level - R=101.8 - 1 X 3.053=98.750 mDepth of upstream water =2.80Minimum depth of upstream cutoff Y/3+0.6=1.533Depth of u/s cut off =99 - 98.75Depth of u/s cut off =0.25Depth of u/s cut off to be provided=1.533Provide a depth of 1.6Bottom of u/s cut off =+97.400D/S Cut-Off :Depth of downstreamwater =3.00Minimum depth of downstreamcutoff =1.25 R=100.5 - 1.25 X 3.053=96.684 mDepth of d/s cut off =-0.816	m m m m		

AMMAIYAGARAM ANICUT SUPPLY CHANNEL DESIGN

CHANNEL I (Anicut to dividing dam)

Discharge through channel		=	12 Cusecs
As per Mannings formula, Velocity (V)		=	$1/n R^{2/3} S^{\frac{1}{2}}$
	n	=	0.025
Bed width		=	2 m
Full supply depth		=	0.3 m
Slope (S)		=	1/800
Area (A)		=	((2+2.30) /2) x 0.30
		=	0.645 M^2
Wetted Perimeter (P)		=	$2+2(\sqrt{(0.30)^2 + (0.15)^2})$
		=	2.67 m
Hydraulic Mean Depth $R = A/P$		=	0.24 m
Velocity (V)		=	$1/0.25 * (0.36)^{2/3} * (1/800)^{1/2}$
		=	0.62 M/S
Discharge (Q)		=	A*V
		=	0.645*0.62
		=	$0.40 M^3 / S$
(or)		=	14.21 Cusecs > 12.00 Cusecs
Hence safe			

Hence safe

Channel I (Dividing dam to direct ayacut channel end)

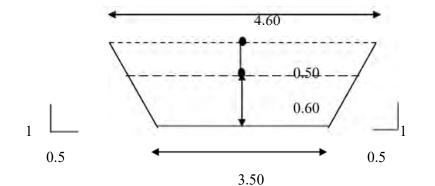
Discharge through channel As per Mannings formula, Velocity	=	8.27 Cusecs		
(V)	=	$1 / n R^{2/3} S^{1/2}$		
n	=	0.025		
Bed width	=	2 M		
Full supply				
depth	=	0.3 M		
Slope (S)	=	1 / 1000		
Area (A)	=	((2+2.30) / 2) x 0.30		
	=	0.645 M^2		
Wetted perimeter (P)	=	$2+2(\sqrt{(0.30)^2+(0.15)^2})$		
	=	2.67 M		
Hydraulic Mean Depth $R = A / P$	=	0.24 M		
Velocity (V)	=	$1/0.25 * (0.36)^{2/3} * (1/1000)^{1/2}$		
	=	0.62 M/S		
Discharge (Q)	=	A*V		
	=	0.645*0.49		

		=	0.32M ³ / S
2	(or)	=	11.23 Cusecs > 8.27 Cusecs

Hence safe

Channel I (Dividing dam to direct ayacut channel end)

Discharge through channel	=	3.44 Cusecs
As per Mannings formula, Velocity (V)	=	$1 / n R^{2/3} S^{1/2}$
n	=	0.025
Bed width	=	1.5 M
Full supply		
depth	=	0.3 M
Slope (S)	=	1 / 1200
Area (A)	=	((1.5+1.830) / 2) x 0.30
	=	0.495 M ²
Wetted perimeter (P)	=	$1.5+2(\sqrt{(0.30)^2+(0.15)^2})$
	=	2.17 M
Hydraulic Mean Depth $R = A / P$	=	0.23 M
Velocity (V)	=	$1/0.25 * (0.36)^{2/3} * (1/1200)^{1/2}$
	=	0.43 M/S
Discharge (Q)	=	A*V
	=	0.495*0.43
	=	$0.21 M^3 / S$
(or)	=	7.41Cusecs > 3.44 Cusecs
II.maa aafa		


Hence safe

KOLAVAI

Hydraulic calculation

CHECK THE ADEQUANCY OF THE EXIXTING SUPPLY CHANNEL

Total Ayacut		=	261.60 Acres
Requirement of water		=	6 Acres/mcft
Hence the total requirement of v	vater is	=	43.60 Mcft
It is proposed to give supply in 7	7 days	=	7 days
Therefore the discharge required	l per second	=	$43.60 \ge 10^6$
			7x24x60x60
		=	72 Cusecs
Add 20% for Evaporation & Tra	insmission losses	=	14.42 Cusecs
(i.e)	72 + 14.42	=	86.51 Cusecs
		or	2.45 Cusecs
Bed width		=	3.50 M
Side slope		=	1 IN 2000
Mannings coefficient (N)			0.025
Free Board		=	0.50 M
Depth of Water F.S.D		=	0.60 M

4.46 Sqm Area "A" = Wetted Perimeter "P" 5.96 m = Hydraulic Mean Radius R = A/P0.75 m = Velocity "V" = $1/n \ge R^{2/3} x S^{1/n}$ 0.74 m/sec = Discharge "Q" = $V \times A$ $3.28 \text{ m}^{3}/\text{sec}$ = Carrying discharge = 115.90 cusecs =

The carrying capacity of the existing supply channel is

115.90 cuses against the

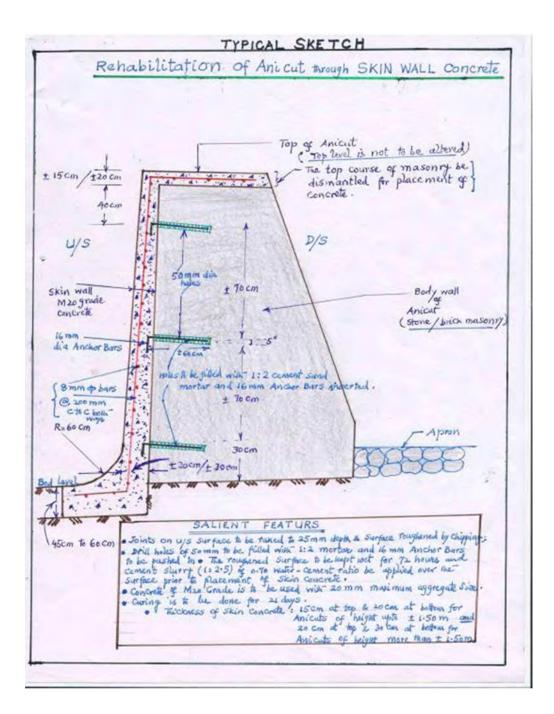
required discharge of

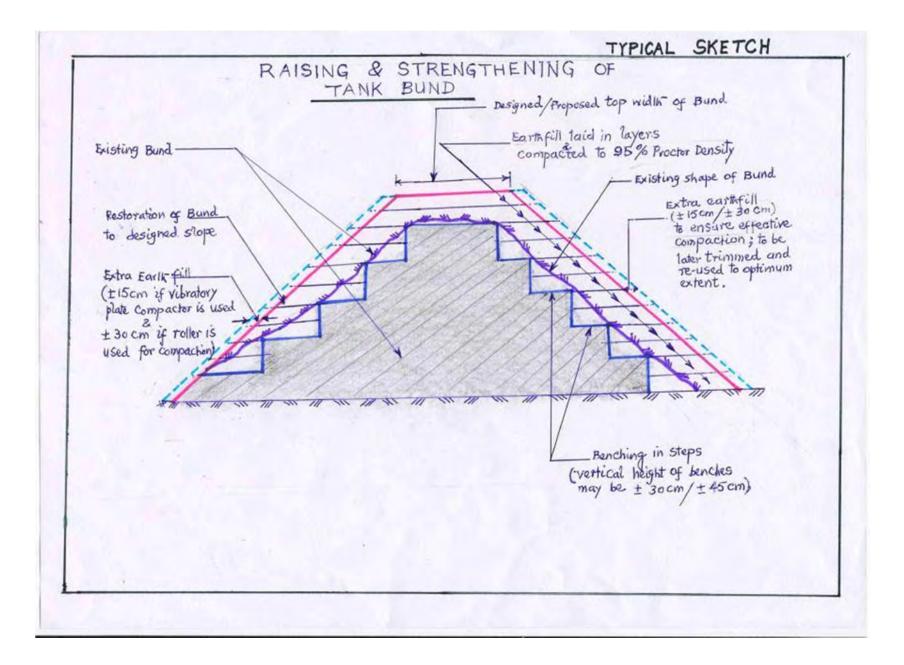
86.51 cusecs

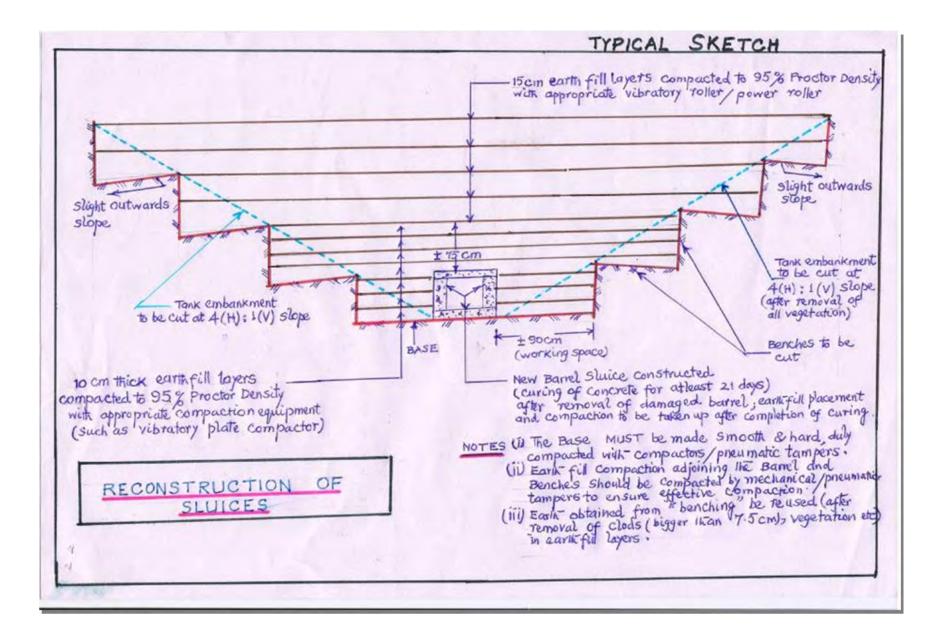
DIVIDING DAM DESIGN

Discharge through channel I 8.27 Cusecs = 5 A √h Q = A = Area h = head8.27 = $5 \times A \times \sqrt{0.75}$ = 1.91 Square feet А (or) 0.18 Square meter = = 0.7 m x 0.3 mAdopt vent size = 0.7 m x 0.3 m0.21 > 0.18

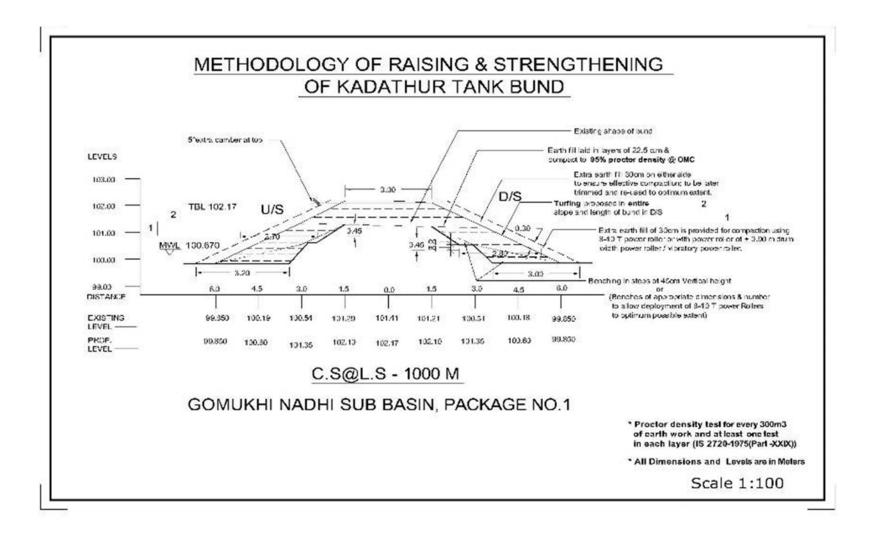
Hence safe

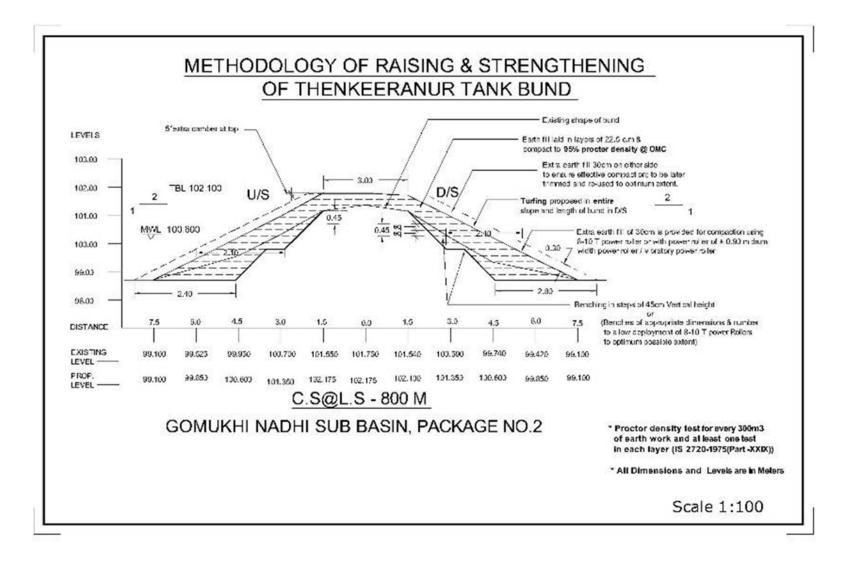

ROAD CULVERT DESIGN

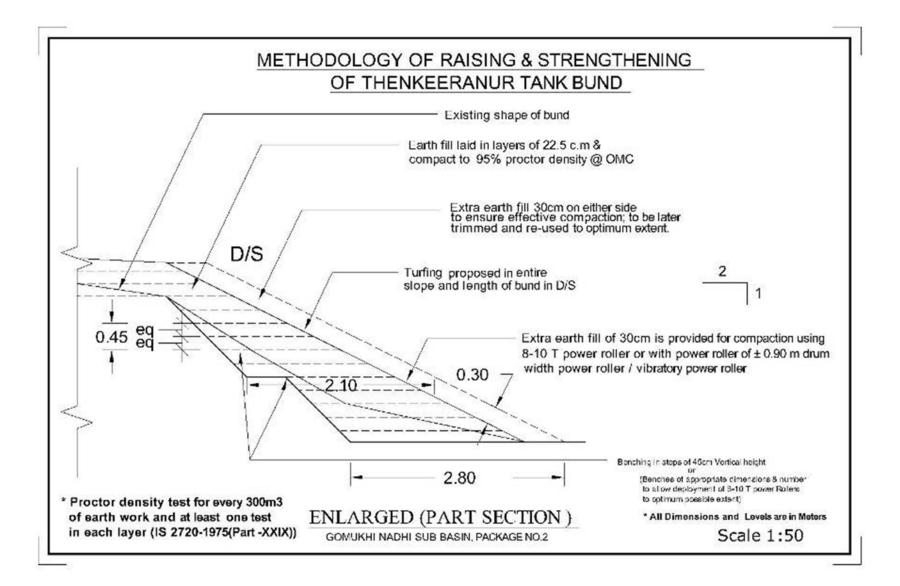

Discharge through channel		=	12	Cusecs
Channel bed level		=	138.950	m
Road level		=	139.650	m
Bed width		=	2	М
Full supply depth Difference between Road level and		=	0.3	М
Channel bed level		=	0.7	М
Velocity (V)		=	0.62	M/S
	Q	=	6A√h	
	А	=	Area	
	h	=	head	
Discharge (Q)		=	6x[(2x3.28)*(0.7x3.28)*√0.25]	
		=	45.18 Cusecs > 12 Cusecs	

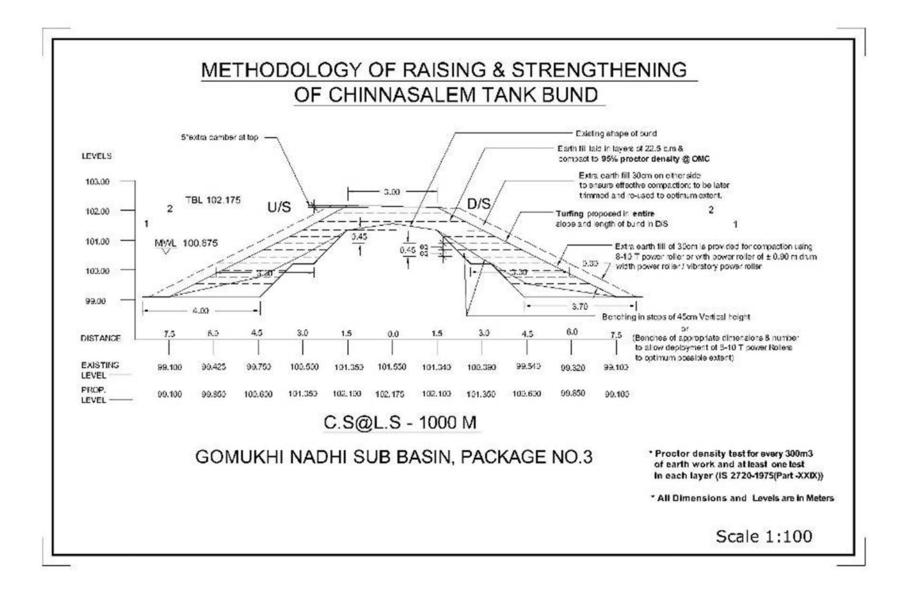

Hence safe

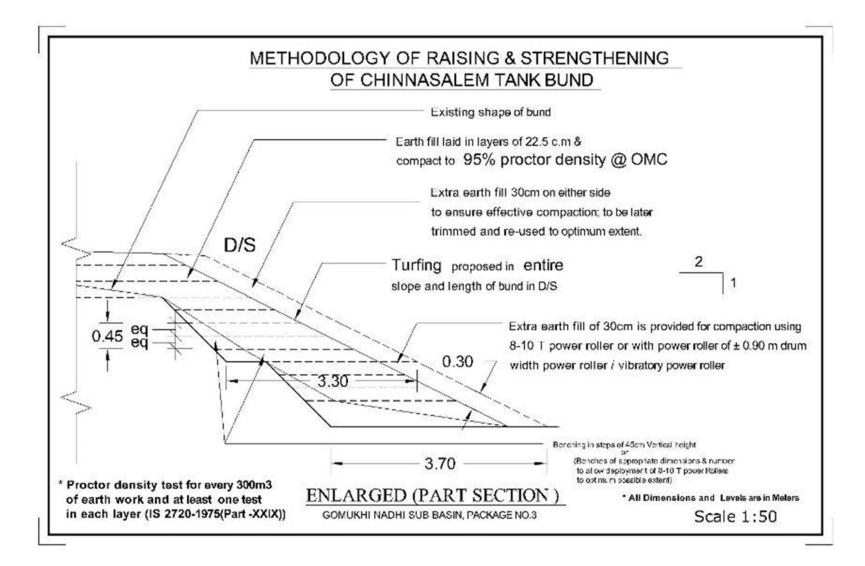
Velocity (V)	=	1.27 / (2*0.7)
	=	0.91 M/S > 0.62 M/S

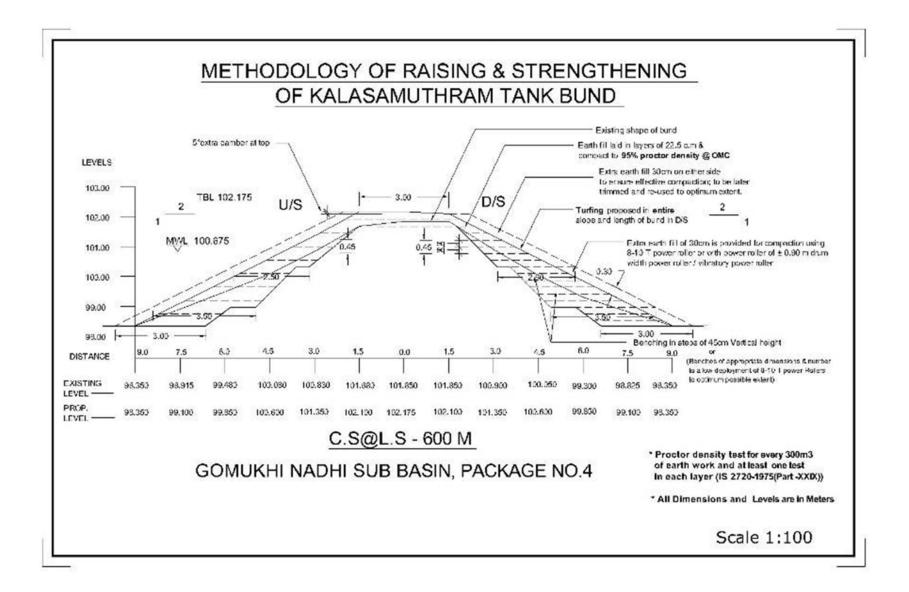

Velocity is within the permisible limit

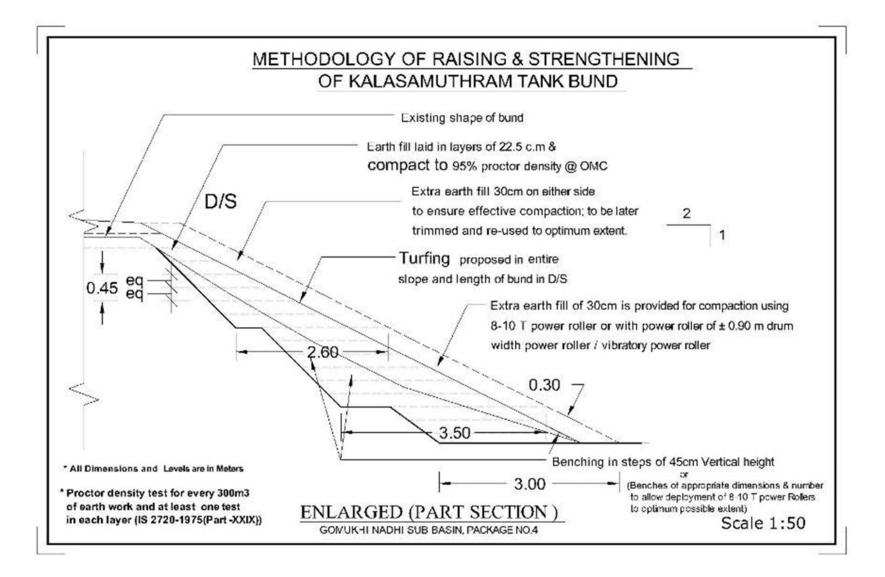


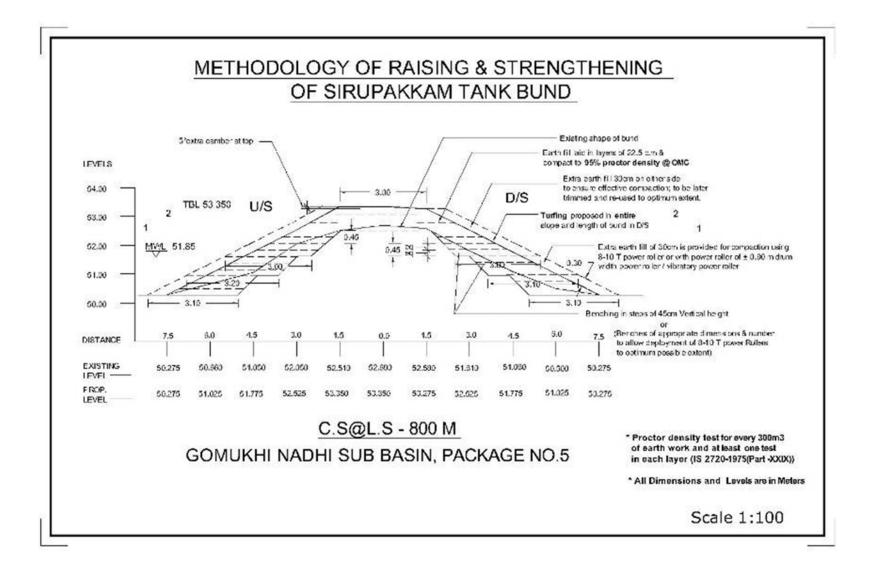


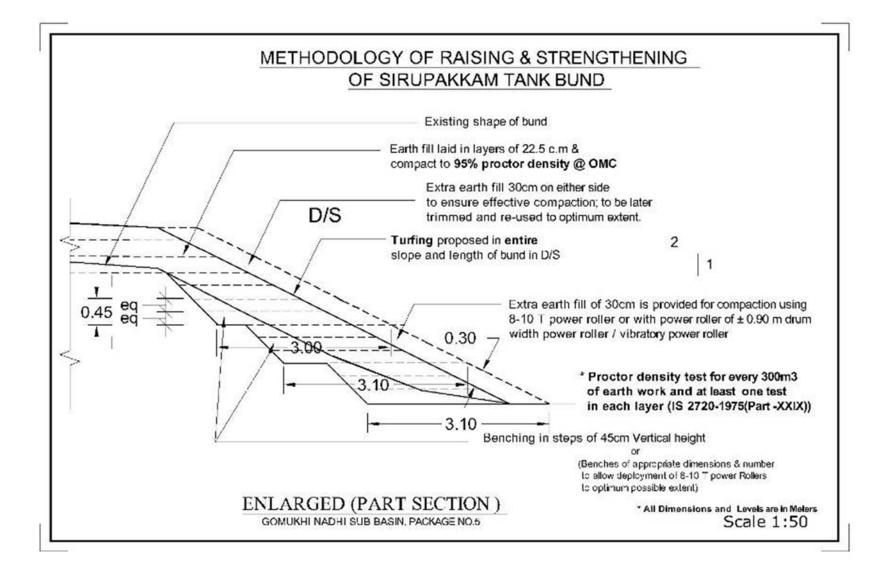


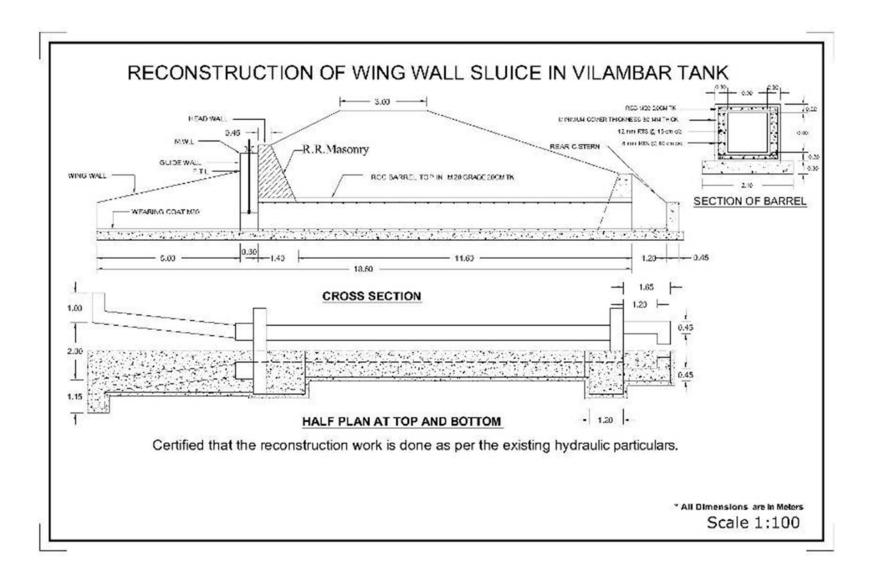


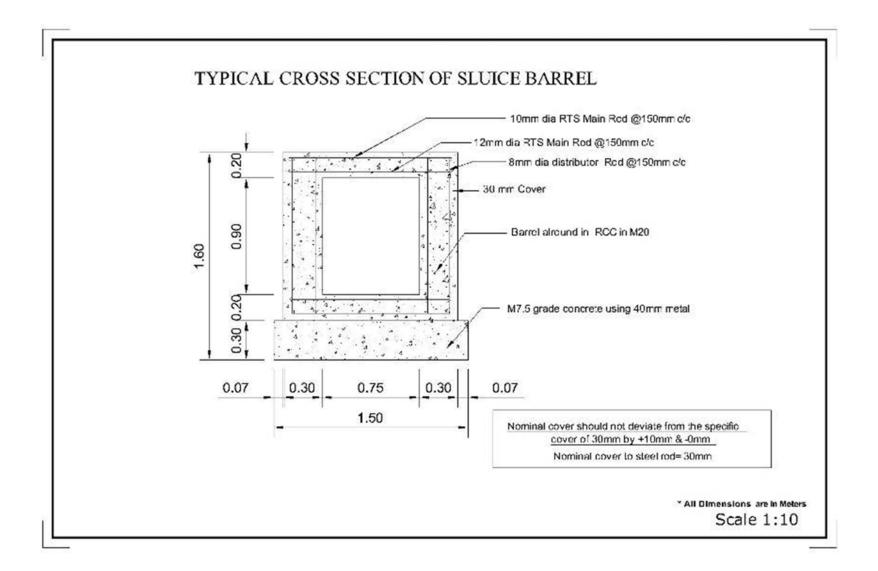


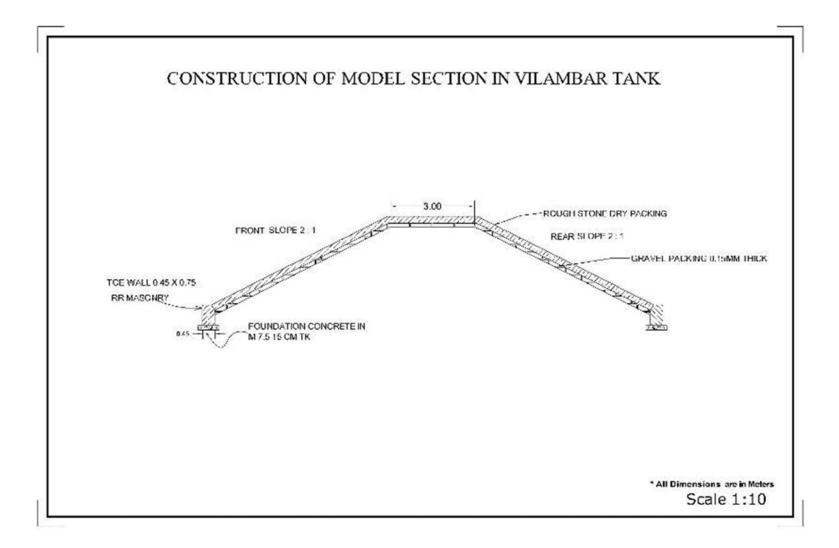


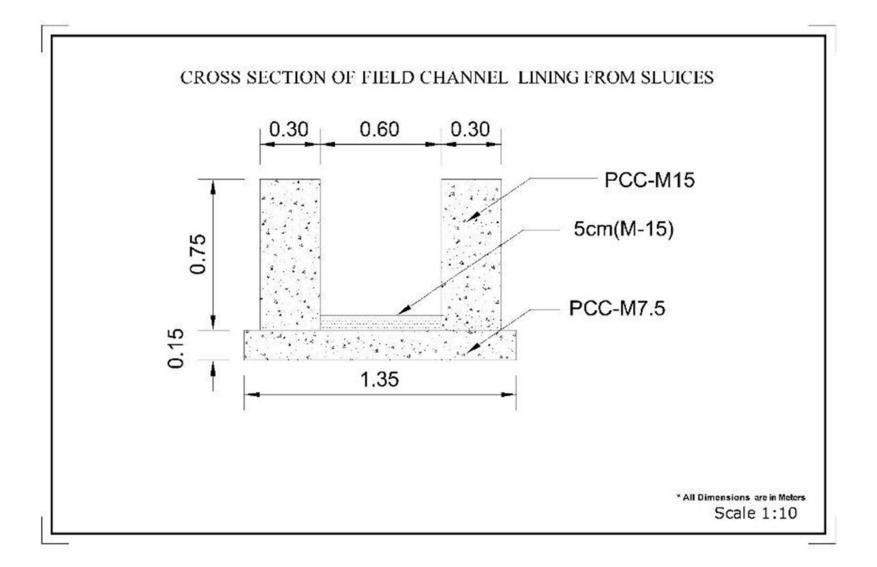


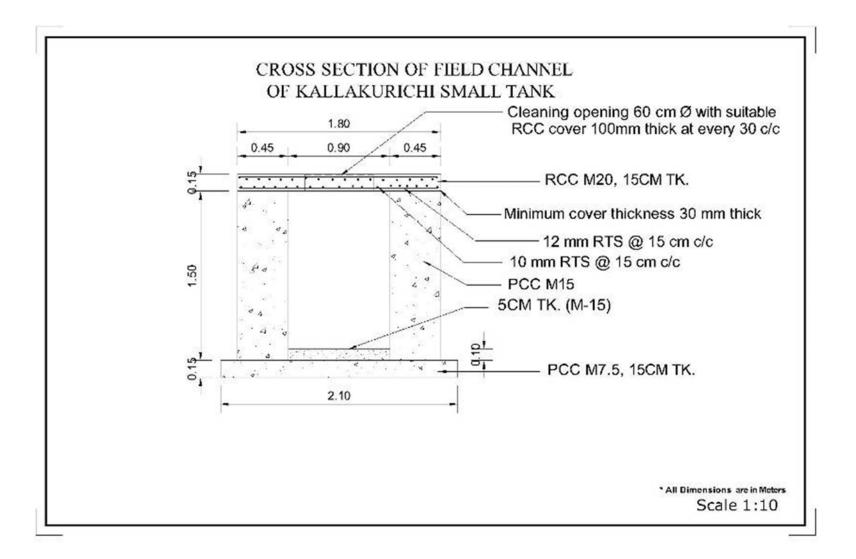


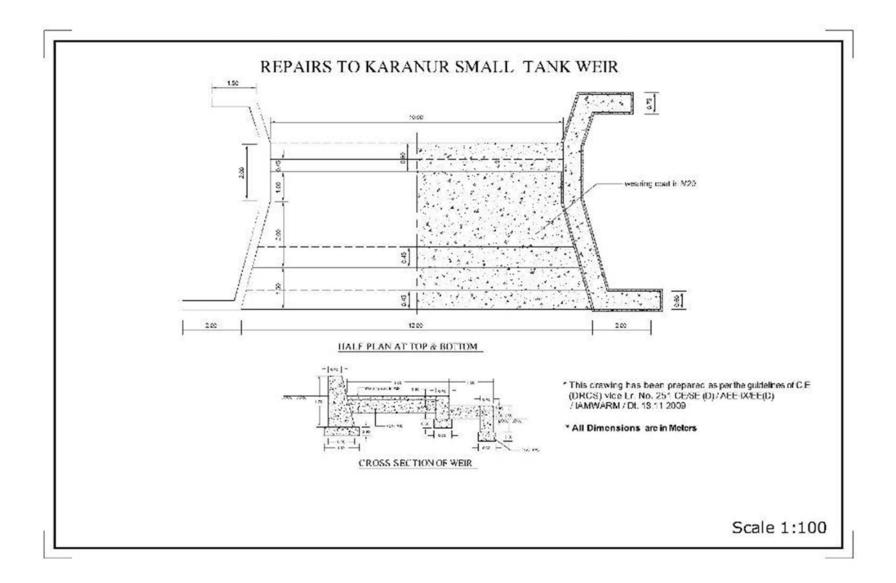


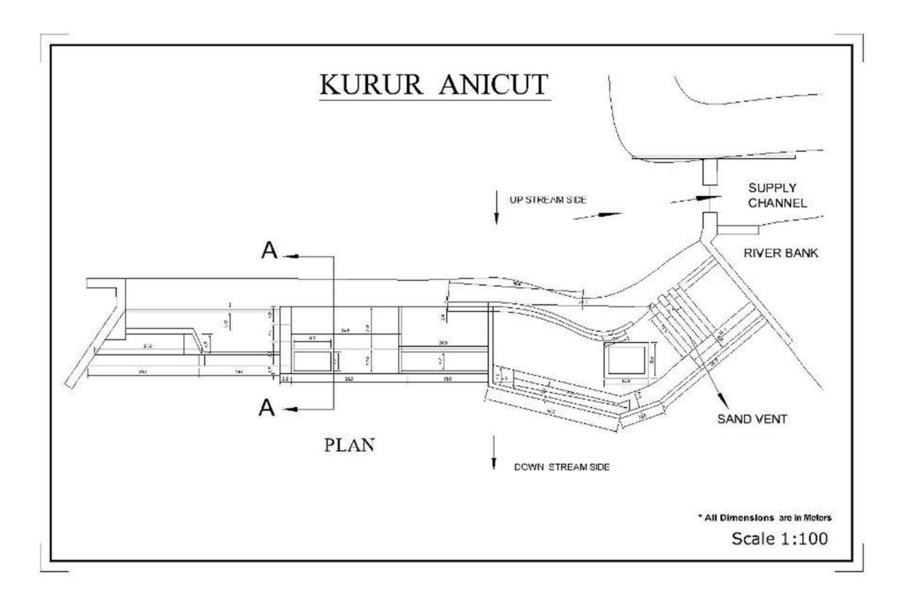


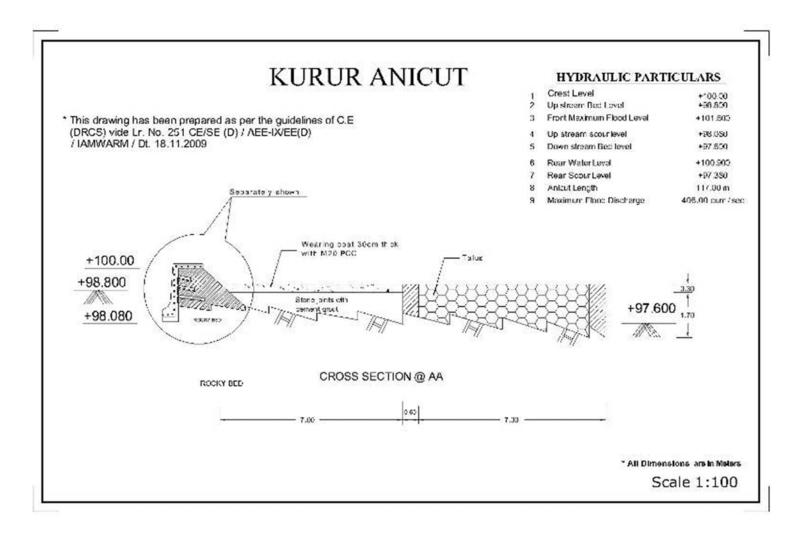


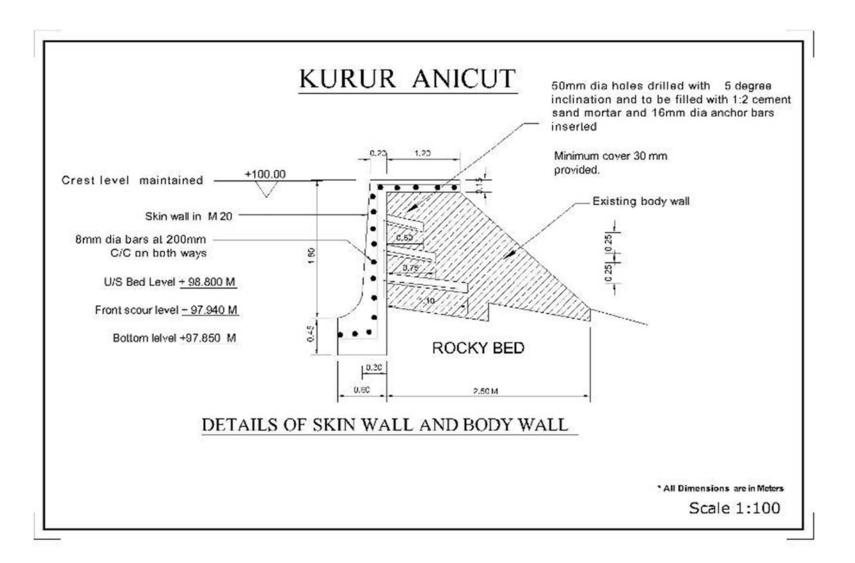


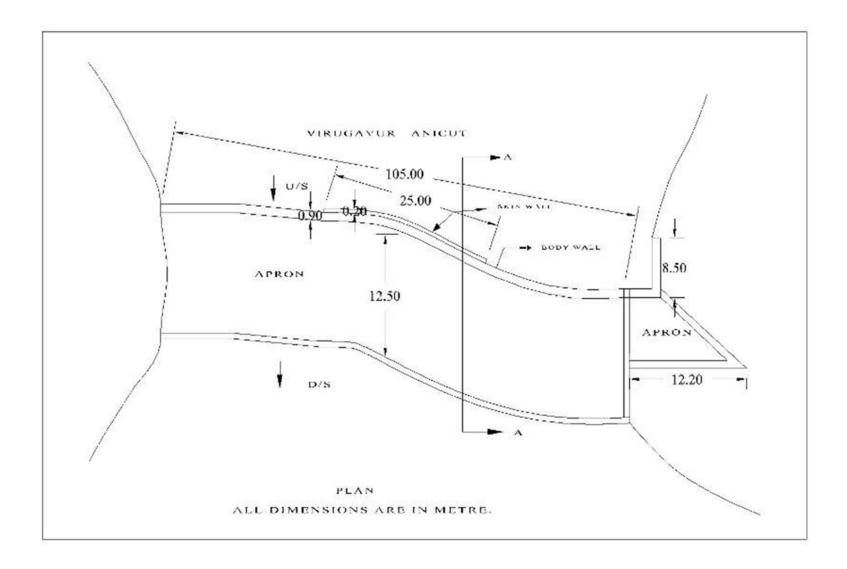


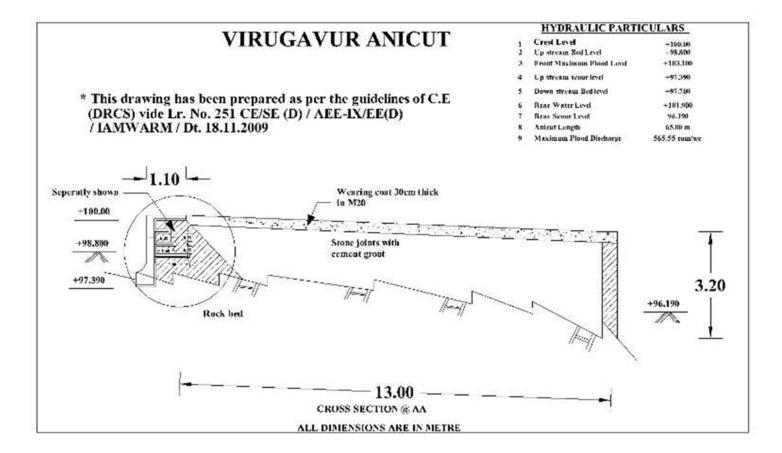


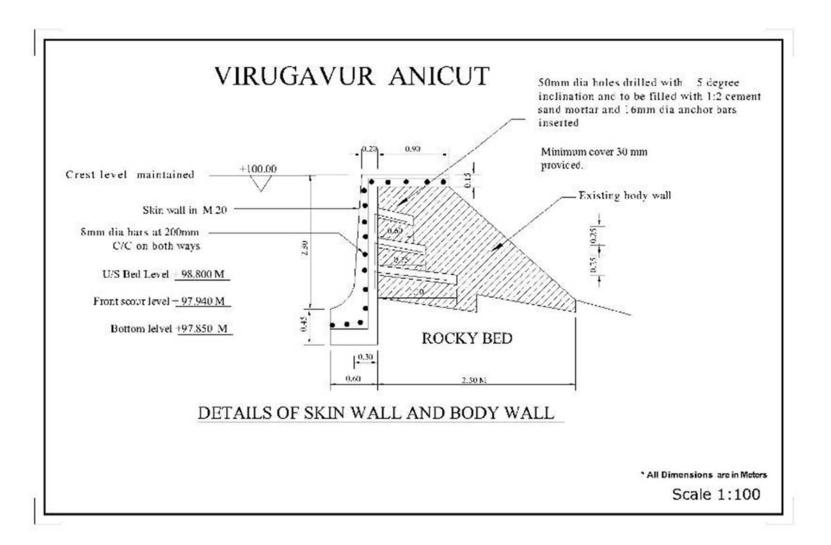


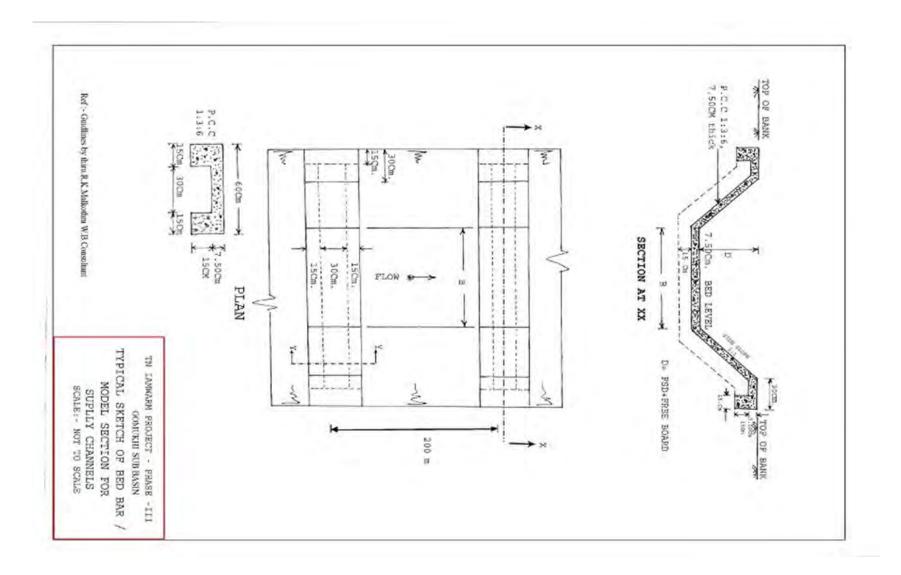


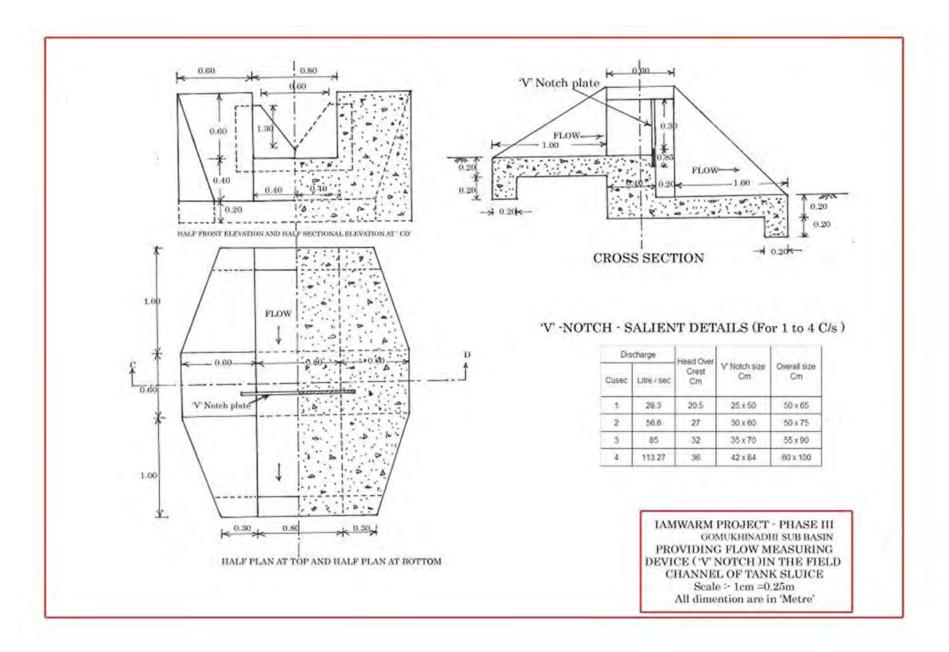


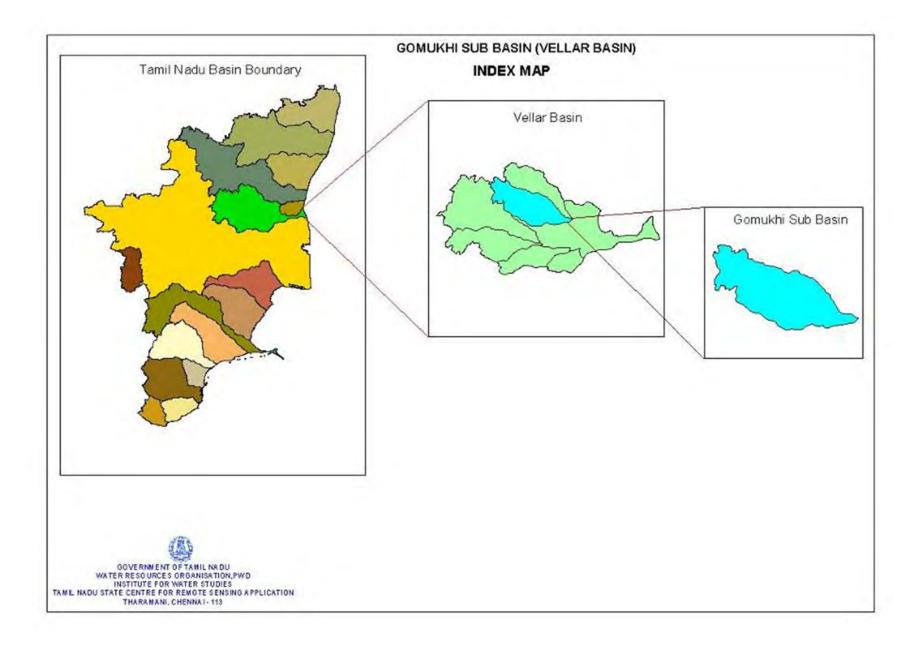


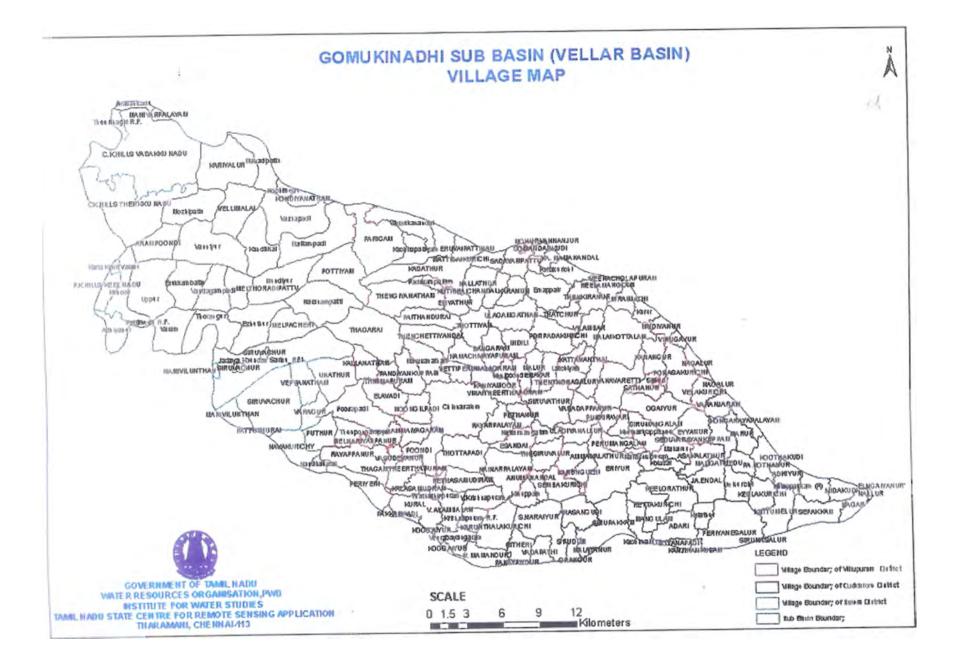


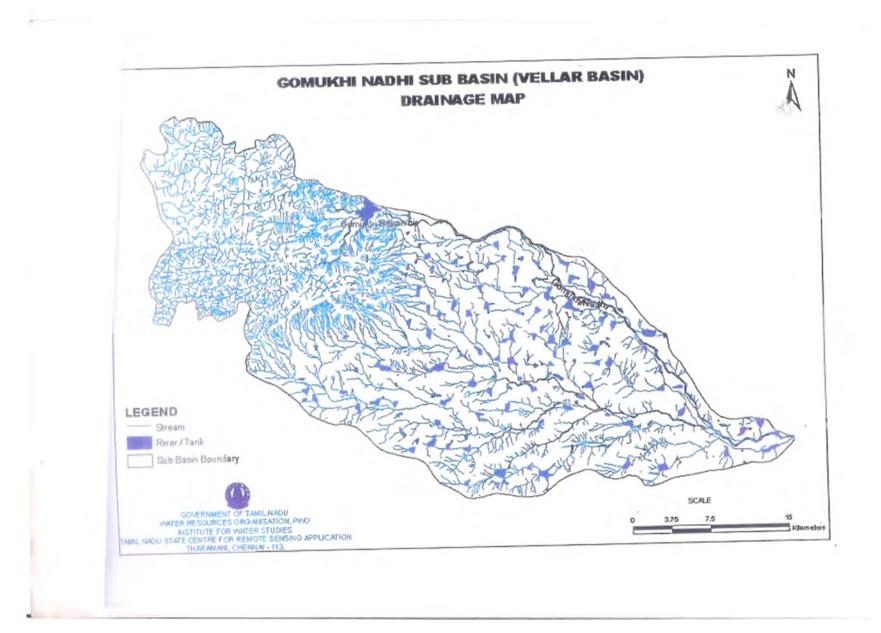


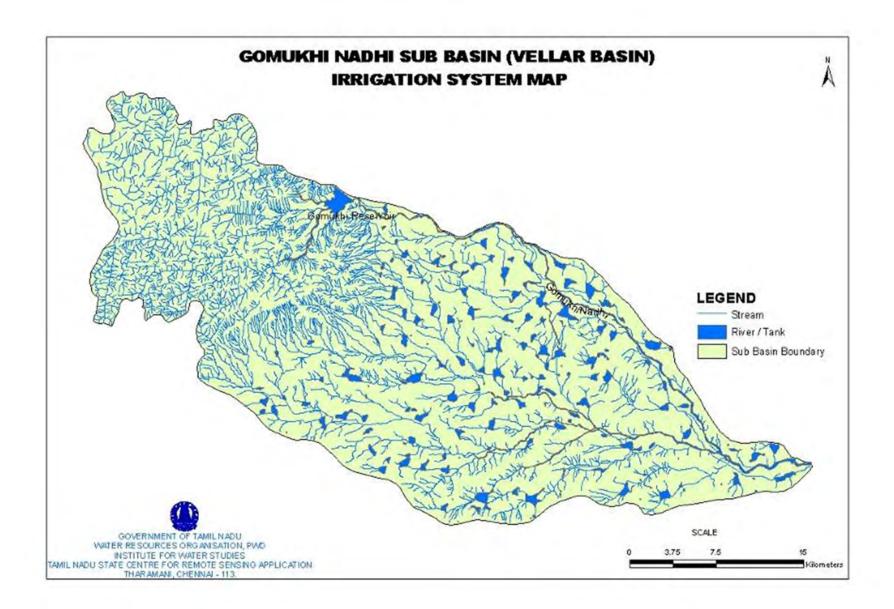


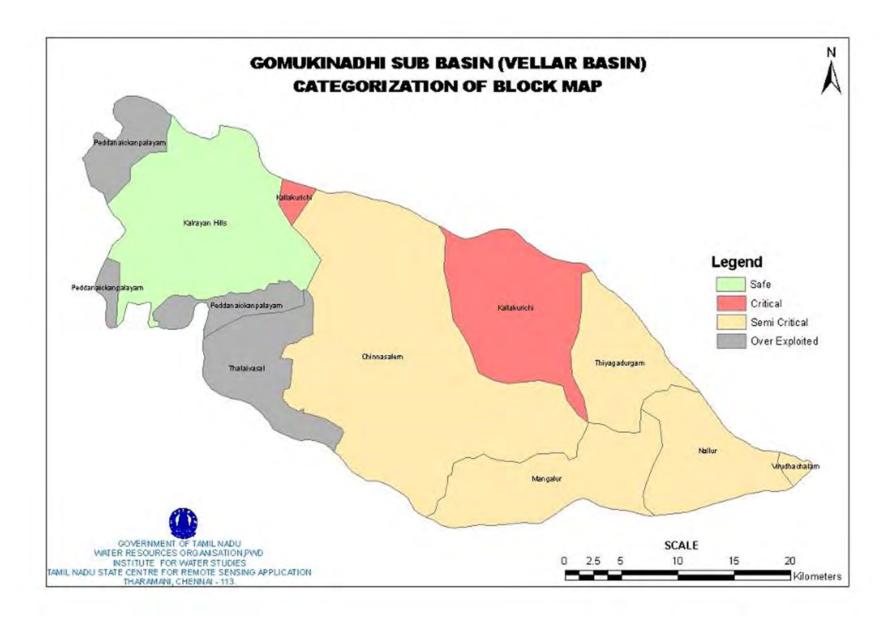


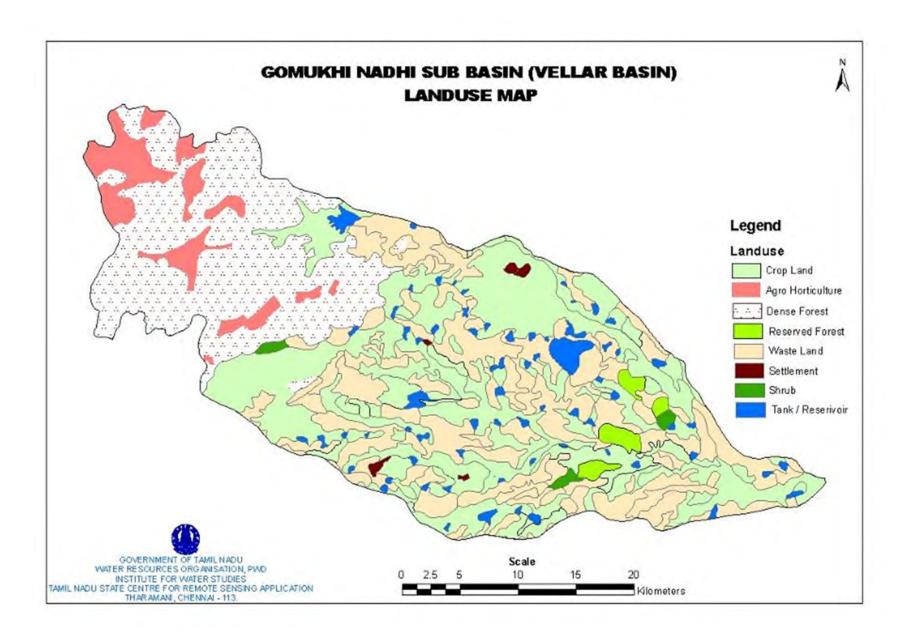


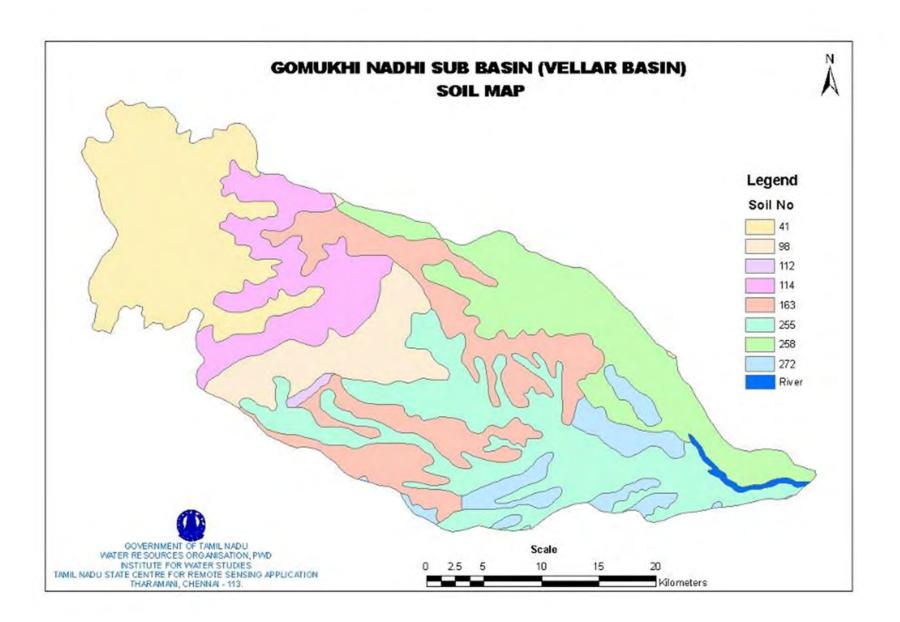


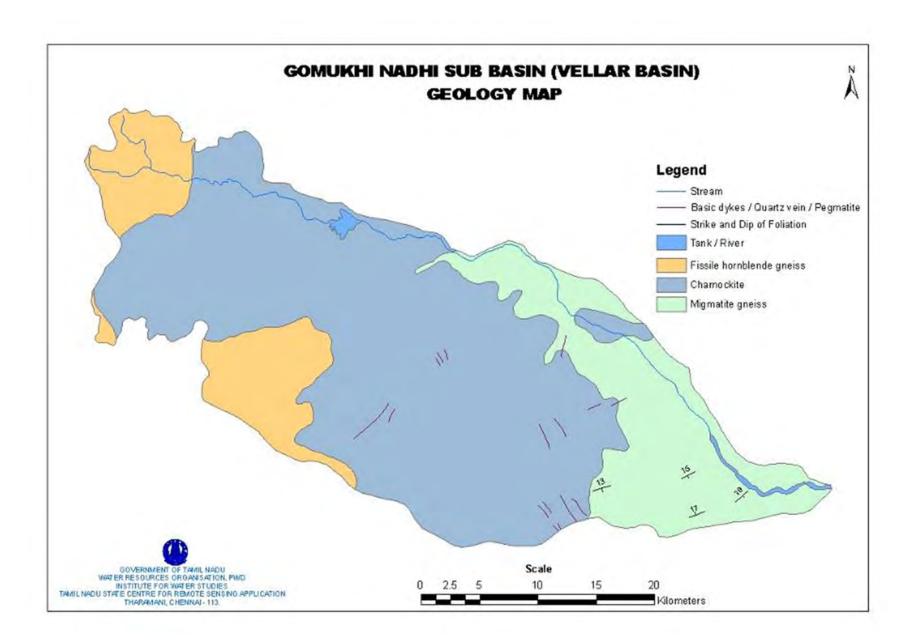


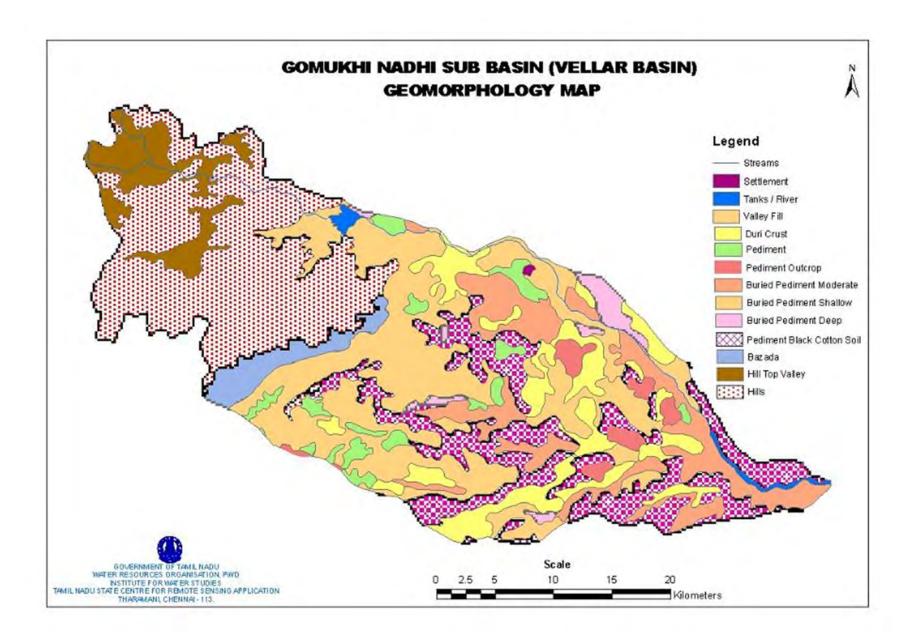


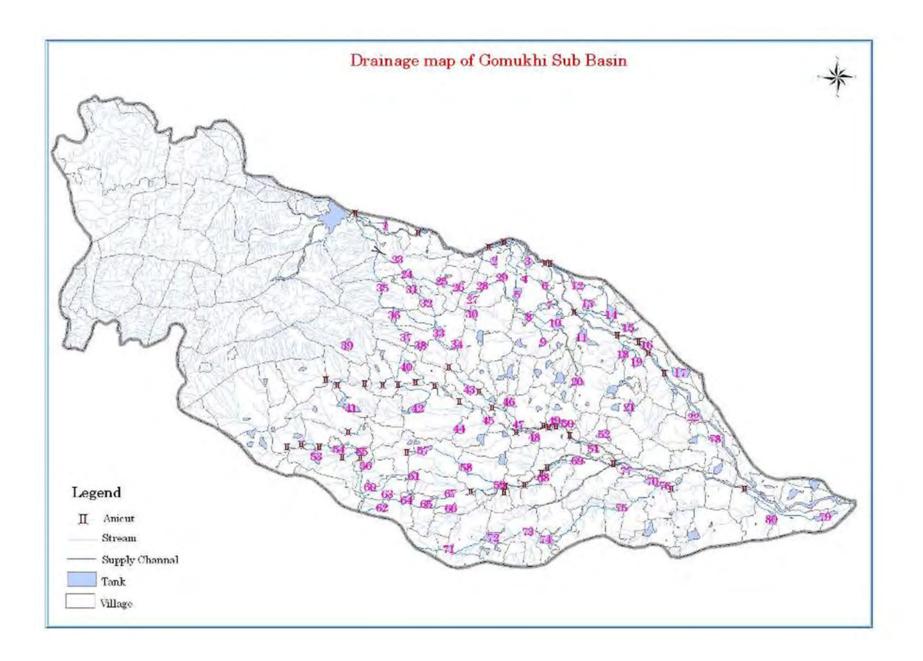


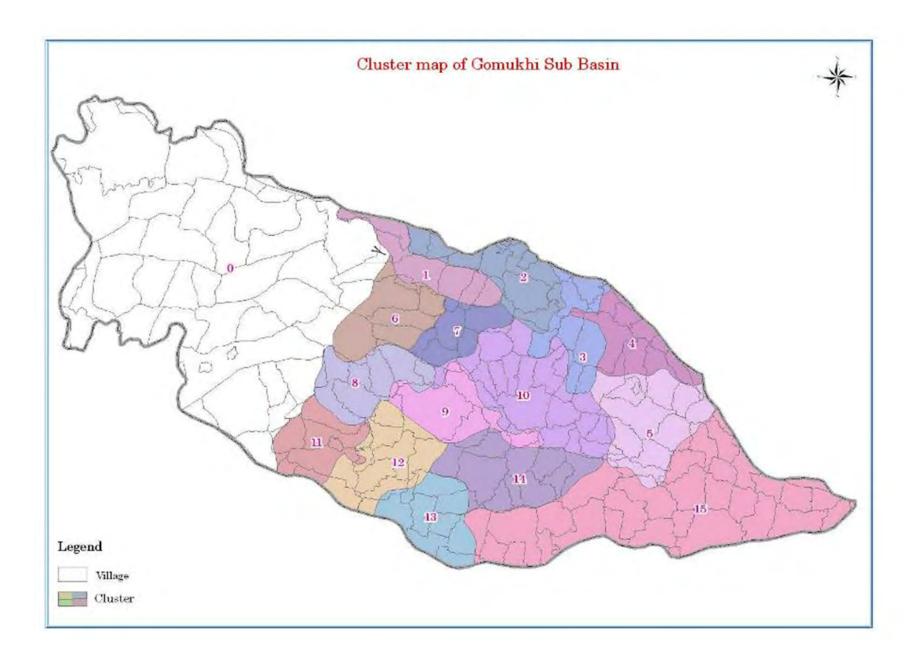


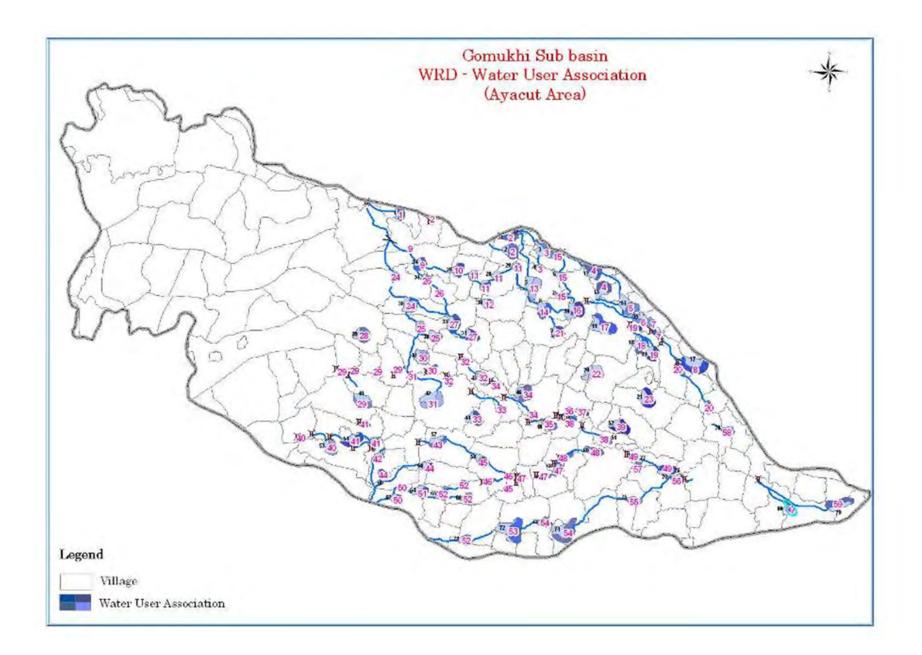


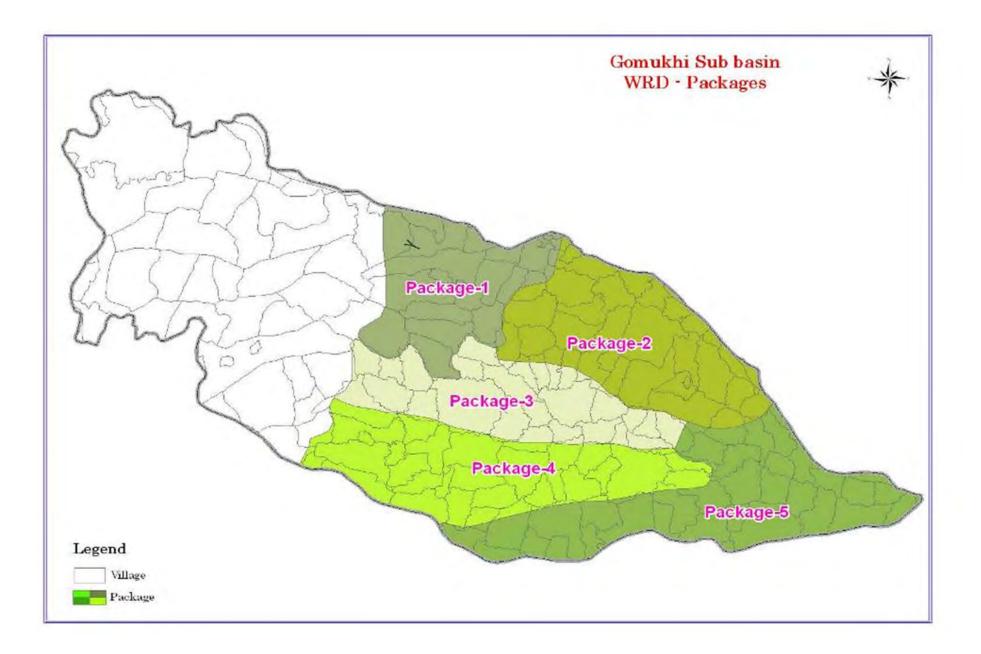










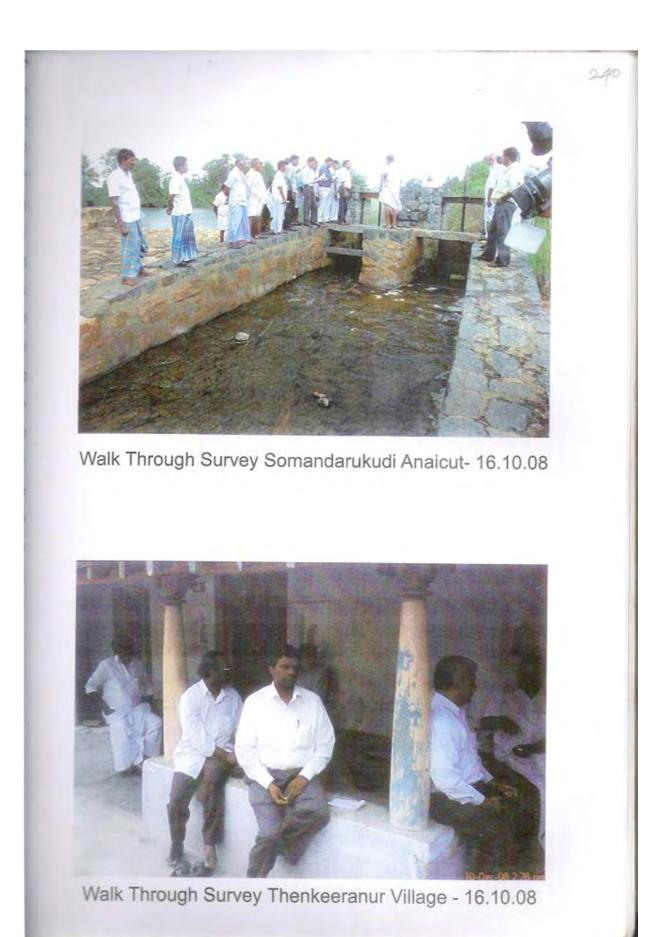


Stakeholders meeting held at Kallakurichi on 30.09.08

Stakeholders meeting held at Kallakurichi on 30.09.08

Stakeholders meeting held at Kallakurichi on 30.09.08

Sub Committee meeting conducted by Executive Engineer on 21.1.09


Sub Committee meeting conducted by Asst. Executive Engineer on 30.12.08

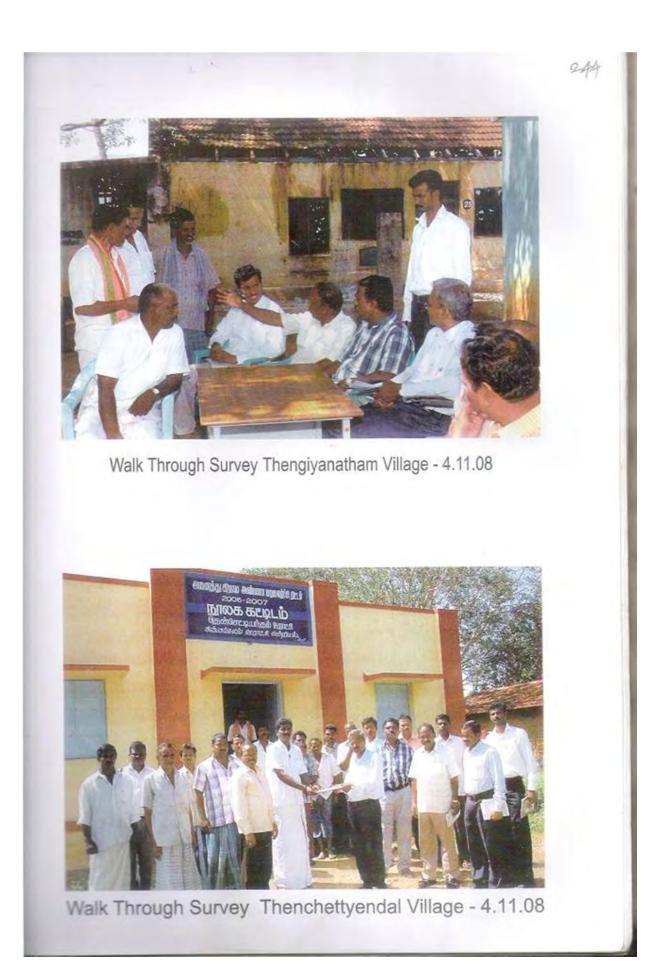
Walk Through Survey Kadathur Dividing Dam - 15.10.08

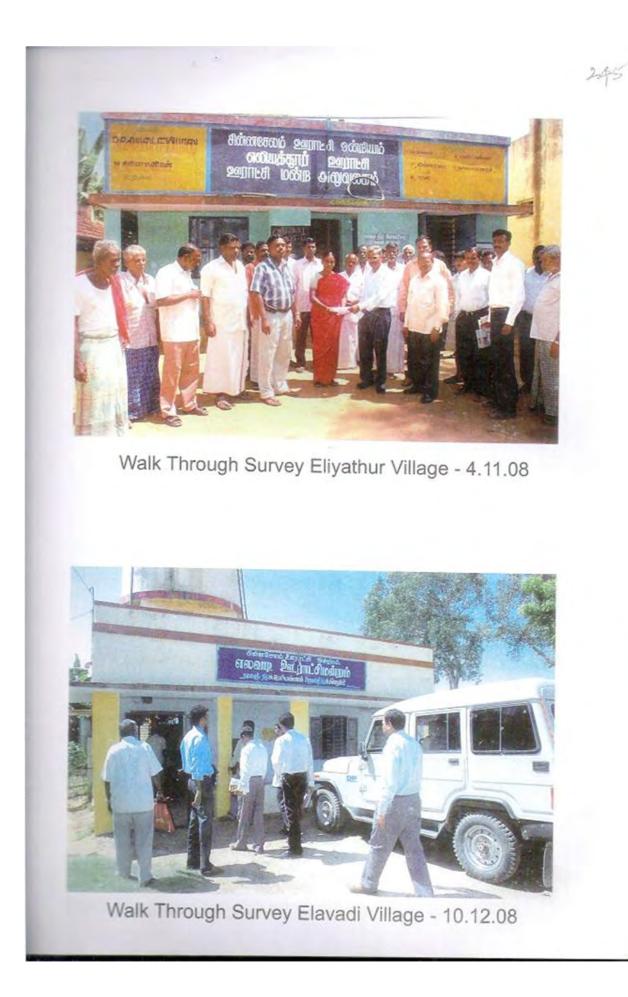
Walk Through Survey Kadathur Dividing Dam - 15.10.08

Walk Through Survey Thachur Village - 16.10.08

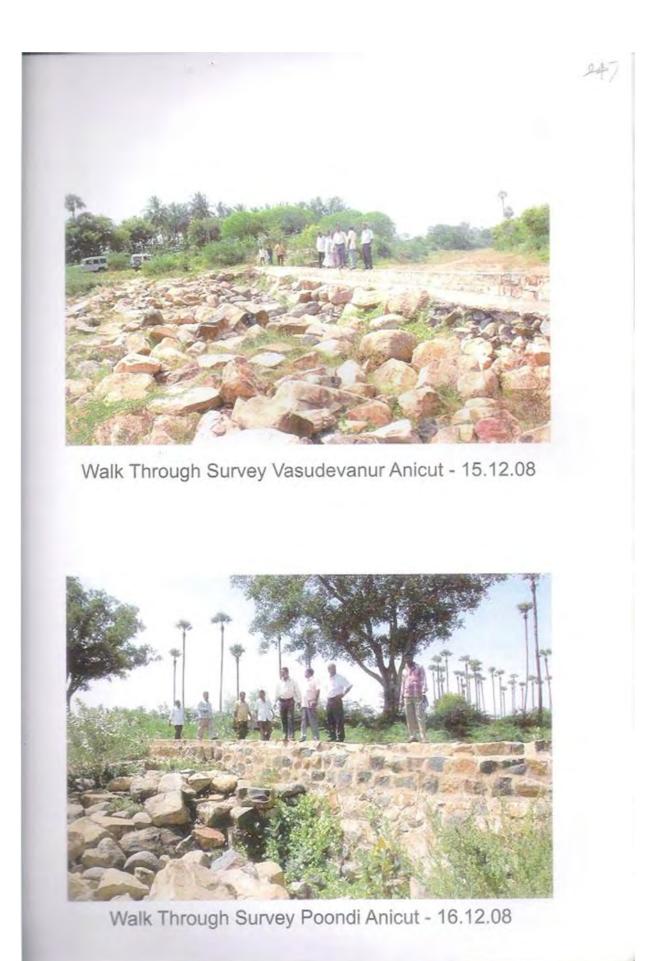
Walk Through Survey Neelamangalam Village - 16.10.08

Walk Through Survey Mudiyanur Village - 29.10.08



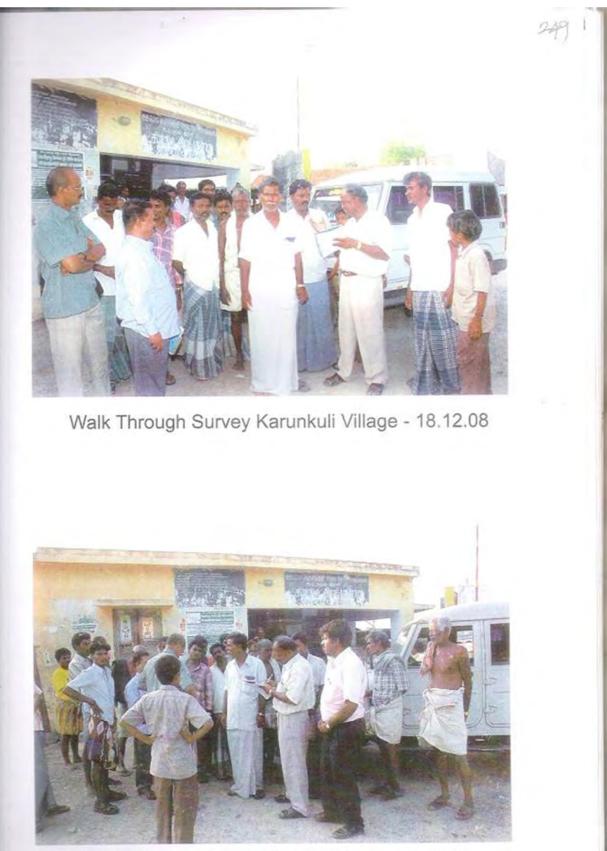

Walk Through Survey Kanangur Tank - 21.10.08

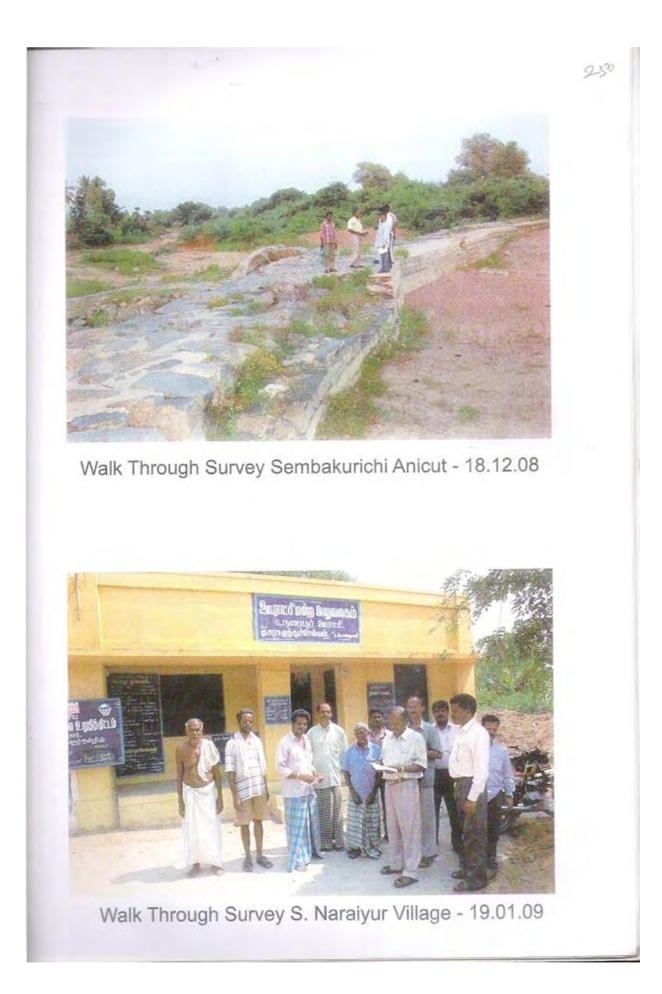
Walk Through Survey Nagalur Village - 29.10.08

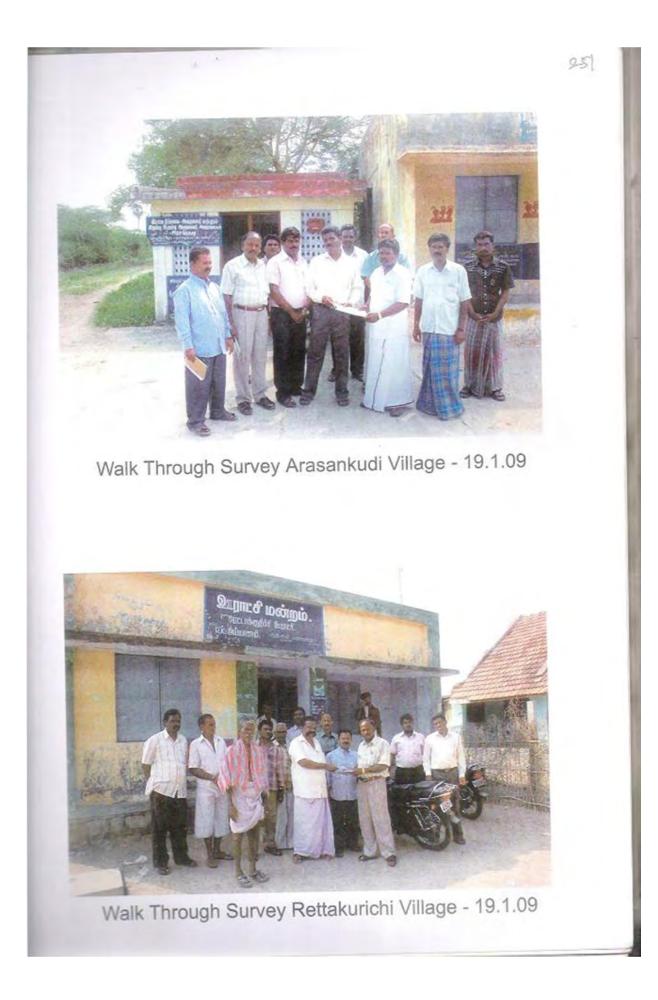


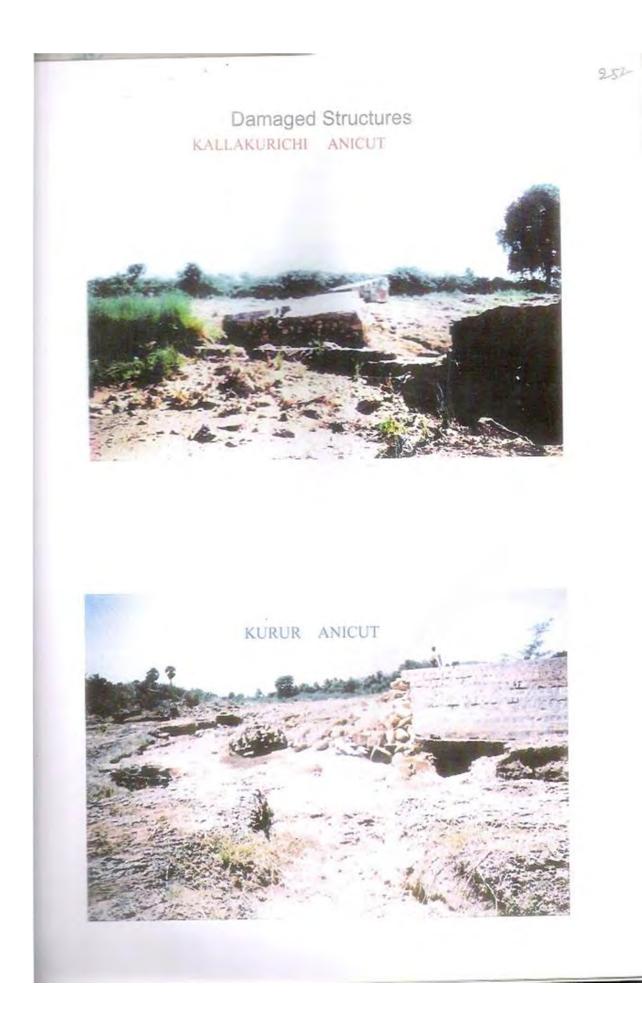
Walk Through Survey Perumangalam Village - 13.12.08

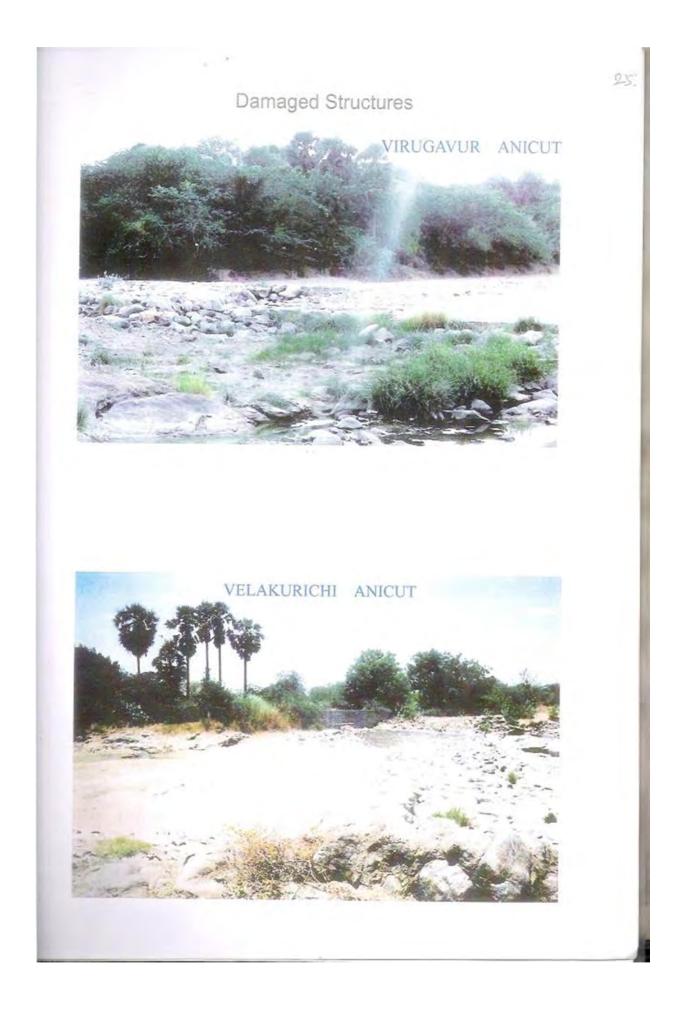
Walk Through Survey Thenponparappy Anicut - 15.12.08

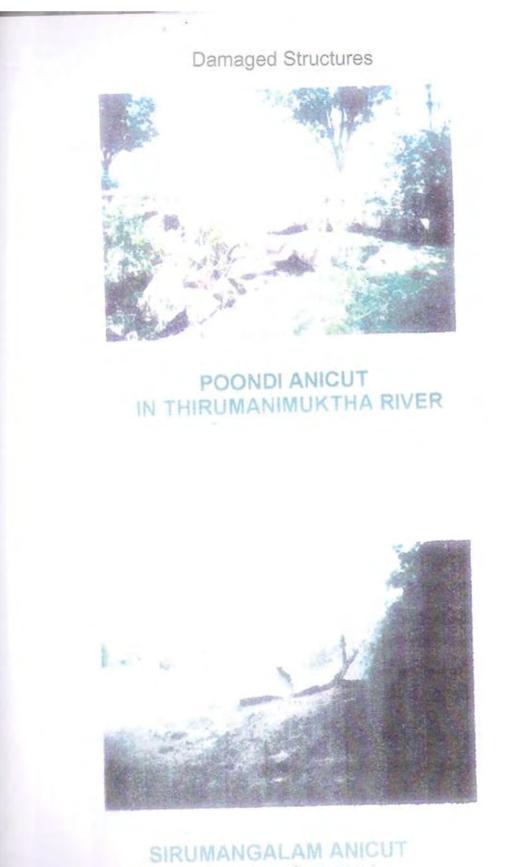


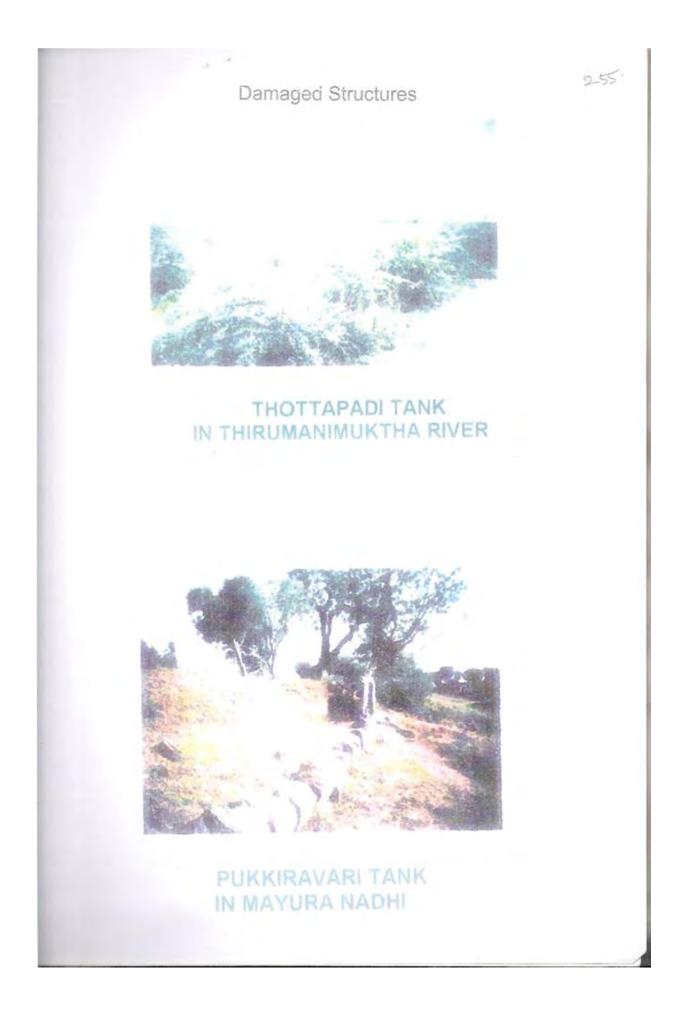

Walk Through Survey Thottapadi Village - 16.12.08




Walk Through Survey Anumanandal Anicut - 18.12.08




Walk Through Survey Eriyur Village - 18.12.08



2.59

IN MAYURA'NADHI

